基于DSP的三相异步电动机控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着新一代电力电子器件和微处理器的推出及各种先进的控制策略的提出,极大的促进了交流电机调速控制系统的发展,使得精度高、调速范围宽、控制性能好的电机控制器的实现成为可能。矢量控制是基于电机理论、机电能量转换原理及坐标变换理论的基础上发展起来的,它的控制思想就是将异步电机转换成直流电动机来进行控制。即通过坐标变换,将定子电流矢量分解为按转子磁场定向的两个直流分量并分别加以控制,从而实现磁通和转矩的解耦控制,达到直流电机的控制效果甚至更优。因此,矢量控制技术已被广泛地应用于高性能异步电机调速系统中。
     首先在异步电动机数学模型的基础上,介绍了矢量控制理论及其解耦原理。将异步电动机三相静止坐标系下的数学模型变换到两相旋转坐标系下,再利用转子磁场定向技术,使得定子绕组电流的磁场分量和转矩分量得到解耦,从而实现异步电机的调速。结合电流模型给出了矢量控制系统结构框图,为构建SVPWM矢量控制系统提供了理论依据。并根据电压空间矢量脉宽调制工作原理,设计出了一种SVPWM的软件实现方法。针对异步电机非线性、强耦合和参数时变及系统要求快速响应的特点,设计的矢量控制系统的电流控制器采用模糊自整定PI控制算法,速度控制器采用模糊因子自调整算法构成双闭环智能控制系统来对电机进行有效的调速控制。
     然后,应用矢量控制的原理,以TI公司数字信号处理器TMS320F2407A为系统的控制核心,以SKBPC3512为整流器,以三菱公司的PM25RLA120智能功率模块为逆变器,采用空间电压矢量脉宽调制技术,设计了数字化脉宽调制调速系统,构建了一个基于DSP的异步电动机矢量控制系统。论文详细设计了系统的主电路、控制电路及保护电路等,采取有效而必要的措施提高系统的抗干扰能力,采用模块化方法设计软件,便于程序的修改与移植,实现了SVPWM矢量控制策略,最后对该系统的软硬件进行了调试。实验结果表明了软硬件设计合理性和实用性。
     最后,利用MATLAB中的SIMULINK模块对控制算法进行了仿真研究,从仿真结果可以看出,本文的控制策略设计简单,满足了系统转矩响应的快速性和速度控制精度的要求,对转子参数的扰动具有较好的鲁棒性,使得系统的动静态性能良好,满足工程要求。
With the appearance all kinds of the new electronic power device and microprocessor and the advanced controlling theories be presented, which have greatly promoted the development of AC motor speed control system. The AC motor's controller which haves high accuracy, wide speed range and good performance of controlling can be realized. Vector Control is based on the theory developed of the electrical, electromechanical energy conversion principle and vector coordinate transformation. Its thought of controlling is converting asynchronous motors as DC motor to control or even better. Through the coordinate transformation, the stator current vector is decomposing two DC parts which orientated as the rotator magnetic field and controlled respectively. Thus magnetic flux and torque are decoupled. It controls the asynchronous motor as a synchronous way. Therefore, the vector control technology has been widely used in high-performance asynchronous motor speed control system.
     First of all, the vector control theory and its decoupling are introduced on the foundation of the mathematical model of asynchronous motor. The variables in 3-phase static coordinates are converted into the variables in 2-phase rotating coordinates and the components between torque and magnetic field of stator winding current are decoupled which uses the rotor-field-oriented technology. Thus, the asynchronous motor speed control is achieved. The structure diagram of vector control system which combines the current model of motor is given and provides the theoretical basis for the design of SVPWM vector control system. Based of SVPWM principle, the SVPWM software was designed. Asynchronous motors control systems have the characteristics of Nonlinear, strong coupling, parameters-varying and rapid response. the design of vector control systems' current controller using fuzzy-PI control algorithm, speed controller using fuzzy factor self-adjusting algorithm constitute double loop intelligent control systems to effectively control motor speed.
     Secondly, application of the principle of vector control, using digital single processor TMS320LF2407 of TI, which is special for motor control, as the core of system, using SKBPC3512 as the rectifier, using the intelligent power module PM25RLA120 of Mitsubishi Corporation as the inverter, using space voltage pulse width modulation technology, design digital PWM speed control system and construct an asynchronous motor for the vector control system based on DSP. In this paper, the main circuit, control circuit and protective circuit are designed in detail. In order to improve the capability of Anti-jamming, valid measures are taken. The modularization design is adopted in software so that it can be amended and replanted easily. The SVPWM vector control strategy is carried out. At last, the hardware and software is debugged. The experiment results expressed that the design of hardware and software in this paper is reasonable and valid.
     Finally, the controller is simulated respectively with the SIMULINK. module in the MATLAB. From the simulation results, the control strategy of this paper not only designs easily and avoids the restriction from the complex mathematical model of the controlled object, but also the rapidness of the system torque response and the control accuracy of speed are improved. It also has the good robustness against the perturbation of the rotor parameter. Thus, the static and dynamic characteristics of the system are ensured validly, which satisfy the requirement of engineering.
引文
[1]胡崇岳.现代交流调速技术[M].北京:机械工业出版社,2005.
    [2]陈伯时,陈敏逊.交流调速系统[M].北京:机械工业出版社,1999.
    [3]李海发,王岩.电机与拖动基础[M].北京:清华大学出版社,1994.
    [4]马小亮.大功率交——交变频调速及矢量控制技术[M].北京:机械工业出版社,2004.
    [5]符曦.感应电动机的矢量控制及应用[M].北京:机械工业出版社.1986.
    [6]许大中.交流电机调速理论[M].杭州:浙江大学出版社,1991.
    [7]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2001.
    [8]张立,赵永健.现代电力电子技术[M].北京:科学出版社,1995.
    [9]林渭勋.现代电力电子电路[M].杭州:浙江大学出版社,2002.
    [10]佟纯厚.交流电动机晶闸管调速系统[M].北京:机械工业出版社,1988.
    [11]周志敏,周纪海,纪爱华.IGBT和IPM及其应用电路[M].重庆:人明邮电出版社,2006.
    [12]中国自动化网电力电子论坛,http://www.ca800.com/subdir/ca800/elecing/.
    [13]中国工控网传动论坛,http://www.gkcd.cn/BBS/index.asp?boardid=29.
    [14]王晓明,王玲.电动机的DSP控制—TI公司DSP应用[M].北京:北京航空航天大学出版社,2004.
    [15]刘和平.DSP原理及电机控制应用基于TMS320LF240x系列[M].北京:北京航空航天大学出版社,2006.
    [16]A.Schonung,H.Stemmler.Static Frequency Changers with Subharmonic Control in Conjunction with Reversible Variable Speed AC Drives[J].Brown Boveri Rev,1964,555-557.
    [17]陈国呈.PWM变频调速及软开关电力变换技术[M].北京:机械工业出版社,2001.
    [18]张燕宾.SPWM变频调速应用技术[M].北京:机械工业出版社,1997.
    [19]吴守箴,英杰.电气传动的脉宽调制技术[M].北京:机械工业出版社,2002.
    [20]H.W Vander Broek,HC Skudely,GV Stranke.Analysis and Realization of a Pulse width Modulator based on Voltage Space Vector[J].IEEE Trans,on IA,1988,24(1):142-150.
    [21]蔡自兴.智能控制基础与应用[M].北京:国防工业出版社,1998.
    [22]李人厚.智能控制理论与方法[M].西安:西安电子科技大学出版社,1999.
    [23]蔡自兴.智能控制工程研究的进展[J].控制工程,2003,10(1):1-10.
    [24]李正熙,王久和,李华德.电压型PWM整流器非线性控制策略综述[J].电气传动, 2006,36(1):9-13.
    [25]孙鹏.智能控制在交流调速系统中的实际应用研究[D].大连海事大学,2003.
    [26]周炼,谢运祥.交流调速系统及相应电力电子技术的发展综述[J].微电机,1999,32(6):24-27.
    [27]郭前岗,李耀华,孟彦京.现代交流传动系统调速技术综述[J].微计算机信息,2004,20(11):74-76.
    [28]M.Depenbrock.Direct self-control(DSC)of inverter-fed induction machine[J].IEEE Trans.on PE,1988,3(5):420-429.
    [29]Blaschke,Felix.Principle of field orientation as used in the new Transvektor control system for induction machines[J].Siemens Review,May,1972,39(5):217-220.
    [30]王成元,周美文,郭庆鼎.矢量控制交流伺服驱动电动机[M].北京:机械工业出版社,1993.
    [31]李永东.交流电机数字控制系统[M].北京:机械工业出版社,2002.
    [32]李华德.交流调速控制系统[M].北京:电子工业出版社,2003.
    [33]王成元,周美文,郭庆鼎.矢量控制交流伺服驱动电动机[M].北京:机械工业出版社,1994.
    [34]臧英杰.电气传动的脉宽调制控制技术[M].北京:机械工业出版社,1998.
    [35]王妍,杜军红,陶伟宜等.基于DSP的空间矢量法PWM的研究[J].电机与控制学报,2000,4(2):98-101.
    [36]赵文祥,刘国海,吉敬华等.基于DSP的全数字矢量控制SVPWM变频调速系统[J].电机与控制学报,2004,8(2):175-178.
    [37]周卫平,吴正国.SVPWM的等效算法及SVPWM与SPWM的本质联系[J].中国电机工程学报,2006,26(26):133-137.
    [38]王妍.基于DSP的空间电压矢量法PWM的研究[J].电机与控制学报,2000(2):14-17.
    [39]唐勇奇.基于DSP和IPM的空间电压矢量法调速系统[J].半导体技术,2001,26(4):12-14.
    [40]Sidney R.Bowes.The relationship between space-vector modulation and regular-sample PWM[J].IEEE Transactions on Industry Applications,1997,44(5):670-679.
    [41]张鹏.基于DSP异步电机矢量控制系统的软件开发与研究[D].武汉,武汉理工大学 2002.3.
    [42]柴天佑,刘向杰,邵诚.非线性模糊自适应控制研究的现状和新发展[J].控制理论与应用,1996,13(1):7-16.
    [43]张恩勤,施烦椒,高卫平等.模糊控制系统近年来的研究与发展[J].控制理论与应用,2001,18(1):7-11.
    [44]李艳,邵日祥,邵世煌.模糊控制在电气传动中的运用现状及前景[J].电气传动,1997(2):3-9.
    [45]邵世煌.自适应模糊控制器[J].自动化学报,1987,13(2):149-155.
    [46]赵金,王光龙,万淑芸.交流调速系统模糊PID控制[J].兵工自动化,2000,(2):13-16.
    [47]阂松,彭伟发.交流伺服系统新型控制器的设计[J].电力系统及其自动化学报,2002,14(3):63-66.
    [48]刘国荣,胡浩明.基于模糊控制的感应电机矢量控制发展概述[J].仪器仪表学报,2004,25(3):302-305.
    [49]杨文峰,孙韶元.参数自调整模糊控制交流调速系统的研究[J].电工技术,2001,(9):8-11.
    [50]梁铁城,姜长洪.参数自调整模糊控制系统的设计与仿真[J].系统仿真学报,2006,18(2):628-630.
    [51]曹承志,曲红梅.基于参数自调整模糊控制的变频闭环调速系统[J].电力电子技术,2001,(1):29-33.
    [52]孙巨禄,苏鹏声,李永东.自调整模糊控制器在异步电机矢量控制系统中的应用[J].清华大学学报,2002,42(9):1151-1153.
    [53]杨川,王小椿.交流异步电机智能控制系统[J].仪器仪表学报,2004,25(3):302-305.
    [54]曲道奎,史敬灼.交流电机系统中的模糊控制研究[J].信息与控制,2003,32(2):165-168。
    [55]刘和平.TMS320LF240x结构原理及应用[M].北京:北京航空航天大学出版社,2002,15-221.
    [56]王晓明,王玲.电动机的DSP控制[M].北京:北京航空航天大学出版社,2004
    [57]周渊深.交直流调速系统与MATLAB仿真[M].北京:中国电力出版社,2003
    [58]王忠礼,段慧达,高玉峰.MATLAB应用技术—在电气工程与自动化专业中的应用[M].北京:北京航空航天大学出版社,2007.
    [59]洪乃刚.电力电子和电力拖动控制系统的MATLAB仿真[M].北京:北京航空航天大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700