甘蓝型油菜遗传图谱的构建和品质相关性状的QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜在植物分类上属于十字花科(Cruclferae)芸薹属(Brassica),是世界广泛种植的油料作物,在世界油用作物中均占有重要的地位,在我国居五大油料作物(油菜、大豆、花生、芝麻、向日葵)之首,种植面积和总产均居世界首位,是重要的食用油源和蛋白质饲料来源,也是重要的工业原料。芸薹属(Brassica)包含三个基本种,即芸薹(Brassica campestris,AA 2n=20)、甘蓝(Brassica oleracea CC,2n=18)和黑芥(Brassica nigra,BB,2n=16)。另外,还包括三个复合种:即甘蓝型油菜(Brassica napus,AACC,2n-38)、芥菜型油菜(Brassica.juncea,AABB,2n-34)和埃塞俄比亚芥(Brassica carinata,BBCC,2n=36)。自从1975年刘后利在甘白杂交中在我国首次发现甘蓝型黄籽油菜以来,黄籽性状的研究已经成为油菜领域的研究热点。甘蓝型黄籽油菜具有种皮薄且纤维素含量少,饼粕中蛋白质含量高,多酚含量低,是优良的饲料原料;在相同的遗传背景下,黄籽的含油量比黑籽高3.0-5.0%,且毛油色浅,杂质少,清澈透明,加工成本低等诸多优点。但是,甘蓝型黄籽油菜的育种研究进展缓慢,效率低下,性状改良困难。现代DNA标记技术的发展,为育种者提供了一种快速、准确的选择方法。
     本文主要利用SSR、RAPD、SRAP、TRAP、AFLP对RIL-1(GH 06×油研2号选系)和RIL-2 (GH 06×中油821选系)两个RIL群体进行了遗传连锁图谱的构建,并利用RIL-1和RIL-2两个群体进行了3个环境(2005年北碚和2006年北碚与万州)的品质相关性状QTL的定位分析,初步定位了控制种皮色泽的主效QTL的相关区域。其主要研究内容如下:作图亲本间标记多态性
     RIL-1:64对AFLP引物组合在油研2号选系和GH 06作图亲本间扩增出4035条带,平均每个引物组合扩增63条带,获得170个多态位点,平均每个引物组合产生2.66个多态位点。777对SSR引物中153对引物在两亲本间具多态性,获得181个多态性位点,平均每对引物产生1.15个多态性位点。121个SRAP引物组合获得267个多态性位点,平均每个引物组合产生2.21个多态性位点。6对TRAP引物组合共获得9个多态性位点,平均每个引物组合产生1.83个多态性位点。
     RIL-2:777对SSR引物中152对引物在两亲本间具多态性,获得172个多态性位点,平均每个引物产生1.13个多态性位点。260个SRAP引物组合共获得466个多态性位点,平均每个引物产生1.79个多态性位点。68条RAPD引物获得106个多态性位点,平均每个引物产生1.56个多态性位点。
     遗传图谱的构建
     RIL-1:对621个标记位点(261个SRAP,181个SSR,170 AFLP标记和9个TRAP标记)进行遗传连锁分析,构建的遗传连锁图包括502个标记位点,其中包括220个SRAP标记,155个SSR标记,123个AFLP标记和4个TRAP标记,27个连锁群,连锁群长度11.126cM,3-90个分子标记,标记间的平均距离为3.38cM,平均每个连锁群的遗传距离为62.89cM,覆盖1698 cM,约占甘蓝型油菜基因组67.92%。
     RIL-2:对745个标记位点(466个SRAP,172个SSR,106个RAPD和2个形态标记)进行遗传连锁分析,构建的遗传连锁图包括570个标记位点,其中包括365个SRAP标记,134个SSR标记,71个RAPD标记,27个连锁群,连锁群长度27-163cM,3-92个分子标记,平均每个连锁群距离为78.48cM,标记间的平均距离为3.72cM,覆盖2119cM,约占甘蓝型油菜基因组84.76%。
     作图亲本和株系性状统计分析
     两个的群体的3个亲本在国内广泛的种植,GH 06具有完全显性的黄籽主效基因,黄籽度达到90%,黄籽性状表现稳定。中油821选系和油研2号选系为多代自交的黑籽亲本。
     两个群体种植选择3个环境进行实验(2005年北碚和2006年北碚和万州),不同的环境性状表现各异。性状表现呈现正态分布,可以用于QTL作图分析。方差分析表明品质性状之间存在基因和环境之间的互作,部分品质性状基因和环境之间互作效应不显著。
     区间作图检测QTL的效应
     RIL-1:区间作图检测到40个影响含油量的QTL,单个QTL解释含油量变异的5.39-15.66%;检测到28个影响蛋白质含量的QTL,单个QTL解释蛋白质变异的5.1-25.76%;检测到23个影响皮壳率的QTL,单个QTL解释皮壳率变异的5.26-11.59%:检测到影响千粒重的QTL14个,单个QTL解释千粒重变异的5.36-11.45%;检测到4个影响木质素含量的QTL,单个QTL解释木质素含量变异的5.51-10.18%;检测到7个影响单株产量的OTL,单个QTL解释单株产量变异的5.21-8.23%;检测到12个影响种皮色泽的QTL,单个QTL解释种皮色泽变异的5.39-59.61%;检测到6个影响花色素含量的QTL,单个QTL解释花色素含量变异的5.58-9.47%:检测到6个影响总酚含量的QTL,单个QTL解释总酚含量变异的5.65-13.03%;检测到6个影响黑色素含量的QTL,单个QTL解释黑色素含量变异的5.46-10.47%。
     RIL-2:区间作图检测到34个影响含油量的QTL,单个QTL解释含油量变异的5.27-11.69%;检测到25个影响蛋白质含量的QTL,单个QTL解释蛋白质变异的5.19-10.4%;检测到18个影响皮壳率的QTL,单个QTL解释皮壳率变异的5.65-26.55%;检测到影响千粒重的QTL14个,单个QTL解释千粒重变异的5.08-11.51%;检测到6个影响木质素含量的QTL,单个QTL解释木质素含量变异的5.96-8.79%;检测到9个影响单株产量的QTL,单个QTL解释单株产量变异的5.03-10.59%;检测到27个影响种皮色泽的QTL,单个QTL解释种皮色泽变异的5.39-80.63%;检测到2个影响花色素含量的QTL,单个QTL解释花色素含量变异的分别为10.54%和9.86%;检测到10个影响总酚含量的OTL,单个QTL解释总酚含量变异的7.24-25.80%;检测到14个影响类黄酮含量的QTL,单个QTL解释类黄酮含量变异的6.03-28.92%;检测到13个影响黑色素含量的QTL,单个QTL解释黑色素含量变异的5.98-36.84%。
     复合区间作图检测QTL的效应
     RIL-1:复合区间作图检测到38个影响含油量的QTL,单个QTL解释含油量变异的2.92-12.93%;检测到18个影响蛋白质含量的QTL,单个QTL解释蛋白质变异的3.93-25.31%;检测到22个影响皮壳率的OTL,单个QTL解释皮壳率变异的3.83-13%;检测到影响千粒重的QTL16个,单个QTL解释千粒重变异的4.69-11.64%;检测到6个影响木质素含量的QTL,单个QTL解释木质素含量变异的4.12-11.77%;检测到13个影响单株产量的QTL,单个QTL解释单株产量变异的3.88-12.44%;检测到17个影响种皮色泽的QTL,单个QTL解释种皮色泽变异的4.01-13.43%;检测到7个影响花色素含量的QTL,单个QTL解释花色素含量变异的4.36-57.8%;检测到7个影响类黄酮含量的QTL,单个OTL解释类黄酮含量变异的7.13-62.35%;检测到11个影响总酚含量的QTL,单个QTL解释总酚含量变异的5.07-12.64%;检测到11个影响黑色素含量的QTL,单个QTL解释黑色素含量变异的5.26-16.91%。
     RIL-2:复合区间作图检测到14个影响含油量的OTL,单个QTL解释含油量变异的4.47-12.21%;检测到13个影响蛋白质含量的QTL,单个QTL解释蛋白质变异的4.01-9.40%;检测到16个影响皮壳率的OTL,单个QTL解释皮壳率变异的3.36-11.86%;检测到影响15个千粒重的QTL,单个QTL解释千粒重变异的4.03-11.03%;检测到7个影响木质素含量的QTL,单个QTL解释木质素含量变异的4.71-7.64%;检测到4个影响单株产量的QTL,单个QTL解释单株产量变异的4.65-6.42%;检测到28个影响种皮色泽的QTL,单个QTL解释种皮色泽变异的2.46-24.52%;检测到4个影响花色素含量的OTL,单个QTL解释花色素含量变异的5.25-9.94%;检测到12个影响总酚含量的QTL,单个QTL解释总酚含量变异的3.72-16.23%;检测到7个影响类黄酮含量的OTL,单个QTL解释类黄酮含量变异的3.38-14.31%;检测到12个影响黑色素含量的QTL,单个QTL解释黑色素含量变异的3.72-16.23%。
     不同环境检测到的QTL比较
     应用区间作图检测RIL-1和RIL2两个群体在2005年北碚和2006年北碚和万州3个环境OTL,多数OTL不能在不同环境中检测到,只有少数QTL能够在两个或者三个环境在相近区域检测到,分别为RIL-1群体共有12个QTLs(占全部QTL的8.28%)和RIL-2群体共有35个QTLs(占全部QTL的18.13%)。
     应用复合区间作图检测RIL-1和RIL-2两个群体在3个环境的QTL,RIL-1群体共有14个QTLs(占全部QTL的8.43%)和RIL-2群体共有21个QTLs(占全部QTL的15.22%)能够在相近区域重复检测到。
     不同作图方法检测QTL比较
     RIL-1群体区间作图共检测到了145个品质性状QTL,复合区间作图共检测到了166个QTL,复合区间作图分析方法比单区间作图分析方法多21个QTL。RIL-2群体区间作图共检测到了193个品质性状QTL,复合区间作图共检测到了138个QTL复合区间作图分析方法比单区间作图分析方法少了55个QTL。区间作图和复合区间作图差别比较大,但是两种方法均能检测到解释表型变异值大于10%的QTL。
     QTL在连锁群上的分布
     含油量与含油量相关性状(皮壳率、千粒重和蛋白质含量)和种皮色泽与色泽相关性状(花色素含量、类黄酮含量、总酚含量和黑色素含量)的QTL成簇的分布在某几个连锁群上。在RIL-1中主要分布LG12和LG17,RIL-2主要分布在LG1和LG18。各个性状的OTL在A、C两个基因组间都有分布。
     种皮色泽QTL的初步定位
     种皮色泽和四种种皮提取色素存在极显著的负相关,而四种种皮提取色素之间存在极显著的正相关。
     应用Win QTL2.5的复合区间作图分析方法(CIM,composite interval mapping;LOD≥2.0),2005年在北碚检测到11个与色泽相关的QTL,分别分布在第2、9、14和18四个连锁群。2006年在万州检测到9个与色泽相关的QTL,分别分布在第2、9、18和22连锁群。2006年在北碚检测到8个与色泽相关的QTL,分别分布在第2、11、12和18四个连锁群。其中第2连锁群和第18连锁群的QTL在三个环境都可以检测到。
     复合区间作图分析,在2006北碚,检测到5个影响种皮类黄酮含量的QTL 8个影响种皮总酚含量的QTL,6个影响种皮黑色素含量的QTL,没有检测到影响种皮花色素含量的QTL。在2006万州检测到4个影响种皮花色素含量的QTL,2个影响种皮类黄酮含量的QTL,4个影响种皮总酚含量的QTL,4个影响种皮黑色素含量的QTL。
     这些在三个环境下都能检测到的种皮色泽和与种皮色泽相关的提取色素QTL分别与sNRD03/120,EM40ME13/260,S455/500,EM13ME22/270,EM13ME22/270标记靠近,位于第18连锁群的90-144cM这个区间。克隆这个区间的SRAP引物标记序列,共得到了9个片段序列,片段大小从115bp-491bp,其中7个片段都和拟南芥的第5染色体具有较高的同源性。这些片同源区域分布在拟南芥第5染色体11个透明种皮的基因之间。与某个或者几个透明种皮基因同源的某个基因或几个基因在控制或者调控种皮色泽基因的表达。
Oilseed is Brassica of Cruclferae, is one of main oil crops in the world and holds an important status in the oil crops. In our country, it is the most important of the five oil crops (oilseed, soybean, peanut, gingili, and sunflower), the largest planting area and the most products. It is an important source to the vegetable oil and meal protein and industry material. Brassica include three elementary species (Brassica campestris, AA 2n=20; Brassica oleracea CC, 2n=18 and Brassica nigra, BB, 2n=16) and three aggregate species (Brassica napus, AACC, 2n=38; Brassica. Juncea, AABB, 2n=34 and Brassica carinata, BBCC, 2n=36). The researchers have focused on yellow seed coat of B. napus since Liu firstly found in recombination between B. napus and B.rapa in 1975. Yellow seed of B. napus is an excellent fodder material with lower hull proportion and fibrin content, higher protein content in meal and less polyphenol than brown or black one. In the same genetic, yellow seed has higher 3.0-5.0% oil content and more transparent oil and lower producing cost than brown or black one. However, it is very slow advance, very low efficiency and very difficult improvement to the selection breeding of B. napus. Recent advances in DNA markers offer plant breeders a rapid and precise alternative approach to conventional selection schemes to improve quantitative traits.
     In the present study, the high-density genetic linkage maps have been constructed using SSR marker, RAPD markers, SRAP marker, TRAP marker and AFLP marker to RIL-1 population (GH06×Youyan 2) and RIL-2 population (GH 06×Zhongyou 821). WinQTL 2.5 has detected QTLs of quality about two populations in three environments (in Beibei in 2005 and in both Beibei and Wanzhou in 2006) with LOD value 2.0. The major QTL potential regions of the seed coat color have been primarily located. The mainly results were as following:
     DNA polymorphism among three parents
     RIL-1: The 64 AFLP primer combinations yielded 4035 bands between Youyan 2 and GH 06 with 63 bands each primer. Among of the bands yielded 170 polymorphic bands with an average 2.66 polymorphic bands (between 1 and 12) informative AFLP per primer combination. 153 polymorphism primer pairs found among 777 SSR primer pairs and yielded 181 polymorphic bands with an average 1.15 polymorphic bands per primer. 121 SRAP primer combinations yielded 267 polymorphic bands with an average 2.21 polymorphic bands per primer combination. 6 TRAP primer combinations yielded 9 polymorphic bands with an average 1.83 polymorphic bands per primer combination.
     RIL-2: 152 polymorphism primer pairs found among 777 SSR primer pairs and yielded 172 polymorphic bands with an average 1.15 polymorphic bands per primer. 260 primer combinations yielded 466 polymorphic bands with an average 1.79 polymorphic bands per primer combination. 68 polymorphic primers yielded 106 polymorphic bands with an average 1.56 polymorphic bands per primer.
     Construction of the genetic linkage map
     RIL-1: 621 polymorphic loci, including 261 SRAP markers, 181 SSR markers and 9 TRAP markers, were employed to perform linkage analysis using the RIL-1 population of B. napus. 502 markers (220 SRAP markers, 155 SSR markers, 123 AFLP markers and 9 TRAP markers) were mapped to 27 linkage groups ranging from 11 to 121 cM with an average length of 62.89 cM containing 3 to 90 markers in each linkage group. The map covered a total of 1698 cM with a coverage percentage of about 67.92% (Lombard and Delourme, 2001), and the average distance between two adjacent markers was 3.38 cM.
     RIL-2: 745 polymorphic loci, including 466 SRAP markers, 172 SSR markers, 106 RAPD markers and 2 morphological loci were employed to perform linkage analysis using the RIL-2 population of B. napus. 570 markers (365 SRAP markers, 134 SSR markers and 71 RAPD markers) were mapped to 27 linkage groups ranging from 27 to 163 cM with an average length of 74.48 cM containing 3 to 92 markers in each linkage group. The map covered a total of 2119 cM with a coverage percentage of about 84.76% (Lombard and Delourme, 2001), and the average distance between two adjacent markers was 3.72 cM.
     Analysis of traits of mapping parents and lines
     Three parents of two populations are broadly plant in China. GH 06 has a complete dominant main gene of yellow seed coat with 90 % degree of yellow seed and the trait of yellow seed shows very steady. Zhongyou 821 and Youyan 2 are two black-seeded parents by self-inbreded.
     Two populations were plant in different three environments (in Beibei in 2005 and in Beibei and Wanzhou in 2006). The traits had different phenotype in different environments. The phenotype of the traits showed the normal distribution and could be used to analysis of QTL. The variance analysis of the trait indicated that the some qualities of B. napus interacted between gene and environment, and other qualities had not significant interaction effect between gene and environment.
     Analysis of QTL effects based on interval mapping
     RIL-1: In Beibei in 2005, 4 QTLs of effecting lignin content were identified by interval mapping (IM) with one QTL explaining 5.51-10.18% of the lignin content variance and 7 QTLs of effecting single-plant weight were detected with explaining 5.21-8.23% of single-plant weight variation. 40 QTLs of effecting oil content were detected by IM with explaining 5.39-15.66% of oil content variance in different environments (in Beibei in 2005 and in both Beibei and Wanzhou in 2006). 28 QTLs of effecting protein content were detected with one QTL explaining 5.1-25.76% of protein content variance. 23 QTLs of effecting hull proportion were detected with one QTL explaining 5.26-11.59% of hull proportion variance. 14 QTLs of effecting kilo-seeds weight were detected with one QTL explaining 5.36-11.45% of kilo-seeds weight variance. 12 QTLs of effecting seed coat color were detected with one QTL explaining 5.39-59.61% of seed coat color variance. 6 QTLs of effecting anthocyanidin content were detected in both Beibei and Wanzhou in 2006 with one QTL explaining 5.39-59.61% of anthocyanidin content variance. 6 QTLs of effecting total phenol content were detected with one QTL explaining 5.65-13.03% of total phenol content variance. 6 QTLs of effecting melanin content were detected with one QTL explaining 5.46-10.47% of melanin content variance.
     RIL-2: In Beibei in 2005, 6 QTLs of efffecting lignin content were detected by IM with one QTL explaining 5.96-8.79% of lignin content variance and 9 QTLS of effecting single-plant weight were detected with explaining 5.03-10.59% of single-plant weight variance. 34 QTLs of effecting oil content were detected by IM with explaining 5.27-11.69% of oil content variance in different environments (in Beibei in 2005 and in both Beibei and Wanzhou in 2006). 25 QTLs of effecting protein content were detected with one QTL explaining 5.19-10.4% of protein content variance. 18 QTLs of effecting hull proportion were detected with one QTL explaining 5.65-26.55% of hull proportion variance. 14 QTLs of effecting kilo-seeds weight were detected with one QTL explaining 5.08-11.51% of kilo-seeds weight variance. 27 QTLs of effecting seed coat color were detected with one QTL explaining 5.39-80.63% of seed coat color variance. 2 QTLs of effecting anthocyanidin content were detected by IM in both Beibei and Wanzhou in 2006 with one QTL explaining 10.54 percent and 9.86% of anthocyanidin content variance. 10 QTLs of effecting total phenol content were detected with one QTL explaining 7.24-25.80% of total phenol content variance. 14 QTLs of effecting flavonoid content were detected with one QTL explaining 6.03-28.92% of flavonoid content variance. 13 QTLs of effecting melanin content were detected with one QTL explaining 5.98-36.84% of melanin content variance.
     Analysis of QTL effects based on composite interval mapping
     RIL-1: In Beibei in 2005, 6 QTLs of effecting lignin content were detected by composite intrval mapping (CIM) with one QTL explaining 4.12-11.77% of variance and 13 QTLS of effecting single-plant weight were detected with explaining 3.88-12.44% of single-plant weight variance. 38 QTLs of effecting oil content were detected by CIM with explaining 2.92-12.93% of oil content variance in different environments (in Beibei in 2005 and in both Beibei and Wanzhou in 2006). 18 QTLs of effecting protein content were detected with one QTL explaining 3.93-25.31% of protein content variance. 22 QTLs of effecting hull proportion were detected with one QTL explaining 3.83-13% of hull proportion variance. 16 QTLs of effecting kilo-seeds weight were detected with one QTL explaining 4.69-11.64% of kilo-seeds weight variance. 17 QTLs of effecting seed coat color were detected with one QTL explaining 4.01-13.43% of seed coat color variance. 7 QTLs of efecting anthocyanidin content were detected by CIM in both Beibei and Wanzhou in 2006 with one QTL explaining 4.36-57.8% of anthocyanidin content variance. 7 QTLs of flavonoid content were detected by CIM with one QTL explaining 7.13-62.35% of flavonoid content variance. 11 QTLs of effecting total phenol content were detected with one QTL explaining 5.07-12.64% of total phenol content variance. 11 QTLs of effecting melanin content were detected with one QTL explaining 5.26-16.91% of melanin content variance.
     RIL-2: In Beibei in 2005, 7 QTLs of effecting lignin content were detected by CIM with one QTL explaining 4.71-7.64% of lignin content variance and 4 QTLS of effecting single-plant weight were detected with explaining 4.65-6.42% of single-plant weight variance. 14 QTLs of effecting oil content were detected by CIM with explaining 4.47-12.21% of oil content variance in different environments (in Beibei in 2005 and in both Beibei and Wanzhou in 2006). 13 QTLs of effecting protein content were detected with one QTL explaining 4.01-9.40% of protein content variance. 16 QTLs of effecting hull proportion were detected with one QTL explaining 3.36-11.86% of hull proportion variance. 15 QTLs of effecting kilo-seeds weight were detected with one QTL explaining 4.03-11.03% of kilo-seeds weight variance. 28 QTLs of effecting seed coat color were detected with one QTL explaining 2.46-24.52% of seed coat color variance. 4 QTLs of effecting anthocyanidin content were detected by IM in both Beibei and Wanzhou in 2006 with one QTL explaining 5.25-9.94% of anthocyanidin content variance. 12 QTLs of effecting total phenol content were detected with one QTL explaining 3.72-16.23% of total phenol content variance. 7 QTLs of effecting flavonoid content were detected with one QTL explaining 3.38-14.31% of flavonoid content variance. 12 QTLs of effecting melanin content were detected with one QTL explaining 3.72-16.23% of melanin content variance.
     Comparing to QTL effect in different environments
     Based on IM: The most QTLs of RIL-1 and RIL2 in three different environments (in Beibei in 2005 and in Beibei and Wanzhou in 2006) could not be repeatedly identified in three environments. Some QTLs could be repeatedly detected in near region of the same linkage group in three environments, which were 12 QTLs (8.28% of all QTLs) of RIL-1 and 35 QTLs (18.13%) of RIL-2.
     Based on CIM: The QTLs of RIL-1 and RIL2 that were identified in three different environments were repeated in these environments could be repeatedly detected in near region of the same linkage group in three environments, which were 14 QTLs (8.43% of all QTLs) of RIL-1 and 21 QTLs (15.22%) of RIL-2.
     Comparing to QTL effect in different mapping methods
     145 quality QTLs of RIL-1 were identified by IM and 166 QTLs were identified by CIM, the QTL numbers by CIM were more 21 than the numbers by IM. 193 quality QTLs of RIL-2 were identified by IM and 138 QTLs were identified by CIM, the QTL number by IM were more 55 than the numbers by CIM. It is very different to between IM and CIM, but they could detect the QTL with explaining =10% of phenotypic variance.
     QTL distribution
     The QTLs of oil content and oil content related traits(hull proportion, kilo-seed weight and protein content) clustered in some linkage groups as well as the QTLs of seed coat color and seed coat color related to traits(anthocyanidin content, flavonoid content, total phenol content and melanin content). Such as, in the linkage groups of RIL-1 they mainly distributed in LG 12 and LG 17 and mainly distributed in LG 1 and LG18 in ones of RIL-2. Added to this, QTLs of all quality distributed both A genome and C genome.
     Primary location QTL of seed coat color
     Seed coat color is very significant negative correlation to four kinds of pigments (anthocyanidin, flavonoid, total phenol and melanin), but four kinds of pigments is very significant positive correlation to each other.
     11 significant QTLs of seed coat color were identified in four linkage groups (LG 2, 9, 14 and 18) with a LOD value threshold of 2.0 by CIM in Beibei in 2005. In Wanzhou 9 significant QTLs were identified in four linkage groups (LG 2, 9, 18 and 22) in 2006 and 8 significant QTLs were identified in four linkage groups (LG 2,11,12 and 18) in Beibei in 2006. The QTL in the LG 2 and LG18 could be detected in three environments.
     5 significant QTLs of flavonoid content, 8 significant QTLs of total phenol content and 6 significant QTLs of melanin content were detected in Beibei in 2006 and QTL of anthocyanidin content was not detected. In Wanzhou in 2006, 4 significant QTLs of anthocyanidin content, 2 significant QTLs of flavonoid content, 4 significant QTLs of total phenol content and 4 significant QTLs of melanin content were detected.
     These QTLs of seed coat color and pigment that could be detected in three environments is near to some marker, such as sNRD03/120, EM40ME13/260, S455/500, EM13ME22/270, EM13ME22/270, and located 90-144 cM in the 18~(th) linkage group. Cloned SRAP marker sequence in the region, and gained 9 sequence with length ranging from 115bp to 491, 7 sequence among of these sequences have homology with 5~(th) chromosome of Arabidopsis thaliana. These homologous areas are scattered among the 11 transparent testa (77) genes in 5~(th) chromosome of A. thaliana. So one gene or some genes, which are homologous with one TT gene or some TT gene, regulate and control the expression of the seed coat color gene.
引文
安贤惠,陈宝元.利用RAPD标记研究中国芥菜型油菜遗传多样性.华中农业大学学报,1999,18:524-527
    贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学.1996,29:1~10
    陈宝元,孟金陵.甘蓝型油菜种皮发育的初步观察.华中农学院学报,1984,3:58
    陈书霞,王晓武,方智远,程智慧,孙培田.RAPD标记构建芥蓝×甘蓝分子标记连锁图.园艺学报,2002,29:229-232
    陈玉萍,刘后利.甘蓝型油菜种子发育过程中种皮色素含量动态.中国油料,1994,16:13-16
    陈玉萍,高永同,刘后利.甘蓝型黄籽油菜粒色及主要品质性状的动态研究.中国油料,1989 4:10-15
    董遵,刘敬阳.我国甘蓝型黄籽油菜育种研究进展.华中农业大学学报,1999 18(6):533-536
    方宣均,吴为人,唐纪良.作物DNA标记辅助选择育种.北京,科学出版社,2002
    傅廷栋,杨光圣,马朝芝,涂金星.油菜杂种优势利用研究的历史、现状与展望.科技进步与学科进展(下册).1998,pp.742-748.
    高永同.甘蓝型黄籽油菜种子发育的研究.作物学报.1987,13:201-207
    胡晓君,不同类型油菜品种种皮色泽与含油量的关系研究[硕士论文].武昌:华中农业大学,1988
    户刈.油菜的开花和种子发育过程.日作纪,1964,23:26-32
    黄继英,徐爱遐,胡胜武,金平安.甘蓝型黄籽油菜粒色变因分析.西北农业大学学报,1996,24:33-36
    惠大丰,姜长鉴,莫惠栋.数量性状基因图谱构建方法的比较.作物学报.1997,23:129-136
    李崇辉,陈文艺.甘蓝型油菜黄籽分布与种皮颜色变化研究.西南农业大学学报,1998,20:256-258
    李殿荣,田建华.甘蓝型油菜显性黄籽基因的发现和黄籽杂交种的选育.迎接二十一世纪的中国油料科学-中国作物学会油料作物专业委员会第四次全国会员大会学术论文摘要,2000,pp.30-31
    李加纳,湛利,梁颖.甘蓝型黄籽油菜的研究与思考.见:食物与能源安全战略中的中国油料.北京:中国农业科技出版社.2004,pp.29-39
    李加纳,张学昆,谌利,王瑞,崔翠.不同遗传背景的甘蓝型黄籽油菜粒色遗传初步研究.中国油料作物学报,1998,20:16-19
    李加纳.甘蓝型黄籽油菜研究进展.油菜研究年报,2000,pp.12-17
    李敏,张瑞茂.甘蓝型黄籽油菜果位分布和农艺措施与粒色相关性的研究,耕作与栽培,1999,5:26-29
    李维明,Worl.AJ.用籼/粳交重组自交系群体构建的分子遗传图谱及其与籼/粳交群体的分子图谱的比较.中国水稻科学,2000,14:71-78
    李云昌.不同类型油菜种皮色泽的遗传以及色泽与含油量的相关研究[硕士论文].武昌:华中农业大学,1985
    梁艳丽,梁颖,李加纳,谋利,甘蓝型油菜黄籽与黑籽种皮多酚及PPO的比较,西南农业大学学报,2002 24(2)126-130.
    梁艳丽、梁颖、李加纳、湛利.甘蓝型黄、黑籽油菜种皮特性比较研究,中国油料作物学报,2002.24:14-18
    梁艳丽..甘蓝型黄籽油菜种皮特性形成机理研究[硕士学位论文].重庆:西南农业大学,2003
    梁颖.甘蓝型黄籽油菜种皮相关性状形成机理和蛋白质差异表达研究[博士学位论文].重庆:西南农业大学,2005
    林忠旭,张献龙,聂以春,贺道华,吴茂清.棉花SRAP遗传连锁图构建.科学通报,2003,48:1676-1679
    刘春林,官春云,李枸,阮颖,廖晓兰,熊兴华,周小云,王国槐,陈社员.油菜分子标记图谱构建及抗菌核病性状的QTL定位.遗传学报,2000,27:918-924
    刘后利,高永同.甘蓝型黄籽油菜高含油量育种初报.华中农学院学报,1981,1:13-20
    刘后利.甘蓝型黄籽油菜的发现及其遗传行为的初步研究.遗传学报,1979,6:54
    刘后利.甘蓝型黄籽油菜的遗传研究.作物学报,1992,18:241-249
    刘后利.甘蓝型黄籽油菜的遗传育种研究.作物育种研究与进展(第一集).北京:农业出版社,1993,pp.216
    刘后利编著.油菜遗传育种学.北京:中国农业大学出版社.pp.104-108,220-225
    刘列钊.甘蓝型黄籽油菜种皮色泽相关基因的差异显示和QTL定位研究[博士学位论文].重庆:西南农业大学,2003
    刘树兵,贾继增.高等植物的遗传作图.山东农业大学学报,1999,30:73-78
    刘旭.遗传标记和遗传图谱构建.作物品种资源,1997,3:29-32
    刘勋甲,郑用琏,尹艳.遗传标记的发展及分子标记在农作物遗传育种中的应用Ⅱ:分子标记在农作物遗传育种中的应用及原理.湖北农业科学.1998,327~332
    卢刚.白菜分子遗传图谱的构建及其重要农艺性状的基因定位研究[博士学位论文].浙江:浙江大学,2001
    罗林广,王新望.分子标记及其在作物遗传育种中的应用.江西农业学报,1997,9:45-54
    戚存扣,仲裕泉.甘蓝型油菜与埃芥种间杂种F_1的细胞学研究.江苏农业学报,1991,4:8-12.
    沈法富,刘风珍,于元杰.分子标记在植物遗传育种的应用.山东农业大学学报,1997,28:83-91
    涂金星,傅廷栋,郑用琏,杨光圣,马朝芝,杨小牛.甘蓝型油菜隐性核不育遗传标记的初步研究Ⅱ.P6-9紫茎基因与可育基因连锁的分子证据.作物学报,1999,25:669-673
    王汉中,刘后利.油菜皮壳中多酚氧化酶活性的组织化学检定及其与粒色的关系.中国油料,1991,1:30-33
    王汉中,刘后利.油菜皮壳中多酚氧化酶活性的组织化学检定及其与粒色的关系.中国油料,1991,1:32
    王汉中,刘后利.油菜皮壳中多酚氧化酶活性的组织化学鉴定及其与粒色的关系.中国油料,1991,1:30-32
    王汉中.发展油菜生物柴油的潜力、问题与对策.油料作物学报,2005.27:74-76.
    王汉中.油菜粒色的变异及其不稳定性研究[博十论文].武昌:华中农业大学,1990
    王俊霞,杨光泽.甘蓝型油菜Pol CMS育性恢复基因的RAPD标记.作物学报,2000,26:575-578
    王永军,吴晓雷,喻德跃,章元明,陈受宜,盖钧镒.重组自交系群体的检测调整方法及其在大豆NJRIKY群体的应用.作物学报.2004,30:413-418
    文雁成,王汉中,沈金雄,刘贵华,张书芬.用SRAP标记分析中国甘蓝型油菜品种的遗传多样性和遗传基础.中国农业科学,2006,39:246-256
    吴江生,刘后利.控制甘蓝型油菜黄色种皮的显性基因的研究.华中农业大学学报.1997,16:26-28.
    吴为人,李维明,卢浩然.建立一个重组自交系群体所需的自交代数.福建农业大学学报,1997,26:129-132
    席章营,朱芬菊,台国琴,李志敏.作物QTL分析的原理与方法.中国农学通报,2005,21:88-92
    肖达人,刘后利.甘蓝型油菜种皮颜色与种子含油量的相关分析.作物学报,1982,8:245-254
    谢皓.小麦基因定位研究进展.北京农学院学报,2000,74-79
    忻雅,崔海瑞.植物表达序列标签(EST)标记及其应用研究进展.生物学通报,2004,39:481-489
    邢永忠,徐才国.作物数量性状基因研究进展.遗传,2001,23:498-502
    叶小莉,李加纳.甘蓝型黄籽与黑籽粒色性状的动态分析.作物学报,2001,27:550-556
    叶小利,李学钢,李加纳.甘蓝型油菜种皮黑色素形成机理的研究,作物学报,2002,28:638-643
    叶小利.甘蓝型黄籽和黑籽油菜种皮色素差异机理研究[博士学位论文].重庆:西南农业大学,2001
    张立阳,张凤兰,王美,刘秀村,赵岫云,薛林宝.大白菜永久高密度分子遗传图谱的构建.园艺学报,2005,32:249-255
    张鲁刚,王鸣,陈杭,刘玲.中国白菜RAPD分子遗传图谱的构建.植物学报,2000,42:484-489
    张学昆.甘蓝型黄籽油菜遗传多样性及其透明种皮对种子生理的影响[博士学位论文].重庆:西南农业大学,2005
    钟黔湘.影响甘蓝型黄籽频率的若干因素.中国油料,1991,2:85-86
    周旭章,魏开华,陈朝辉,谢凯,朱建军.从黑芝麻中提取黑色素的研究.林产化工通讯,1997,4:17-19.
    周延清.遗传标记的发展.生物学通报.2000,35:17-18
    朱军.运用混合线性模型定位复杂数量性状基因的方法.浙江大学学报(工学版),1999,33:327-335
    Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF et al. Complementary DNA Sequencing: Expressed Sequence Tags and Human Genome Project. Science, 1991, 252: 1651-1656
    Ajisaka H, Kuginuki Y, Hida K, Enomoto S, Hirai M. A linkage map of DNA markers in Brassica carnpestris. Breed Sci., 1995, 45 (suppl.) 195
    Ajisaka H, Kuginuki Y, Shiratori M, Ishiguro K, Enomoto S, Hirai M. Mapping of loci affecting the cultural efficiency of Microspore culture of Brassica rapa L. sny. campestris L. using DNA polymorphism. Breed Sci., 1999, 49: 187-192
    Akkaya MS, Bhagwat AA, Cregan PB. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics, 1992, 132: 1131-1139
    Anand LJ, Reddy WR, Ravirat DS. Inheritance of seed coat colour in mustard. Indian J.Genet, 1985, 45: 34-37
    Asthann AN. Breeding of improved yellow-seeded Indian mustard Ind. J. Genet. Plant Breed., 1975, 35: 49-53
    Axeisson T, Shavorskaya O, Lagercrantz U. Multiple flowering time QTLs within several Brassica species could be the result of duplicated copies of one ancestral gene. Genome, 2001, 44: 856-64.
    Badani AG, Snowdon R J, Wittkop B, Lipsa FD, Baetzel R, Horn R, De Haro A, Font R, Liihs W, Friedt W. Colocalization of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome, 2006, 49, 1499
    Barret P, Delourrne R, Foisset N, et al. Development of a SCAR (sequence characterised amplified region) marker for molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus. Theor. Appl. Genet., 1998, 97: 828-833
    Bematzky R, Tanksley SD. Toward a saturated linkage map in tomato based on isozyme and random cDNA sequences. Genetics, 1986, 112: 887-898
    Bohuonl EJR, Keith DJ, Parkin IAP, Sharpe AG, Lydiate DJ. Alignment of the conserved C genomes of Brassica oleracea and Brassica napus Theor. Appl. Genet., 1996, 93: 833-839
    Botstein D, White RL, Skolnick M, et al. Construction of a genetic map in man using restiction fragment polymorphisms. Am J. Hum Genet, 1980, 32: 314~331
    Brunel D, Froger N, Pelletier G. Development of amplified consensus genetic marker (ACGM) in Brassica napus from Arabidopsis thaliana sequences of known biological function. Genome, 1999, 42: 387-402
    Bums MJ, Barnes SR, Bowman JG, Clarke MHE, Wemer CP, Kearsey MJ. QTL analysis of an intervarietal set of substitution lines in Brassica napus: (ⅰ) Seed oil content and fatty acid composition. Heredity, 2003, 90: 39-46
    Caetanao AG, DNA amplification fingerpinting using very short arbitrary oligonucleotide primers. Biotechnology, 1991, 9: 553-557
    Camargo LEA, Osbom TC. Mapping loci controlling flowering time in Brassica oleracea. Theor. Appl. Genet., 1996, 92: 610-616
    Camargo LEA, Williams PH, Osbom TC. Mapping of quantitative trait loci controlling resistance of Brassica oleracea to Xanthomonas campestris pv. campestris in the field and greenhouse. Phytopathology, 1995, 85: 1296-1300
    Caranta C, Thabuis A, Palloix A. Development of a CAPS marker for the Pvr4 locus: a tool for pyramiding potyvirus resistance genes in pepper. Genome, 1999, 42: 1111-1116
    Chen BY, Heneen SK and Josson R. Resynthesis of Brassica napus L. through interspecific hybridization between B. alboglabra Bailey and B.carapestris L.with special emphasis on seed colour. Plant Breeding, 1988, 101: 52-59
    Chen BY, Heneen WK. Inheritance of seed colour in Brassica campestris L. and breeding for yellow-seeded B. napus L.. Euphytica, 1992, (59): 157-163
    Chen BY, Meng JL.Preliminary observation on tests development of rape (Brassica napes L.) seeds. J. Central China Agdc. Univ, 1984, 3: 5-8
    Cheung WY, Gugel RK, Landry B. Identification of RFLP markers linked to the white rust resistance gene (Acr) in mustard [Brassica juncea (L.) Czern. and Coss]. Genome, 1998, 41(4): 626-628
    Cheung WY, Friesen L, Rakow GFW, Séguin-Swartz G., Landry BS. A RFLP-based linkage map of mustard [Brassica juncea (L.) Czern. And Coss.]. Theor. Appl. Genet.. 1997, 94: 841-851
    Cheung WY, Landry BS, Raney P, et al. Molecular mapping of seed quality traits in [Brassica juncea (L.) Czern. And Coss.]. Acta Hort. 1998, 459: 139-147
    Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhour S. Diversity of microsatellites derived from gcnomic libraries and GenBank sequences in rice (Oryza sativa L). Theor. Appl. Genet., 2000, 100: 713-722
    Churchill GA, Doerge. Empirical threshold values for quantitative trait mapping. Genetics.1994, 138: 963-971.
    Chyi YS, Hoeneeke ME, Sernyk JL. A genetic map of restriction fragment length polymofism loci for Brassica rapa (syn.campestris). Genome, 1992, 25: 746-757
    Collins FS, Guyer MS, Chakravarti A. Variations on a theme: cataloging human DNA sequence variation. Science, 1997, 278: 1580-1581
    Deynze AV, Pauls K. The inheritance of seed colow and vernalization requirement in Brassica napus L. using doubled haploid populations. Euphytica. 1994, 4: 77-83
    Dion Y, Gugel RK, Rakow GFW, Seguin-Swartz G, Landry BS. RFLP mapping of resistance to the blackleg disease [causal agent, Leptosphaeda maculans (Desm.) Ces. et de Not.] in canola (Brassica napus L.). Thcor. Appl. Genet., 1995, 91: 1190-1194
    Dong YZ, Li Y, XU T, LI GR, Li JN. RAPD Markers for Yellow Seed gene in Brassica napus. Journal of Southwest Agricultural University (Natural Science). 2004, 25, 10-12.
    Ecke W, Uzunova M, Weibleder K. Mapping the genome of rapeseed (Brassica napus L). Ⅱ. Localisation of genes controlling erucic acid synthesis and seed oil content. Theor. Appl. Genet., 1995, 91: 972-977
    Ferreira ME, Rimmer SR, Williams PH, Osborn TC. Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phytopathology, 1995, 85: 213-217
    Ferreira ME, Williams PH, Osborn TC. RFLP mapping of Brassica napus using doubled haploid lines RFLP mapping of Brassica using doubled haploid lines. Theor. Appl. Genet., 1994, 89: 615-621
    Ferriol M, BP, Nuez F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor. Appl. Genet., 2003, 107, 271-282
    Ferriol M, Picó MB, Nuez F. Genetic diversity of some accessions of cucurbita maxima from Spain using RAPD and SRAP markers. Genetic Resources and Crop Evolution, 2003, 50: 227-238
    Foisset N, Delourme R, Barret P, Hubert N, Landry BS, Renard M. Molecular mapping analysis of Brassica napus using isozyme, RAPD and RFLP markers on double haploid progeny. Theor. Appl. Genet., 1996, 93: 1017-1025
    Foisset N, Delourme R, Barret P, Renard M. Molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus. Theor. Appl. Genet., 1995, 91: 756-761
    Ghaveyazie B, Huang N, Second G, Bennett J, Khush GS. Classification of rice germplasm. I. Analysis using ALP and PCR-based RFLP. Theor. Appl. Genet., 1995, 91: 218-227
    Gül MK, Becker HC, Ecke W. QTL mapping and analysis of QTL×nitrogen interactions for protein and oil in Brassica napus L.. In Proc. 11th Int. Rapeseed Congress, Copenhagen, Denmark. 2003, 6-10
    Haley CS, Knott SA. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity, 1992, 69: 315-324
    Hamada H, Kakunag T. Potential Z-DNA forraing sequences are highly dispersed in the human genome. Nature, 1982, 298:396-398
    Hawk JA. Single gene control of seed color and hypocotyls color in turnip rape. Can.J. Plant. Sci., 1982, 62:331-334
    Henderson CA, Panls KP. The use of haploidy to develop plants that express several recessive traits using light-seeded canola (Brassica napus) as an example. Theor. Appl. Genet., 1992, 83: 476-479
    Heyn FW. Beitrage zum Auftreten unreduzierter Gameten and zur Genetik einiger Merkmale bei den Brassiceae. Ph. D. thesis, Landw. Fak., University of Gottingen. 1973
    Hu JG, M iller J, Xu S, Faris J, Miklas P, Ochao O, Truco MJ, Berville A, and Vick B. TRAP (target region amplification polymorphism) technique and its application to crop genomies, In: Plant and Animal Genomes Ⅻ Conference, San Diego, CA. 2004, pp. 10-14
    Hu JG, Vick BA. Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Molecular Biollogy Reporter, 2003, 21: 289-294
    Hyne V, Kcarsey MJ, Pike DJ, Shape JW. QTL analysis: unreliability and bias in estimation procedures. Mol Breed., 1995, 1: 273-282
    Jean M, Brown GG, Landry BS. Targeted mapping approaches to identify DNA markers linked to the RFPL restorer gene for the 'polima' CMS of canola (Brassic napus L.). Theor. Appl Genet., 1998, 97: 431-438
    Jonsson R. Breeding for improved oil and meal quality in rape (Brassica napus L.) and turnip rape (Brassica campestds L.). Hereditas, 1977, 87: 205-218
    Jonsson R. Yellow-seeded nape and turnip rape. Ⅱ. Breeding for improved quality of oil and meal in yellow-seeded materials. J. Saved. Seed Ass., 1975, 85: 271-278
    Kao CH, Zeng ZB, Teasdale RD. 1999. Multiple interval mapping for quantitative trait loci. Genetics152:1203-1216.
    Kao CH, Zeng ZB. General formulae for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm. Biometrics 1997, 53:653-665
    Kao CH, Zeng ZB. Modeling epistasis of quantitative trait loci using Cockerham's model. Genetics, 2002, 160:1243-1261
    Keatsey M, Fatquhat AGL. QTL analysis in plants; where ate we now? Heredity 1998, 80:137-142
    Kemal GUL M, QTL Mapping and analysis of qtl x nitrogen interactions for some yield components in Brassica napus L. Turk. J. Agric. 2003, 27: 71-76
    Kennatd WC, Slocum MK, Figdore SS, Osborn TC. Genetic analysis of morpholocigical variation in Brassica oleracea using molecular markers. Theor. Appl. Genet., 1994, 87: 721-732
    Kianian SF, Quiros CF. Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theor. Appl. Genet., 1992, 84: 544-554
    Kojima T, Nagaoka T, Noda K, Ogihara Y, Genetic linkage map of ISSR and RAPD markers in einkorn wheat in relation to that of RFLP markers. Theor. Appl. Genet., 1998, 96: 37-45
    Kole C, Kole P, Vogelzang R, Osborn TC. Genetic linkage map of a Brassica rapa recombinant inbred population. The Journal of Heredity, 1997, 88: 553-557
    Kole C, Quijada P, Michaels SD, Osborn TC. Evidence for homology of flowering-time genes VFR2 from Brassica rapa and FLC from Arabidopsis thaliana. Theor. Appl. Genet., 2002, 102: 425-430
    Konieczny A, Ausubel FM. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. The Plant Journal, 1993, 4: 403-410
    Konish T, Abe K, Matsuura S, Yano Y. Distorted segregation of the esterase isozyme genotypes in batley(Hordeum vulgate L.). JPN. J. Genet. 1990, 65: 411-416
    Kosambi DD. 1944. The estimation of map distances from recombination values. Ann Eugen 12: 172-175
    Lagercrantz U, Lydidiatet DJ. RFLP mapping in Brassica nigra indicated differing recombination rates in male and female meiosis. Genome, 1995, 38: 255-264
    Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185-199
    Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185-199
    Landry BS, Hubert N, Crete R, Chang MS; Lincoln SE; Etoh T. A genetic map of Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance genes to race 2 of Plasmodiop boraBrassicae (Woronin). Genome, 1992, 35: 409-420
    Landry BS; Hubert N, Crete R, Chang MS, Lincoln SE, Etoh T. A genetic map for Brassica napus based on restriction fragment length polymorphism detected with expressed DNA sequences. Genome, 1991, 34: 543-552
    Lebowitz RL, Soller M, Beckmann JS. Trait-based analysis for the detection of linkage between marker loci and quantitative trait loci in cross between in bred lines. Theor. Appl. Genet., 1987, 73: 556-562
    Leister D, Ballvora A, Salamini F, Gebhardt C. A PCR-based approach for isolation pathogen resistance genes from potato with potential for wide application in plants. Nature Geneitics, 1996, 14: 421-429
    Leung J, Fenton TW, Mueller MM, Clandinin DR. Condensed tannins of rapeseed meal. J. Food Sci., 1979, 44: 1313-1316
    Li G, Gao M, Yang B, Quiros CE Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor Appl Genet., 2003, 107: 168-180
    Li G, Quiros C E Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet., 2001, 103: 455-461
    Li JN, Chert L, Liang Y. Research and commercial application of the complete dominance yellow-seeded gene in Brassica napus L. In Proceedings of the 11 the International Rapeseed Congress. 2003, BO5. 7: 202-204
    Li, G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet., 2001, 103, 455-461
    Lin ZX, He DH; Zhang X; Nie YC, Guo X; Feng C; Stewart J McD. Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breed., 2005, 124: 180-127
    Lin ZX, Nie YC, He DH, Wu MQ. Construction of a genetic linkage map for cotton based on SRAP. Chinese, 2003, 34-38
    Lionneton E, Ravera S, Sanchez L, Aubert G, Delourme R, Ochatt S. Development of an AFLP-based linkage map and localization of QTLs for seed fatty acid content in condiment mustard (Brassica juncea). Genome, 2002, 45, 1203
    Liu JQ, Parks P, Rimmer SR. Molecular mapping of a locus controlling resistance to Albugo candida in Brassica rapa. Phytopathology, 1996, 86: 367-369.
    Liu LZ, Meng JL, Lin N, Chen L, Tang ZL, Zhang XK, Li JN. QTL mapping of seed coat color for yellow seeded Brassica napus. Yi Chuan Xue Bao, 2006, 33: 181-187.
    Liu XP, Tu JX, Chen BY, Fu TD. Identification of the linkage relationship between the flower colour and the content of erucic acid in the resynthesized Brassica napus L. Yi Chuan Xue Bao 2004, 31: 357-362
    Liu ZW, Fu TD, Tu JX, Chen BY. Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed (Brassica napus L.). Theor. Appl. Genet., 2005, 110: 303-310.
    Lombard V, Delourme R. A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor. Appl. Genet., 2001, 103: 491-507
    Lowe AJ, Moule C, Trick M, Edwards KJ. Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor. Appl. Genet., 2004, 108, 1103-12.
    Lukens L, Zou F, Lydiate D, Parkin I, Osborn T. Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics, 2003, 164, 359-372
    Mackill DJ, Zhang Z, Redona ED, Colowit PM. Level of polymorphism and genetic mapping of AFLP markers in rice. Genome, 1996, 39: 969-977
    Mahmood T, Ekuere U, Yeh F, Good AG, Stringam GR. RFLP linkage analysis and mapping genes controlling the fatty acid profile of Brassica juncea using reciprocal DH populations. Theor. Appl. Genet., 2003, 107: 283-290
    Manly KF, Cudmore RH Jr, Meer JM. Map manager QTX, cross-platform software for genetic mapping. Mamm Genome, 2001, 12: 930-932.
    Marles MAS, Gruber MY. Histoehemical charaeterisation of unextractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. J Sci. Fd. Agric., 2004, 84:251-262
    Matsumoto E, Yasui C, Ohi M, Tsukada M. Linkage analysis of RFLP markers for clubroot resistance and pigmentation in Chinese cabbage (Brassica rapa ssp. Pekinensis). Euphytica, 1998, 104: 79-86
    Mayerhofer R, Wilde K, Mayerhofer M, Lydiate D, Bansal VK, Good AG, Parkin IA. Complexities of chromosome landing in a highly duplicated genome: toward map-based cloning of a gene controlling blackleg resistance in Brassica napus. Genetics, 2005, 171: 1977-88
    McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Mori-shima H and Kinoshita T Report on QTL nomenclature. Rice. Genet. Newsl., 1997, 14: 11-13
    McDonald BE. Rapeseed in changing world: processing and utilization. GCIRC Eight Intl. Rapeseed Congress Saskatoon. 1991, 1:39-56
    Mohammad A, Sikka SM, Aziz MA. Inheritance of seed colour in some oleiferous Brassicae. Indian J Genet Breed, 1942, 2: 112-127
    Mohapatra T, Sharma A, Upadhyay A, Chopra VL, Sharma RP. RFLP mapping in Indian mustard (Brassica juncea). Eucarpia Cruciferae Newsletter, 1995, 17: 22-23
    Moreno-Gonzalez J.Genetic models to estimate additive and non-additive effects of marker-associated QTL using multiple regression techniques. Theor. Appl. Genet., 1992, 85: 435-444
    Morrision IM. A semi-micro method from the determination of lignin and its use in predicting the digestibility of forage crops. J Sci.Fd Agric, 1972, 23: 445-463
    Morton NE. Sequential tests for the detection of linkage. American Journal of Human Genetics, 1955, 7: 277-318
    Murray MG, Thomspon WF. Rapid isolation of high molecular weight plant DNA. Nucl. Acids Res., 1980, 8: 4321-4326
    Nakamura Y, Leppert M, O'Connell P, Wolff R, Holm T, Culver M, Martin C, Fujimoto E, Hoff M, Kumlin E, et al. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science, 1987, 235: 1616-1622
    Nozaki T, Kumazaki A, Koba T, Ishikawal K, Ikehashi H. Linkage analysis among loci for RAPDs, isozymes and some agronomic traits in Brassica campestris L.. Euphytica, 1997, 95: 115-123
    Olson M, Hood L, Cantor C, Botstein D. A common language for physical mapping of the human genome. Science, 1989, 254: 1434-1435
    Olsson G, Species crosses within the genus Brassica Ⅱ. Artificial Brassica napus L. Hereditas, 1960, 46: 351-396
    Paran I, Kesseli R, Michelmore R. Identification of restriction fragment length polymorphism and random amplified polymorphic DNA markers linked to downy mildew resistance genes in lettuce, using near-isogenic lines. Genome, 1993, 34: 1021-1027
    Parkin IA, Gulden SM, Sharpe A G, Lukens L, Trick M, Osborn TC, Lydiate DJ. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics, 2005, 171: 765-81
    Parkin IAP, Sharpe AG, Keith DJ, Lydiate DJ. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome, 1995, 38: 1122~1131
    Pejic I, Ajmone-Marsan P, Morgante M, Kozumplickl V, Castiglioni P, Taramino G, Motto M. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor Appl Genet, 1998, 97: 1248-1255
    Pilet ML, Delourme R, Foisset N, Renard M. Identification of loci contributing to quantitative field resistance to blackleg disease, causal agent Leptosphaeria maculans (Desm.) Ces. et de Not., in winter rapeseed (Brassica napus L.). Thero.Appl.Genet., 1998, 96(1): 23-30
    Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincour P and Blanchard P. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor. Appl. Genet. 2005, 111: 1514-1523
    Pirie A, Mullins MG, Changes in anthocyanin and phenolics content of grapevine leaf and fiuit tissue treated with sucrose, nitrate and abscisic acid. Plant Physiol, 1976, 58: 468-472
    Plieske J, Struss D. Microsatellite markers for genome analysis in Brassica I. development in Brassica napus and abundance in Brassicaceae species. Theor. Appl. Genet., 2001, 102: 689-694
    Pradhan A, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi Y, Pental D. A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. Theor. Appl. Genet., 2003, 106: 607-614
    Rahman MH, Joersbo M, Poulsen MH. Development of yellow-seeded Brassica napus of double low quality. Plant Breed., 2001, 120:473-478
    Rahman MH. Production of yellow-seeded through interspecific crosses. Plant Breed. 2001, 120: 463-472
    Rajcan I, Kasha KJ, Kott LS, Beversdorf WD. Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed (Brassica napus L.). Euphytica, 1999, 105: 173-181
    Riaz A, Li G, Quresh Z, Swati MS, Quiros CF. Genetic diversity of oilseed Brassica napus inbred lines based on sequence-related amplified polymorphism and its relation to hybrid performance. Plant Breed., 2001, 120:411-415
    Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science, 1996, 273: 1516-1517
    Rodolphe F, Lefort M. A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics, 1993, 134: 1277-1288
    Ruecker-B. On the inheritance of seed coat colour in winter oilseed rape (Brassica napus L.). Cruciferae-Newsletter, 1991, 14-15: 50-51
    Saal B, Plieske J, Hu J, Quiros CF, Struss D. Microsatellite markers for genome analysis in Brassica. Ⅱ. Assignment of rapeseed microsatellites to the A and C genomes and genetic mapping in Brassica oleracea L. Theor. Appl. Genet., 2001, 102: 695-699
    Saghai-Maroof MA, Zhang Q, Neale DB, Allard RW. Associations between nuclear loci and chloroplast DNA genotypes in wild barley. Genetics, 1992, 131: 225-231
    Schwetka A. Inheritance of seed colonr in turnip rape (Brassica campestris L.). Theor. Appl. Genet., 1982, 62: 161-169
    Schwetka A. Inheritance of seed colour in turnip rape (B campestris L). Theor. Appl. Genet., 1982, 62: 161-169
    Sebastian RL, Howell EC, King GJ, Marshall DF, Kearsey MJ. An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled-haploid mapping populations. Theor. Appl. Genet., 2000, 100:75-81
    Sharma R, Aggarwal RAK, Kumar R, Mohapatra T, Shanna RP. Construction of an RAPD linkage map and localization of QTLs for oleic acid level using recombinant inbreds in mustard (Brassica juncea). Genome, 2002, 45:467-472
    Sharpe AG, Parkin IAP, Kelth DJ, Lydiate DJ. Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome, 1995, 38:1112-1121
    Shirzadegan M, Robbelen G. Influence of seed colour and hull proportions on quality properties of seeds in Brassica napes L. Fette Seifen Anstrichm, 1985, 87: 235-237
    Shirzadegan M. Inheritance of seed color in Brassica napus L. Z. Pflanzenzucht, 1986, 96: 140-146
    Skinner DM, Beattie WG, Blattner FR, Stark BP, Dahlberg JE. The repeat sequence of a hermit crab satellite deoxyribonucleic acid is (T-A-G-G) n-(A-T-C-C) n. Biochemistry, 1974, 13: 3930-3937
    Slocum MK, Figdore SS, Kennard WC, Suzuki JY, Osborn TC. Linkage arrangement of restriction fragment length polymorphism loci in Brassica oleracea. Theor. Appl. Genet., 1990, 80:57-64
    Somers DJ, Rakow G, Prabhu VK, Friesen KRD. Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus. Genome, 2001, 44: 1077-1082
    Song K, Slocum MK, Osborn TC. Molecular marker analysis of genes controlling morphological variation in Brassica rapa (syn. campestris). Theor. Appl. Genet., 1995, 90: 1-10
    Song KM, Suzuki JY, Slocum MK, Williams PM, Osborn TC. A linkage map of Brassica rapa (syn. campestris) based on restriction fragment length polymorphisms. Theor. Appl. Genet., 1991, 82: 296-304
    Stam P, Van Ooijen JW. Join Map~(TM) version 3.0: Software for the calculation of genetic linkage map. CPRO-DLO, Wagemingen, the Netherlands, 1995, 1-5
    Stringam, GR Chemical and morphological characteristics associated with seed coat color in rapeseed, Proc. 4th Int. Rapeseed congess. 1974, pp. 99-108.
    Taamino G, Tinger S. Simple sequence repeats for germplasm analysis and mapping in maize. Genome, 1996, 39:277-287
    Tang ZL, Li JN. Genetic variation of yellow-seeded rapeseed lines (B. napus L.) from different genetic sources. Plant Breed., 1996, 116:471-474
    Tanhuanpaa PK, Vilkki JP, Vilkki HJ. Mapping of a QTL for oleic acid concentration in spring turnip rape (Brassica rapa. ssp. oleifera). Theor. Appl. Genet., 1996, 92: 952-956
    Teutonico RA, Osborn TC. Mapping of RFLP and quantitative trait loci in Brassica rapa and comparison to the linkage maps of B. napus, B. oleracea, and Arabidopsis thaliana. Theor. Appl. Genet., 1994, 89: 885-894
    Theander OP, Aman GEMiksche and Yasuda S. Carbohydrates, polyphenols, and lignin in seed hulls of different colors from turnip rapeseed. J. Agric. Food chem., 1977, 25: 270-273
    Todd JJ, Vodkin LO. Duplications That Suppress and Deletions That Restore Expression from a Chalcone Synthase Multigene Family. Plant Cell 1996, 8: 687-699
    Truco MJ, Quiros CF. Structure and organization of the B genome based on a linkage map in Brassica nigra. Theor. Appl. Genet., 1994, 89: 590-598
    Tsumura Y, Ohba K, Strauss SH. Diversity and inheritance of inter-simple sequence repeat polymorphisms in Douglas-fir (Pseudotsuga menziesii) and sugi (Cryptomeria japonica). Theor. Appl. Genet., 1996, 92:40-45
    Tuberosa R, Salvi S, Sanguineti MC, Landi P, Maccaferri M, Conti S. Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Annals of Botany, 2002, 89:941-963
    Udall JA, Quijada PA, Osborn TC. Detection of Chromosomal Rearrangements Derived From Homeologous Recombination in Four Mapping Populations of Brassica napus L. Genetics, 2005, 169, 967-979
    Uzunova M, Ecke W, Weissieder K, Robbelen G. Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor. Appl. Genet., 1995, 90:194-204
    Uzunova MI, Ecke W. Abundance polymorphism and genetic mapping of microsatellites in oilseed rape (Brassica napus L.). Plant Breed., 1999, 118:323-326
    Van Caeseele L Mills JT, Sumner M, Gillespie Cytological study of the palisade development in the seed coat of Candle canola. Can. J. Bot. 1982, 60: 2469-2475
    Van Deynze AE, Beversdorf WD, Pauls KP. Temperature effects on seed color in black-and-yellow-seeded rapeseed. Can. J. Plant Sci:, 1993, 73: 383-387
    Van Deynze AE, Beversdorf WD, Pauls KP. Temperature effects on seed colour in black and yellow-seeded rapeseed. Can. J. Plant Sci., 1993, 73: 383-387
    Van Deynze AE, Landry BS, Pauls KP. The identification of restriction fragment length polymorphisms linked to seed colour genes in Brassica napus. Genome, 1995, 38: 534-542
    van Ooijen JW, Voorips RE. JoinMap 3.0: software for the calculation of genetic linkage maps. Plant Research International BV, Wageningen, 2002. The Netherlands Available at http://www.intl-pag.org
    Vaughan JG. The seed coat structure of Brassica integrifolia (West) O.E Schulz var. carinata (A.Br.). Phytomorp, 1956, 6:363-367
    Vaughan JG. The seed coat structure of Brassica integrifolia (West) O. E. Schulz var. "cadnata"(A.Br.). Phytomorphology, 1956, 6: 363-367
    Vaughan JG. The structure and utilization of oil seeds. London: Chapman and Hall, 1970
    Vaughan JG; Hemingway JS, Schofield HJ. Contributions to a study of variation in Brassica juncea Coss. and Czern. J.Linn. Sic. (Bot.), 1963, 58: 435-447
    Viehoever A, Clavenger JF, Ewing CO. Studies in mustard seeds and substitutes: Ⅰ. Chinese colza (Brassica campestris chinoleifera Viehoever). J. Agric. Res. 1920, 20: 117-140
    Voodps RE, Jongefius MC, Kanne HJ. Mapping of two genes for resistance to clubfoot (Plasmodiophora Brassicea) in a population of doubed haploid lines of Brassica oleracea by means of RFLP and AFLP markers. Theor. Appl. Genet., 1997, 94:75-82
    Voorrips RE. MapChart: Software for the graphical presentation of linkage maps and QTL J. Hered, 2002, 93:77-78, Available at http://www.biometris.nl
    Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Falters A, Pot J, Paleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucl. Acids Res., 1995, 23: 4407-4414.
    Wang DG, Fan JB, Siao CJ, Bemo A, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science, 1998, 280: 1077-1082
    Wang G L Mackill D J, Bonman J M, McCouch SR, Champoux MC, Nelson RJ. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics, 1994, 136: 1421-1434
    Wang HZ, Liu; HL. Genetic analysis of seed color stability in yellow-seeded Brassica napus L. In Proceedings of the 8th International Rapeseed Congress, 1991, PP. 211-218
    Wang R, L JN., Chen L, Tang ZL, Zhang XK. Genetic correlation analysis for main characters in yellow-seeded rapeseed lines(Brassica napus L.). Chinese Journal of Oil Crop sciences, 2003, 25: 10-13
    Wang S, Basten CJ, Zeng ZB. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. 2006
    Wang Z, Weber JL, Zhong G, Tanksley SD. Survey of plant short tandem DNA repeat. Thero. Appl. Genet., 1994, 88: 1-6
    Weber JL. Informativeness of human (dG-dA)_n-(dG-dT)_n polymorphisms. Genomic, 1990, 7: 524-530
    Welsh J, AcClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucl. Acids. Res., 1990, 18: 7213-7218
    Wiliams JCK, Kubelik AR, Livak KJ, Rafalskil JA, Tingey SV. DNA polymorphisms amplified by arbitrary primes are useful as genetic markers. Nucl. Acids. Res., 1990, 18: 6531-6535
    Williamson VM, Ho JY, Wu FF, Miller N, Kaloshian I. A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato. Theor. Appl. Genet., 1994, 87: 757-763
    Woods DL. The association of yellow- seed color with other characters in mustard (Brassic juncea). Crucofeae Newsletter, 1980, 5: 23-24
    Wu K S, Jones R, Danncherger L, Scolnik PA. Detection of microsatellite polymorphisms without cloning. Nucl. Acids. Res., 1994, 22(15): 3527-3258
    Xu FS, Wang YH, Meng JL. Mapping boron efficiency gene(s) in Brassica napus using RFLP and AFLP markers. Plant Breeding, 2001, 120: 319-324
    Xu, SS, Hu J, Faris JD. Molecular Characterization of the Langdon Durum-Triticum Dicoccoides Chromosome Substitution Lines Using TRAP (Target Region Amplification Polymorphism) Markers. 10th Wheat Genetics International Symposium Proceedings. 2003, Paestum, Italy. Abstract Not Published Separately-Published in Proceedings. Vol. 1: pp. 91-94
    Zeng ZB, Kao CH, Basten CJ. Estimating the genetic architecture of quantitative traits. Genet Res., 1999, 74: 279-289
    Zeng ZB, Liu J, Stam LF, Kao CH, Mercer JM, Laurie CC. Genetic architecture of a morphological shape difference between two Drosophila species. Genetics, 2000, 154: 299-310
    Zeng ZB. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
    Zeng ZB. Theoretical basis of separation of multiple linkage gene effects on mapping quantitative trait loci. Proc. Natl. Sci. USA, 1993, 90: 10972-10976
    Zhang J, Guo W, Zhang TZ. Molecular linkage map of allotetraploid (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theor. Appl. Genet., 2002, 105: 1166-1174
    Zhao JJ, Wang XW, Sun RF, Xu ZY, Dick Koomneef VM. A Genetic Linkage Map of Brassica rapa Based on AFLP Markers Agricultural Sciences in China, 2005, 4: 257-262
    Zhao JW, Meng JL. Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor. Appl. Genet., 2003, 106:759-764
    Zhao JY, Zhang DQ. Oil content in a European×Chinese rapeseed population: QTL with additive and epistatic effects and their genotype-environment interactions. Crop Sei, 2005, 45: 51-59
    Zhu LH, Chert Y, Xu YB, Xu JC, Cai HW, Ling ZZ. Construction of a molecular map of rice and gene mapping using a double haploid opulation of across between Indiea and Japonica.varieties. Rice Genetics.Nesletter, 1993, 10:132-135
    Zietkewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat anchored polymerase chain reaction amplification. Genomics, 1994, 20: 176-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700