基于稳定同位素和脂肪酸组成的中国近海生态系统物质流动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态系统的物质流动是生物地球化学循环和生态系统的重要环节,是控制生态系统可持续产出的关键过程。对多重压力下不同类型的生态系统的物质流动进行研究对于实现生态系统可持续产出有重要的现实意义。本文的主要研究内容是分别在中国近海的北部、中部和南部选取特定的研究对象,如在黄海采集了海月水母、沙海蜇和霞水母三种大型水母,在长江口及邻近水域采集了不同洄游阶段的凤鲚,在海南省东部河口区采集了底栖动物和鱼类,分析它们的碳、氮同位素值和脂肪酸组成特征;基于这些生物体的碳、氮同位素和脂肪酸组成特征,运用多元统计分析方法,分别对大型水母、凤鲚、底栖动物和鱼类、虾蟹类的食物组成进行了分析;通过对生物体食物组成的变化特征来反映不同类型食物网的物质传递特征。最后对标志物用于食物网物质传递研究进行总结。
     首先,同位素和脂肪酸组成对生物体物质来源的表征是成功的。以海南省东部河口生态系统为例,初级生产者红树、海草、大型藻类、浮游植物可以根据碳、氮同位素值和脂肪酸组成进行很好的区分。对这些初级生产者同位素和脂肪酸特征的研究可以为它们在食物网中的传递提供依据。八门湾红树林滩涂底栖食物网中的底栖动物的同位素特征反映了它们对不同碳源、氮源的利用。脂肪酸组成更为细致的反映了它们的食物组成差异,如招潮蟹以潮滩上的底栖微藻为主要食物来源,而对于相手蟹和鼬耳螺,红树生产物的贡献较大,滨螺可能以红树上附着的藻类为食,红树碎屑和水体悬浮颗粒物都是河蚬的食物组成部分,而细菌则是方格星虫的重要食物来源。在黄海,大型水母的同位素特征说明它们的食物基础是海源碳。而较低的18:1n-7/n-9比值和较高的20:1、22:1含量表明这些黄海大型水母是肉食性的,且浮游动物是重要的食物组成。
     再者,同位素和脂肪酸对生物个体发育过程中的食物组成变化也有很好的识别。典型的研究结果就是对于洄游性鱼类凤鲚在洄游过程中食物组成变化的追踪。洄游过程中的凤鲚(Coilia mystus)δ13C和δ15N值都有所富集,脂肪酸标志物也发生了一定的变化。在洄游过程中,凤鲚体内底栖标志物(18:1n-7,20:4n-6)和浮游标志物(18:1n-9,20:1+22:1)的变化说明:在凤鲚的洄游过程中,底栖食物和浮游食物在不同的洄游阶段交替作为它们的主要食物。索饵期和越冬期的年轻个体以底栖食物(e.g.糠虾)为主要食物来源,肉食性程度相对较差。随着个体的增大,浮游类食物对产卵洄游前期的凤鲚贡献显著提高,桡足类成为主要的食物组成。但是对于处于产卵期的凤鲚,桡足类的贡献又降低,底栖类的食物又有所增加。在与长江口及邻近海域内的浮游动物的时空变化规律对照之后发现,凤鲚的这种食物组成变化与浮游动物的时空变化密切相关。在同一时间和空间尺度下,同位素和脂肪酸也仍然可以很好的表征不同大小的个体之间食物组成差异。如不同体长水母体内的特征脂肪酸变化说明水母在生长过程中很可能发生了食物转换。个体较大的具有较高的20:1+22:1含量,摄食较多的浮游动物,而对于较小的个体,高浓度的15:0+17:0和20:4n-6说明基于碎屑食物链的食物对其贡献更大。而对于多鳞嬉,大于20cm的个体体内20:4n-6的含量和813C、815N值都要高于体长小于20cm(大约10cm左右)的个体。这都反映了多鳞鳝在生长过程中存在从浮游性到底栖性的食物组成变化。
     基于同位素和脂肪酸组成对不同类型的食物网物质传递途径的研究。凤鲚的滤食性说明它们是浮游食物网的组成部分,对凤鲚的食物组成研究可以反映长江口及邻近水域的浮游食物网物质传递。研究发现浮游食物网的物质传递过程呈现季节和区域变化,与作为浮游食物网基础的浮游生物的群落交替关系密切。而根据底栖生物的食物组成分析,发现红树生产物对红树林底栖食物网的贡献大小依生物种类有差异,外源性的碳如底栖藻类、细菌、浮游生物也是支持红树林底栖食物网的重要碳源。这表明底栖食物网的物质来源非常多样,传递过程互相交叉,非常复杂。而针对这些红树生产物通过底栖食物网向生态系统的高营养级传递情况如何这一问题,对八门湾泻湖食物网中的17种河口性鱼类、虾蟹类的食物组成进行了研究。613C值变化范围较宽,以及生物之间脂肪酸组成的显著差异,都说明这些生物的食物来源比较复杂,食物组成发生分化。紫红笛鲷的低813C、δ15N值可能与它们摄食了以红树生产物为食的生物有关,体内相对较高的18:2n-6含量也证明了这一点。结果表明,红树林向高营养级的传递非常有限(只有极少数种类),而浮游植物、有机碎屑(e.g.底栖藻类)、附着藻类是支持河口生态系统的重要生产者。从食物组成看,凤鲚的食物中既包含了浮游生物,也有底栖生物的存在,而浮游生物对红树林底栖动物也有贡献,多鳞鳝的食物组成更是有从浮游到底栖食物的转变,这都体现了浮游食物网和底栖食物网之间的互相作用。
     消费者脂肪酸单分子碳同位素值受到食物来源和体内代谢过程的影响,在传递过程中,消费者的脂肪酸δ13C值会变正或者变负,受食物类型和体内分馏过程影响。而且脂肪酸之间变化也呈现差异性,多不饱和脂肪酸的δ13C值保守性相对较强,饱和脂肪酸的δ13C值变化相对较大。δ13C值保守性强的脂肪酸可以很好的反映来源信息。脂肪酸单分子同位素技术在对多因素控制下的生物体的物质来源分析时有一定的优势。
Carbon flow within ecosystem, as a key process controlling the sustainable production of the ecosystem, is an important portion in biogeochemical cycle and ecosystem. The research on the carbon flow of various ecosystems under multi-pressure is meaningful to achieve the sustainable production of ecosystems. The major objective of this thesis is to analyze the carbon flow in various ecosystems based on the stable isotope and fatty acid composition of organisms. We collected the specific organisms in north, middle and south of China Sea. For instance, three species macro jellyfishes in the Yellow Sea; Coilia mystus in different migration stages around Changjiang Estuary and adjacent region; benthos and predators in Wenchang/Wenjiao Estuary in eastern Hainan province. Stable carbon and nitrogen isotopes and fatty acid composition of them were analyzed. The diet sources of the organisms were analyzed based on their stable isotopes and fatty acid composition by multivariate analysis. Then the transfer character of various food webs indicated by the diet compositions of organisms was discussed. Finally, the usage of biomarkers in carbon transfer within food web was summarized.
     Firstly, carbon sources of organisms can be traced by the stable isotopes and fatty acid composition. For example, the producers (i.e. mangrove leaves, seagrass, macroalgae, phytoplankton) in estuarine ecosystem in Wenchang/Wenjiao Estuary can be separated based on the stable isotopes and fatty acid composition, which can provide information for tracing the carbon sources of the food web. The stable isotopes of benthos in Bamen Bay mangrove swamp (δ13C,-24.6%o--12.6%o;δ15N,0.9%o-11.3%o) indicated that the various carbon and nitrogen sources of them. The fatty acid signature of them can reflect the variance in their diet composition. For example, the fiddler crab preyed dominantly on benthic diatom, but for Sesarmidae crab and Cassidula nucleus, mangrove leaves were the dominant diet source. Littorina sp. may forage on epiphyte on the mangrove root and mangrove detritus and suspended particle comprised the diet of bivalve. For Sipunculus nudus, bacteria were important carbon source. For the macro jellyfishes in the Yellow Sea, their stable carbon isotope values indicated that they mainly depended on marine-derived carbon source. Further, the low18:In-7/n-9ratio and high20:1,22:1concentration indicated that they were carnivorous and zooplankton was important diet item of them.
     Secondly, ontogenetic diet shift experienced by the organisms can also be identified based on the stable isotope and fatty acid composition of them. Taking Coilia mystus as an example, diet changes during their migration were traced using stable isotope and fatty acid composition. Both δ13C and δ15N values were enriched within their migration, with changes in the concentrations of some fatty acid biomarkers. The variation in benthic biomarkers (18:In-7,20:4n-6) and pelagic biomarkers (18:In-9,20:1+22:1) of Coilia mystus indicated that benthic food and pelagic food predominated their diet items alternatively in their various migration stages. Those young individuals in their feeding stages and winter-over stages preyed dominantly on benthic food (e.g. mysidaceas). As their growth, the contribution of pelagic food to larger individuals in their previous spawning stages increased significantly, with copepods as their major diet items. However, the contribution of copepods to those in spawning stages decreased, with that of benthic food increased at the same time. Comparison with the temporal and spatial changes in the zooplankton in Changjiang Estuary and adjacent region revealed that the diet changes of Coilia mystus were closely related to the changes in zooplankton. Even in the same temporal and spatial scales, the diet variation among individuals in various body sizes can also be identified by stable isotope and fatty acid composition. Fro instance, variation in specific fatty acids in jellyfishes of different body sizes suggested that diet shift may happen during their growth. The larger individuals contained high20:1+22:1, preying more zooplankton, but for those smaller ones, the high concentration of15:0+17:0and20:4n-6in their body indicated that the contribution of detritus food chain was bigger. For Sillago sihama, the20:4n-6concentration and δ13C,δ15N vales of the larger individuals (>20cm) all were higher than those of the smaller individuals(<20cm), which suggested that ontogenetic diet shift (from pelagic to more benthic) happened during their growth.
     Research on the matter transfer routes of various types food webs based on the stable isotopes and fatty acid composition. As filter-feeding species,Coilia mystus was one part of pelagic food web. So the changes in diet composition of them can reflect the character of matter transference within the food web in Changjiang Estuary and adjacent region. The result indicated that the matter transference in the pelagic food web exhibited temporal and spatial variation, and was closely related to the plankton community. As for benthic food web, the diet composition of zoobenthos in mangrove swamp suggested that the contribution of mangrove detritus to the food web was species-dependent, and exogenous carbon (e.g. benthic algae, bacteria, plankton) was also important carbon sources of mangrove benthic food web. The result suggested that the carbon source of benthic food web was multiplex, the transference route was complicated. Diet composition of fishes, shrimps and crabs in BamenBay were analyzed to investigate if the mangrove detritus support the pelagic food web. Wide ranges of δ13C and δ15N values and difference in the fatty acid compositions of the organisms indicated that their diet sources were complicated and they preyed on various items. The lower δ13C and δ15N values of Lutjanus argentimaculatus may due to their feeding on organisms related to the mangrove detritus. The higher18:2n-6concentration in them confirmed the contribution of mangrove detritus. So, it can be concluded that the transference of mangrove detritus to higher trophic level was only limited to specific species. Instead, phytoplankton, benthic diatom and epiphytes were the important nutrient provider in the estuarine ecosystem. Coilia mystus preyed on both pelagic and benthic food, and the plankton also contributed to the diet mangrove zoobenthos. The diet of Sillago sihama even changed from pelagic to benthic food. The interaction between pelagic and benthic food web can be identified from the above research.
     The δ13C values of fatty acids in predators were influenced by dietary sources and metabolism process. During the transference within food web, the813C values of fatty acids became depleted or enriched, which may be related to diet species and fractionation during metabolism.δ13C values of polyunsaturated fatty acids were consistent, but variation of δ13C values of saturated fatty acids was larger. Fatty acids with persistent613C values in consumers can indicate their dietary sources. The result suggested that stable carbon isotopic ratio of fatty acid had advantage when used as biomarkers to trace the carbon source of organism under various factors.
引文
蔡德陵,孟凡,韩贻兵,等,1999。13C/12C比值作为海洋生态系统食物网示踪剂的研究-崂山湾水体生物食物网的营养关系。海洋与湖沼,30(6),671-678。
    蔡德陵,洪旭光,毛兴华,等,2001。崂山湾潮间带食物网结构的碳稳定同位素初步研究。海洋学报,23(4),41-47。
    蔡德陵,张淑芳,唐启升,孙耀,2003。鲈鱼新称代谢过程中的碳氮稳定同位素分馏作用。海洋科学进展,21(3),308-317。
    蔡德陵,李红燕,唐启升,等,2005。黄东海生态系统食物网连续营养谱的建立:来自碳氮同位素方法的结果。中国科学C辑:生命科学,35(2),123-130。
    程济生,朱金声,1997。黄海主要经济无脊椎动物摄食特征及其营养层次的研究。海洋学报,19(6),102-108。
    陈绍勇,周伟华,吴云华,林昭进,2001。南沙珊瑚礁生态系生物体中δ13C的分布。海洋科学,25(6),4-7。
    晁敏,全为民,李纯厚,程炎宏,2005。东海区海洋捕捞渔获物的营养级变化研究。海洋科学,29(9),51-55。
    程家骅,李圣法,丁峰元,严利平,2002。东、黄海大型水母大暴发现象及其可能成因浅析。现代渔业信息,19(5),10-12。
    程家骅,丁峰元,李圣法,等,2005。东海区大型水母数量分布特征及其与温盐度的关系。生态学报,25(3),440-445。
    窦硕增,杨纪明,1992。渤海南部半滑舌编的食性及摄食的季节性变化。生态学报,12(4),368-376。
    段毅,文启彬,罗斌杰,1995。南沙海洋和甘南沼泽现代沉积物中单个脂肪酸碳同位素组成及其成因。地球化学,24(3),270-275。
    段毅,张辉,郑朝阳,吴保祥,郑国东,2004。沼泽沉积环境中植物和沉积脂类单体碳同位素组成特征及其成因关系研究。中国科学D辑:地球科学,34(12),1151-1156。
    杜建国,陈彬,卢振彬,宋普庆,许章程,俞炜炜,宋希坤,2010。泉州湾海域鱼类多样性及营养级变化。生物多样性,18(4),420-427。
    方家仲,1996。大弹涂鱼食性分析。海洋科学,4,26-28。
    范航清,2000。红树林:海岸环保卫士。广西科学技术出版社,南宁。
    冯广朋,章龙珍,庄平,刘鉴毅等,2008。海水网箱养殖长鳍篮子鱼的摄食与生长特性。海洋渔业,30(1),37-42
    樊敏玲,黄小平,张大文,张景平,江志坚,曾艳艺,2011。海南新村湾海草床
    主要鱼类及大型无脊椎动物的食源。生态学报,31(1),31-38。
    郭旭鹏,李忠义,金显仕,戴芳群,2007。采用碳氮稳定同位素技术对黄海中南部鲲鱼食性的研究。海洋学报,29(2),98-104。
    郭斌,张波,金显仕,2010a。黄海海州湾小黄鱼幼鱼的食性及其随体长的变化。中国水产科学,17,289-297。
    郭斌,张波,戴芳群,金显仕,2010b。海州湾黄鲫幼鱼的食性及其随叉长的变化。水产学报,34(6),921-927。
    管卫兵,陈辉辉,丁华腾,宣富君,戴小杰,2010。长江口刀鲚洄游群体生殖特征和条件状况研究。海洋渔业,32(1),73-81。
    胡建芳,彭平安,贾国东,等,2003。三万年来南沙海区古环境重建:生物标志物定量与单体碳同位素研究。沉积学报,21(2),211-218。
    蒋霞敏,郑亦周,2003。14种微藻总脂含量和脂肪酸组成研究。水生生物学报,27(3),243-247。
    纪焕红,叶属峰,2006。长江口浮游动物生态分布特征及其与环境的关系。海洋科学,30,23-30。
    梁百和,吴华新,朱素琳,1988。海南岛清澜港及邻近海域表层沉积物的沉积特征。沉积学报,6(1)70-79。
    罗秉征,韦晟,窦硕增,1997。长江口鱼类食物网与营养结构的研究。海洋科学集刊,38,143-153。
    林元烧,曹文清,郑爱榕,等,2001。几种饵料浮游动物脂肪酸组成分析及营养效果评价。台湾海峡,1,164-168。
    李宪璀,范晓,韩丽君,严小军,娄清香,2002。中国黄、渤海常见大型海藻的脂肪酸组成。海洋与湖沼,33(2),215-224。
    刘国卿,张干,彭先芝,2004。单体同位素技术在有机环境污染中的研究进展。地球与环境,32(1),23-27。
    刘凯,张敏莹,徐东坡,施炜纲,2004。长江口凤鲚资源变动及最大持续产量研 究。上海水产大学学报,13,298-303。
    林龙山,2007。长江口近海小黄鱼食性及营养级分析。海洋渔业,29(1),44-48。
    卢狄胜,欧帆,颜云榕,张军晓,2009。应用氮稳定同位素技术对雷州湾海域主要鱼类营养级的研究。海洋学报,31(3),167-174。
    李忠义,左涛,戴芳群,金显仕,庄志猛,2009。长江口及南黄海水域春季生物摄食生态的稳定同位素研究。水产学报,33,784-789。
    李忠义,左涛,戴芳群,金显仕,2010。运用稳定同位素技术研究长江口及南黄海水域春季拖网渔获物的营养级。中国水产科学,17(1),103-109。
    李超,2010。浅谈文昌市清澜港红树林湿地生态系统存在问题和发展对策。热带林业,38(4),4-6。
    刘梦坛,李超伦,孙松,2010。两种甲藻和两种硅藻脂肪酸组成的比较研究。海洋科学,34(10),77-82。
    刘梦坛,李超伦,孙松,2011。脂肪酸对中华哲水蚤摄食两种海洋微藻的指示作用。生态学报,31(4),933-942。
    李惠玉,凌建忠,李建生,2010。大型水母有体生长的影响因子研究进展。生态学报,30(2),0429-0438。
    刘守海,徐兆礼,2011。长江口和杭州湾凤鲚Coilia mystus胃含物与海洋浮游动物的比较研究。生态学报,31,2263-2271。
    倪勇,王云龙,蒋玫,陈亚瞿,1999。长江口凤鲚的渔业生物学特性。中国水产科学,6(5),69-71。
    倪勇,1999。长江口区凤鲚的渔业及其资源保护。中国水产科学,6,75-77。
    倪勇,陈亚瞿,2006。长江口区渔业资源、生态环境和生产现状及渔业的定位和调整。水产科技情报,33,121-123,127。
    彭士明,施兆鸿,尹飞,孙鹏,王建钢,2011。利用碳氮稳定同位素技术分析东海银鲳食性。生态学杂志,30(7),1565-1569。
    沈国英,黄凌凤,郭丰,施并章,2010。海洋生态学第三版。科学出版社,北京,pp:11-12。
    孙蕴藉,吴莹,张经,2011。海南八门湾红树林柱状沉积物中有机生物标志物的分布和降解。热带海洋学报,30(2),94-101。
    唐启升,1999。海洋食物网与高营养层次营养动力学研究策略。海洋水产研究, 20(2),1-6。
    唐启升,2004。海洋食物网及其在生态系统整合中的意义。香山科学会议第228次学术研究会,19-24。
    唐以杰,余世孝,2007。广东湛江红树林保护区大型底栖动物群落的空间分带。生态学报,27(5),1703-1714。
    田丽欣,吴莹,林晶,朱卓毅,张经,2010。冬季海南省东北部河流及近岸海区有机碳的分布特征。热带海洋学报,29(5),136-141。
    台湾鱼类资料库。网址:http://fishdb.sinica.edu.tw/chi/webguid.php
    吴志强,丘书院,杨圣云,等,2000。闽南-台湾浅滩渔场六种主要中上层鱼类的脂肪酸研究。水产学报,24(1),61-66。
    万祎,胡建英,安立会,等,2005。利用稳定氮和碳同位素分析渤海湾食物网主要生物物种的营养层次。科学通报,50(7),708-712。
    王娜。2008。脂肪酸等标志物在海洋食物网研究中的应用-以长江口毗邻海域为例。华东师范大学硕士学位论文。
    王亚楠,傅秀梅,邵长伦,等,2009。中国红树林资源状况及其药用研究调查:生态功能与价值。中国海洋大学学报(自然科学版),39(4),699-704。
    王雨,林茂,卢昌义,等,2009。深圳红树林湿地浮游植物多样性的组成与分布。生态学杂,28(6),1067-1072。
    徐兆礼,王云龙,陈亚瞿,沈焕庭,1995。长江口最大浑浊带区浮游动物的生态研究。中国水产科学,2,39-48。
    徐兆礼,沈新强,马胜伟,2005a。春、夏季长江口邻近水域浮游动物优势种的生态特征。海洋科学,29,13-19。
    徐兆礼,沈新强,2005b。长江口水域浮游动物生物量及其年间变化。长江流域资源与环境,14,282-286。
    薛莹,金显仕,张波,梁振林,2004a。黄海中部小黄鱼摄食习性的体长变化与昼夜变化。中国水产科学,11(5),420-425。
    薛莹,金显仕,张波,梁振林,2004b。黄海中部小黄鱼的食物组成和摄食习性的季节变化。中国水产科学,11(3),237-243。
    薛莹,徐宾铎,高天翔,徐浩,林龙山,2010。北黄海秋季黄簌艨摄食习性的初步研究。中国海洋大学学报,40,39-44。
    袁传宓,秦安舲,1984。我国近海鲚鱼生态习性及其产量变动状况。海洋科学,5,35-37。
    颜开强,张其永,1991。大弹涂鱼仔、稚、幼鱼消化系统的发育及其食性的研究。海洋学报,13(2),240-246。
    张其永,林秋眠,林尤通,张月平,1981。闽南-台湾浅滩渔场鱼类食物网研究。海洋学报,3(2),275-290。
    朱启琴,1988。长江口、杭州湾浮游动物生态调查报告。水产学报,12,111-123。
    郑慧苑,丘书院,1990。厦门港球型侧腕水母Pleurobrachia globosa摄食的初步研究。台湾海峡,9(3),200-205。
    朱友芳,张其永,1993。九龙江口潮间带大弹涂鱼食性及其消化管组织结构。台湾海峡,12(3),225-232。
    邹发生,宋晓军,陈康,梁勇,许达宏,1999。海南清澜港红树林滩涂大型底栖动物初步研究。生态科学,18(2),42-45。
    张芳,孙松,杨波,2005。胶州湾水母类生态研究Ⅰ:种类组成与群落特征。海洋与湖沼,36(6),507-517。
    张芳,孙松,李超伦,2009。海洋水母类生态学研究进展。自然科学进展,19(2),121-130。
    张波,唐启升,2004。渤、黄、东海高营养层次重要生物资源种类德营养级研究。海洋科学进展,22(4),393-404。
    张波,2004。东、黄海带鱼的摄食习性及随发育的变化。海洋水产研究,25(2),6-12。
    张波,唐启升,金显仕,2007。东海高营养层次鱼类功能群及其主要种类。中国水产科学,14(6),939-949。
    张波,金显仕,戴芳群,2008。长江口两种重要石首鱼类的摄食习性。动物学报,54(2),209-217。
    张波,唐启升,金显仕,2009a。黄海生态系统高营养层次生物群落功能群及其主要种类。生态学报,29(3),1099-1111。
    张波,金显仕,唐启升,2009b。长江口及邻近海域高营养层次生物群落功能群及其变化。应用生态学报,20(2),344-351。
    周永东,薛利建,徐开达,2004。舟山近海凤鲚Coilia mystus (Linnaeus)的生 物学特性研究。现代渔业信息,19,19-21。
    曾庆飞,孔繁翔,张恩楼,谭啸,2007。利用稳定同位素技术研究外源物质输入对太湖微食物链的贡献。环境科学,28(8),1670-1674。
    张秋芳,刘波,林营志,等,2009。土壤微生物群落磷脂脂肪酸PLFA生物标记多样性。生态学报,8,4128-4137。
    庄平,罗刚,张涛,章龙珍,刘健,冯广朋,候俊利,2010。长江口水域中中华鲟幼鱼与6种主要经济鱼类的食性及食物竞争。生态学报,30,5544-5554。
    朱延忠,刘录三,郑丙辉,王瑜,2011。春季长江口及毗邻海域浮游动物空间分布及与环境因子的关系。海洋科学,35,59-65。
    Abrajano T.A., Murphy D.E., Fang J., Comet P. and Brooks J.M.,1994.13C/12C ratio in individual fatty acids of marine mytilids with and without bacterial symbionts. Organic Geochemistry,21 (6/7),611-617.
    Abrantes K. and Sheaves M.,2008. Incorporation of terrestrial wetland material into aquatic food webs in a tropical estuarine wetland. Estuarine, Coastal and Shelf Science,80,401-412.
    Abrantes K. and Sheaves M.,2009. Food web structure in a near-pristine mangrove area of the Australian Wet Tropics. Estuarine, Coastal and Shelf Science,82, 597-607.
    Ahlgren G., Vrede T. and Goedkoop W.,2009. Fatty acid ratios in freshwater fish, zooplankton and zoobenthos-are there specific optima? In Arts M.T., Brett M.T. and Kainz M.J. (eds) Lipids in Aquatic Ecosystems. New York:Springer, pp.147-178.
    Alfaro A.C., Thomas F., Sergent L., Duxbury M.,2006. Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes. Estuarine, Coastal and Shelf Science,70,271-286.
    Alfaro A.C.,2008. Diet of Littoraria scabra, while vertically migrating on mangrove trees:gut content, fatty acid, and stable isotope analyses. Estuarine, Coastal and Shelf Science,79,718-726.
    Alikunhi N.M., Narayanasamy R. and Kandasamy K.,2010. Fatty acids in an estuarine mangrove ecosystem. Rev. Biol. Trop.(Int J. Trop. Biol)58(2),577-587.
    Bouillon S., Koedam N., Raman A.V. and Dehairs F.,2002. Primary producers sustaining macro-invertebrate commnunities in intertidal mangrove forests. Oecologia, 130,441-448.
    Bacha, M. and Amara, R.2009. Spatial, temporal and ontogenetic variation in diet of anchovy (Engraulis encrasicolus) on the Algerian coast (SW Mediterranean). Estuarine, Coastal and Shelf Science,85,257-264.
    Ballentine D.B., Macko S.A., Turekian V.C. and Gilhooly W.P.,1996. Compound-specific isotope analysis of fatty acids and polycyclic aromatic hydrocarbon in aerosols:implications fro biomass burning. Organic Geochemistry, 25(1/2),97-104.
    Ballentine D.B., Macko S.A., Turekian V.C.,1998. Variability of stable carbon isotopic compositions in individual fatty acids from combustion of C4 and C3 plants: implications for biomass burning. Chemical Geology,152,151-161.
    Bayir A., Haliloglu H.I., Sirkecioglu A.N. and Aras N.M.,2006. Fatty acid composition in some selected marine fish species living in Turkish waters. Journal of the Science of Food and Agriculture,86,163-168.
    Bardonnet A. and Riera P.,2005. Feeding of glass eels (Anguilla anguilla) in the course of their estuarine migration:new insights from stable isotope analysis. Estuarine, Coastal and Shelf Science,63,201-209.
    Barber R.T.,2007. Oceans:picoplankton do some heavy lifting. Science,315 (5813), 777-778.
    Bearhop S., Adams C.E., Waldron S., Fuller R.A. and Macleod H.,2004. Determining trophic niche width: a novel approach using stable isotope analysis. Journal of Animal Ecology,73,1007-1012.
    Bee A., Perga M.E., Koussoroplis A., Bardoux G., Desvilettes C., Bourdier G., and Mariotti A.,2011. Assessing the reliability of fatty acid-specific stable isotope analysis for trophic studies. Methods in Ecology and Evolution,2,651-659.
    Bell M.V. and Tocher D.R.,2008. Biosynthesis of polyunsaturated fatty acids in aquatic ecosystems:general pathways and new directions. In Arts, M.T., Brett M.T. and Kainz M.J. (eds) Lipids in Aquatic Ecosystems. New York: Springer, pp.211-236.
    Belleggia M., Figueroa D.E., Sanchez F., Bremec C.,2011. Long-term changes in the spiny dogfish (Squalus acanthias) trophic role in the southwestern Atlantic. Hydrobiologia, DOI,10.1007/s10750-011-0967-y.
    Blanco J.F. and Cantera J.R.,1999. The vertical distribution of mangrove gastropods and environmental factors relative to tide level at Buenaventura Bay, Pacific coast of Colombia. Bull Mar Sci,65,617-630.
    Boll T. Johansson L.S., Lauridsen T.L., Landkildehus F., Davidson T.A., S(?)ndergaard M., Andersen F.(?).and Jeppesen E.,2012. Changes in benthic macroinvertebrate abundance and lake isotope (C, N) signals following biomanipulation:an 18-year study in shallow Lake Vaeng, Denmark. Hydrobiologia, DOI, 10.1007/sl0750-012-1005-4.
    Boschker H. T. S., Kromkamp J. C., Middelburg J. J.,2005. Biomarker and carbon isotopic constraints on bacterial and algal community structure and fuctioning in a turbid, tidal estuary. Limnology and Oceanography,50(1),70-80.
    Bouillon S., Mohan P.C., Sreenivas N. and Dehairs F.,2000. Sources of suspended organic matter and selective feeding by zooplankton in an estuarine mangrove ecosystem as traced by stable isotopes. Marine Ecology Progress Series,208,79-92.
    Bouillon S., Koedam N., Raman A.V. and Dehairs F.,2002. Primary producers sustaining macro-invertebrates communities in intertidal mangrove forests. Oecologia, 130,441-448.
    Bouillon S., Koedam N., Raman A.V. and Dehairs F.,2004. Primary producers sustaining macro-invertebrate communities in intertidal mangrove forests. Oecologia, 130,441-448.
    Bouillon S., Moens T., Dehairs F.,2004. Carbon sources supporting benthic mineralization in mangrove and adjacent seagrass sediments (Gazi Bay, Kenya). Biogeosciences,1,71-78.
    Bouillon S., Connolly R.M. and Lee S.Y.,2008. Organic matter exchange and cycling in mangrove ecosystems:Recent insights from stable isotopes studies. Journal of Sea Research,59,44-58.
    Boschker H. T. S., Kromkamp J. C., Middelburg J. J.,2005. Biomarker and carbon isotopic constraints on bacterial and algal community structure and fuctioning in a turbid, tidal estuary. Limnology and Oceanography,50 (1),70-80.
    Brett M.T., Muller-Navarra D.C. and Persson J.,2008. Crustacean zooplankton fatty acid composition. In Arts, M.T., Brett M.L. and Kainz M.J. (eds) Lipids in Aquatic Ecosystems. New York:Springer, pp.115-145.
    Budge S.M. and Parrish C.C.,1998. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundlan Ⅱ Fatty acids. Organic Geochemistry,29,1547-1559.
    Budge, S. M., Parrish, C.C. and Mckenzie, C.H.2001. Fatty acid composition of phytoplankton, settling particulate matter and sediments at a sheltered bivalve aquaculture site. Mar. Chem.76:285-303.
    Budge S.M., Iverson S.J., Bowen W.D. and Ackman R.G,2002. Among-and within-species variability in fatty acid signatures of marine fish and invertebrates on the Scotian Shelf, Georges Bank, and Southern Gulf of St. Lawrence. Canadian Journal of Fish Aquatic Science,59,886-898.
    Budge S.M., Iverson S.J. and Koopman H.N.,2006. Studying trophic ecology in marine ecosystems using fatty acids:a primer on analysis and interpretation. Marine Mammal Science,22,759-801.
    Budge S.M., Wooller M.J., Springer A.M., Iverson S.J., McRoy C.P. and Divokyet G.J.,2008. Tracing carbon flow in an arctic marine food web using fatty acid-stable isotope analysis. Oecologia,157,117-129.
    Camilleri J.C.,1992. Leaf-litter processing by invertebrates in a mangrove forest in Queenland. Marine Biology,114,139-145.
    Carmichael R.H., Rutecki D., Annett B., Gaines E. and Valiela I.,2004. Position of horseshoe crabs in estuarine food webs:N and C stable isotopic study of foraging ranges and diet composition. Journal of Experimental Marine Biology and Ecology, 299,231-253.
    Cai D.L., Li H.Y., Tang Q.S. and Sun Y.,2005. Establishment of trophic continuum in the food web of the Yellow Sea and East China Sea ecosystem:Insight from carbon and nitrogen stable isotopes. Science in China Ser. C-Life Sciences,48,531-539.
    Checkley D. and Miller C.A.,1989. Nitrogen isotope fractionation by oceanic zooplankton. Deep Sea Research,36,1449-1456.
    Choe, N., Deibel, D., Thompson, R.J., Lee, S.H. and Bushell, V.K.2003. Seasonal variation in the biochemical composition of the chaetognath Parasagitta elegans from the hyperbenthic zone of Conception Bay, Newfoundland. Marine Ecology Progress Series,251,191-200.
    Choy E.J., An Soonmo and Kang C.K.,2008. Pathways of organic matter through food webs of diverse habitats in the regulated Nakdong River estuary (Korea). Estuarine, Coastal and Shelf Science,78,215-226.
    Ciancio J.E., Pascual M.A., Botto F., Amaya-Santi M., O'Neal S., Riva Rossi C. and Iribarne O.,2008. Stable isotope profiles of partially migratory salmonid populations in Atlantic rivers of Patagonia. Journal of Fish Biology,72,1708-1719.
    Clough B.F.,1992. Primary productivity and growth of mangrove forests. In: Robertson A.I., Alongi D.M. (Eds). Tropical mangrove ecosystems. American Geophysical Union, Washington, D.C., PP.225-249.
    Cohen J.E.,1994. Marine and continental food webs:Three paradoxes? Philosophical transactions of the royal society of London,343,57-69.
    Copeman L.A. and Parrish C.C.,2003. Marine lipids in a cold coastal ecosystem: Gilbert Bay, Labrador. Marine Biology,143,1213-1227.
    Colin S.P., Costello J.H., Graham W.M. and Higgins J.,2005. Omnivory by the small cosmopolitan hydromedusa Aglaura hemistoma. Limnology and Oceanography,50, 1264-1268.
    Currin C.A., Newell S.Y. and Paerl H.W.,1995. The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs:considerations based on multiple stable isotope analysis. Marine Ecology Progress Series,121,99-116.
    Cui Y., Wu Y., Zhang J. and Wang N.,2012. Potential dietary influence on the stable isotopes and fatty acid compositions of jellyfishes in the Yellow Sea. Journal of the Marine Biological Associaiton of the United Kingdom. Doi: 10.1017/S0025315412000082.
    Dalsgaard J., St. John M., Kattner G., Muller-Navarra D., Hagen W.,2003. Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology,46, 225-340.
    Dempson, J.B., Braithwaite, V.A., Doherty, D. and Power, M.2010. Stable isotope analysis of marine feeding signatures of Atlantic salmon in the North Atlantic. ICES Journal of Marine Science,67,52-61.
    Eder K.,1995. Gas chromatographic analysis of fatty acid methyl esters. Journal of Chromatography B,671,113-131.
    EI-Sabaawi R., Dower J.F., Kainz M. and Mazumder A.,2009. Characterizing dietary variability and trophic position of coastal calanoid copepods:insight from stable isotopes and fatty acids. Marine Biology,156,225-237.
    Estrada, J.A., Lutcavage M. and Thorrold S.R.,2005. Diet and trophic position of Atlantic bluefin tuna (Thunnus thynnus) inferred from stable carbon and nitrogen isotope analysis. Marine Biology,147,37-45.
    Fang J., Comet P., Brooks J.M. and MacDonald I.,1993. Gulf of Mexico hydrocarbon seep communities:XI Ⅺ-carbon isotopic fractionation during fatty acid biosynthesis of seep organisms and its implication for chemosynthetic processes. Chemical Geology, 109,271-279.
    Fellerhoff C., Voss M. and Wantzen K.M.,2003. Stable carbon and nitrogen isotope signatures of decomposing tropical macrophytes. Aquatic Ecology,37,361-375.
    Fleming M., Lin G and Sternberg L.,1990. Influence of mangrove detritus in an estuarine ecosystem. Bulletin of Marine Science,47,663-669.
    Forest A., Galindo V., Darnis G, Pineault S., Lalande C., Tremblay J. and Fortier L., 2011. Carbon biomass, elemental ratios (C:N) and stable isotopic composition (δ13C, δ15N) of dominant calanoid copepods during the winter-to-summer transition in the Amundsen Gulf (Arctic Ocean)Journal of Plankton Research,33,161-178.Fry B., 1984.13C/12C ratios and the trophic importance of algae in Florida Syringodium filiforme seagrass meadows. Marine Biology,79,11-19.
    France R.L.,1994. Nitrogen isotopic composition of marine and freshwater invertebrates. Marine Ecology Progress Series,115,205-207.
    France R.L.,1995a. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Marine Ecology Progress Series,124,307-312.
    France R.L.,1995b. Stable isotopic survey of the role of macrophytes in the carbon flow of aquatic foodwebs. Vegetatio,124,67-72.
    France R.L. and Holmquist J.G,1997.813C variability of macroalgae:effects of water motion via baffling by seagrasses and mangroves. Marine Ecology Progress Series, 149,305-308.
    France R.,1998. Estimating the assimilation of mangrove detritus by fiddler crabs in Laguna Joyuda, Puerto Rico, using dual stable isotopes. Journal of Tropical Ecology, 14,413-425.
    Fry B.,1984.13C/12C ratios and the trophic importance of algae in Florida Syringodium filiforme seagrass meadows. Marine Biology,79,11-19.
    Fry B.,1988. Food web structure on Georges Bank from stable C, N, S isotopic compositions. Limnology and Oceanography,33,1182-1190.
    Fry B.,1996.13C/12C fractionation by marine diatoms. Marine Ecology Progress Series,134,283-294.
    Fry B. and Ewel K.C.,2003. Using stable isotopes in mangrove fisheries research-a review and outlook. Isotopes in Environmental and Health Studies,39 (3),191-196.
    Fukuda Y. and Naganuma T.,2001. Potential dietary effects on the fatty acid composition of the common jellyfish Aurelia aurita. Marine Biology,138,1029-1035.
    Games L.Z., O'Brien D.M., Drio C.M.,1997. Stable isotopes in animal ecology: assumptions, caveats, a call for more laboratory experiments. Ecology,78,1271-1276.
    Garcia A.M., Hoeinghaus D.J., Vieira J.P., Winemiller K.O.,2007. Isotopic variation of fishes in freshwater and estuarine zones of a large subtropical coastal lagoon. Estuarine, Coastal and Shelf Science,73,399-408.
    Golikatte R.G and Bhat U.G,2011. Food and feeding habits of the whipfin silver biddy Gerres filamentosus from sharavati estuary, central west coast of India. World Journal of Science and Technology,1(2),29-33.
    Gorokhova E., Hansson S., HOglander H. and Andersen C.M.,2005. Stable isotopes show food web changes after invasion by the predatory cladoceran Cercopagis pengoi in a Baltic Sea bay. Oecologia,143,251-259.
    Graeve, M., Hagen W., Kattner G.,1994a. Herbivorous or omnivorous? On the significance of lipid compositions as graphic markers in Antarctic copepods. Deep-Sea research I,41,915-924.
    Graeve M., G. katter, Hagen W.,1994b. Diet-induced changes in the fatty acid composition of Arctic herbivorous copepods:experimental evidence of trophic markers. Journal of Experimental Marine Biology Ecology,182,97-110.
    Graeve, M., Katter G, Piepenburg D.,1997. Lipids in Arctic benthos:Does the fatty acid and alcohol composition reflect feeding and trophic interactions? Polar Biology, 18,53-61.
    Graeve M., Lundberg M., Boer M., Kattner G, Hop H. and Petersen S.F.,2008. The fate of dietary lipids in the Arctic ctenophore Mertensia ovum (Fabricius 1780). Marine Biology,153,643-651.
    Graham W.M. and Kroutil R.M.,2001. Size-based prey selectivity and dietary shifts in the jellyfish, Aurelia aurita. Journal of Plankton Research,23,61-74.
    Graham T.R.,2009. Scyphozoan jellies as prey for leatherback sea turtles off central California. Master's Theses. Paper 3692. http://scholarworks.sjsu.edu/etd_theses/3692.
    Gu, B., Schelske C.L. and Hoyer M.V.,1996. Stable isotopes of carbon and nitrogen as indicators of diet and trophic structure of the fish community in a shallow hypereutrophic lake. Journal of Fish Biology,49,1233-1243.
    Gu B. and Schelske C.L.,1996. Temporal and spatial variations in phytoplankton carbon isotopes in a polymictic subtropical lake. Journal of Plankton Research,18, 2081-2092.
    Guschina and Harwood,2009. Algal lipids and effect of the environment on their biochemistry. In Arts M. T., Brett M. T., Kainz M. J. (Eds), Lipids in Aquatic Ecosystems. Springer, New York, pp.1-24.
    Haines E.B. and Montague C.L.,1979. Food sources of estuarine invertebrates analysed using 13C/12C ratios. Ecology,60,48-56.
    Hayes J.M.,1993. Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence. Marine Geology,113,111-125.
    Hagen W., Van Vleet E.S., Kattner G,1996. Seasonal lipid storage as overwintering strategy of Antarctic krill. Marine Ecology Progress Series,134,85-89.
    Hagen, W. and Auel, H.2001. Seasonal adaptions and the role of lipids in oceanic zooplankton. Zoology,104,313-326.
    Hall D., Lee S.Y. and Meziane T.,2006. Fatty acids as trophic tracers in an experimental estuarine food chain:Tracer transfer. Journal of Experimental Marine Biology and Ecology,336,42-53.
    Hamilton S.K. and Lewis JR. W.M.,1992. Stable carbon and nitrogen isotopes in algae and detritus from the Orinoco River floodplain, Venezuela. Geochimica et Cosmochimica Acta,56,4237-4246.
    Harrod, C., Grey, J., McCarthy, T.K. and Morrissey, M.2005. Stable isotope analyses provide new insights into ecological plasticity in a mixohaline population of European eel. Oecologia,144,673-683.
    Hesslein R.H., Hallard K.A. and Ramlal P.,1993. Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S,δ13C and δ15N. Canadian Journal of Fisheries and Aquatic Sciences,50,2071-2076.
    Herbeck L.S., Unger D., Krumme U., Liu S.M. and Jennerjahn T.C.,2011. Typhoon-induced precipitation impact on nutrient and suspended matter dynamics of a tropical estuary affected by human activities in Hainan, China. Estuarine, Coastal and Shelf Science,93,375-388.
    Herzka S.Z. and Holt G.J.,2000. Changes in isotopic composition of red drum (Sciaenops ocellatus) larvae in response to dietary shifts:potential applications to settlement studies. Canadian Journal of Fisheries and Aquatic Sciences,57,137-147. Hessen, D.O. and Leu, E.2006. Trophic transfer and trophic modification of fatty acids in high Arctic lakes. Freshwater Biology,51,1987-1998.
    Hebert C.E., Arts M.T. and Weseloh D.V.C.,2006. Ecological tracers can quantify food web structure and change. Environmental science & technology,40,5618-5623.
    Hobson K.A.,1999. Tracing origins and migration of wildlife using stable isotopes:a review. Oceologia,120,314-326.
    Iken K., Bluhm B. and Dunton K.,2010. Benthic food-web structure under differing water mass properties in the southern Chukchi Sea. Deep-Sea Research Ⅱ,57(1-2), 71-85.
    Iverson S.J., Frost K.J., and Lowry L.F.,1997. Fatty acid signatures reveal fine scale structure of foraging distribution of harbor seals and their prey in Prince William Sound, Alaska. Marine Ecology Progress Series,151,255-271.
    Iverson S.J., Lang S.L.C. and Cooper M.H.,2001. Comparison of the Blight and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipid,36,1283-1287.
    Iverson S.J., Field C., Bowen W. D. and Blanchard W.,2004. Quantitative fatty acid signature analysis:a new method of estimating predator diets. Ecological Monographs, 74,211-235.
    Iverson S.J.,2008. Tracing aquatic food webs using fatty acids:from qualitative indicators to quantitative determination. In Arts M. T., Brett M. T.; Kainz M. J. (Eds), Lipids in Aquatic Ecosystems. Springer, New York, pp.281-307.
    Jennings S., Renones O., Morales-Nin B., Polunin N.V.C., Moranta J. and Coll J., 1997. Spatial variation in the 15N and 13C stable isotope composition of plants, invertebrates and fishes on Mediterranean reefs:implications for the study of trophic pathways. Marine Ecology Progress Series,146,109-116.
    Ji W.W., Chen X.Z., Jiang Y.Z. and Li S.F.,2011. Trophic ecology of small yellow croaker(Larimichthys polyactis Bleeker):stalbe carbon and nitrogen isotope evidence. Chinese Journal of Oceanology and Limnology,29 (5),1033-1040.
    Jin Y., Ou-Yang Z.Y., Lin S.K., Wang X.K.,2008. A study on ecosystem deterioration and protection countermeasure of Hainan Island coast. Ocean Development and Management,103-108.
    Johns R.B., Nichols P.D. and Perry G.J.,1979. Fatty acid composition of ten marine algae from Australian waters. Phytochemistry,18,799-802.
    Ju S.J., Scolardi K., Daly K.L. and Harvey H.R.,2004. Understanding the trophic role of the Antarctic ctenophore, Callianira Antarctica, using lipid biomarker. Polar Biology,27,782-792.
    Kattner G., Graeve M. and Hagen W.,1994. Ontogenetic and seasonal changes in lipid and fatty acid/alcohol compositions of the dominant Antarctic copepods Calanus propinquus, Calanoides acutus and Rhincalanus gigas. Marine Biology,118, 637-644.
    Katter, G, W. Hagen,1998. Lipid metabolism of the Antarctic euphausiid Euphausia crystallorohias and its ecological implications. Marine Ecology Progress Series,170, 203-213.
    Kattner and Hagen,2008. Lipids in marine copepods:latitudinal characteristics and perspective to global warming. In, Arts M. T., Brett M. T., Kainz M. J. (Eds), Lipids in Aquatic Ecosystems. Springer, New York, pp.257-280.
    Kainz M., Arts M.T. and Mazumder A.,2004. Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels. Limnology and Oceanography,49 (5),1784-1793.
    Kharlamenko V.I., Kiyashko S.I., Imbs A.B. and Vyshkvartzev D.I.,2001. Identification of food sources of invertebrates from the seagrass Zostera marina community using carbon and sulfur isotope ratio and fatty acid analysis. Marine Ecology Progress Series 220,103-117.
    Khotimchenko S.V. and Vaskovsky V.E.,1990. Distribution of C20 polyenoic fatty acids in red macrophytic algae. Botanica Marina,33,525-528.
    Kukert H., Riebesell U.,1998. Phytoplankton carbon isotope fractionation during a diatom spring bloom in a Norwegian fjord. Marine Ecology Progress Series,173, 127-137.
    Kulbicki M., Bozec Y.M., Labrosse P., Letourneur Y., Tham GM. and Wantiez L. 2005. Diet composition of carnivorous fishes from coral reef lagoons of New Caledonia. Aquatic Living Resources,18,231-250.
    Koussoroplis, A.M., Bee, A., Perga, M.E., Koutrakis, E., Bourdier, G. and Desvilettes, C.2011. Fatty acid transfer in the food web of a coastal Mediterranean lagoon: evidence for high arachidonic acid retention in fish. Estuarine, Coastal, and Shelf Science,91,450-461.
    Kristensen E., Bouillon S., Dittmar T. and Marchand C.,2008. Organic carbon dynamics in mangrove ecosystems:A review. Aquatic Botany,89,201-219.
    Krumme U., Keuthen H., Saint-Paul U. and Villwock W.,2007. Contribution to the feeding ecology of the banded puffer fish Colomesus psittacus (Tetraodontidae) in north Brazilian mangrove creeks. Brazilian Journal of Biology,67(3),383-392.
    Laakmann S. and Auel H.,2010. Longitudinal and vertical trends in stable isotope signatures (δ13C and δ15N) of omnivorous and carnivorous copepods across the South Atlantic Ocean. Marine Biology,157,463-471.
    Lam A.L., Wilson GP. and Leng M.J.,2006. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Science Reviews,75,29-57.
    Larson R.J.,1986. Water concentration, organic concentration, and carbon and nitrogen composition of medusae from the northeast Pacific. Journal of Experimental Marine Biology and Ecology,99,107-120.
    Laurans M., Gascuel D., Chassot E. and Thiam D.,2004. Changes in the trophic structure of fish demersal communities in West Africa in the three last decades. Aquatic Living Resources,17,163-173.
    Lee S.Y.,1995. Mangrove outwelling:a review. Hydrobiologia,295,203-212.
    Lee S.Y.,1998. Ecological role of grapsid crabs in mangrove ecosystems:a review. Marine and Freshwater Research,49 (4),335-343.
    Lebata M.J.H.L., Primavera J.H.,2001. Gill structure anatomy and habitat of Anodontia edulenta:evidence of endosymbiosis. Journal of Shellfish Research,20, 1273-1278
    Letourneur, Y., Galzin, R. and Harmelin-Vivien, M.1997. Temporal variations in the diet of the damselfish Stegastes nigricans (Lacepede) on a Reunion fringing reef. Journal of Experimental Marine Biology and Ecology,217,1-18.
    Liu S.M., Li R.H., Zhang G.L., Wang D.R., Du J.Z., Herbeck L.S., Zhang J. and Ren J.L.,2011. The impact of anthropogenic activies on nutrient dynamics in the tropical Wenchanghe and Wenjiaohe Estuary and Lagoon system in East Hainan, China. Marine Chemistry,125,49-68.
    Loseto L.L., Stern GA., Connelly T.L., Deibel D., Gemmill B., Prokopowicz A., Fortier L., Ferguson S.H.,2009. Summer diet of beluga whales inferred by fatty acid analysis of the eastern Beaufort Sea food web. Journal of Experimental Marine Biology and Ecology,374,12-18.
    Lucas C.H.,2001. Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia,451,229-246.
    Maazouzi, C., Masson, G., Izquierdo, M.S. and Pihan, J.C.2007. Fatty acid composition of the amphipod Dikerogammarus villosus: feeding strategies and trophic links. Comp. Biochemical Physics A,147,868-875.
    MacAvoy S.E., Macko S.A., Joye S.B.,2002. Fatty acid carbon isotope signatures in chemosynthetic mussels and tube worms from gulf of Mexico hydrocarbon seep communities. Chemical Geology,185,1-8.
    Malej A., Faganeli J. and Pezdifi J.,1993. Stable isotope and biochemical fractionation in the marine pelagic food chain:the jellyfish Pelagia noctiluca and net zooplankton. Marine Biology,116,565-570.
    Mandima, J.J.2000. Spatial and temporal variations in the food of the sardine Limnothrissa miodon (Boulenger,1906) in Lake Kariba, Zimbabwe. Fisheries Research,48,197-203.
    Maruyama A., Yamada Y., Rusuwa B. and Yuma M.,2001. Changes in stable nitrogen isotope ratio in the muscle tissue of a migratory goby, Rhinogobius sp., in a natural setting. Canadian Journal of Fisheries and Aquatic Sciences,58,2125-2128.
    Marshall J.D., Brooks J.R. and Lajtha K.,2007. Sources of variation in the stable isotopic composition of plants. In Stable isotopes in ecology and environmental science. Eds Michener R. and Lajtha K., Blackwell publishing, pp.22-60.
    Mao Z., Gu X.H., Zeng Q.F., Zhou L.H. and Sun M.B.,2011. Food web structure of a shallow eutrophic lake (Lake Taihu, China) assessed by stable isotope analysis. Hydrobiologia. DOI 10.1007/s10750-011-0954-3.
    Mazumder D. and Saintilan N,2010. Mangrove leaves are not an important source of dietary carbon and nitrogen fro crabs in temperate Australian mangroves. Wetlands, 30,375-380.
    McMillan C., Willians S.C.,1980. Systematic implications of isozymes in Halophila section Halophila. Aquatic Bot,9,21-31.
    McCutchan J.H., Jr, Lewis W.M., Jr, Kendall C. and McGrath C.C.,2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos,102, 378-390.
    Meyers P.A.,1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry,27,213-250.
    Meziane T., Sanabe M.C. and Tsuchiya M.,2002. Role of fiddler crabs of a subtropical intertidal flat on the fate of sedimentary fatty acids. Journal of Experimental Marine Biology and Ecology,270,191-201.
    Meziane T., Agata F.D. and Lee S.Y.,2006. Fate of mangrove organic matter along a subtropical estuary:small-scale exportation and contribution to the food of crab communities. Marine Ecology Progress Series,312,15-27.
    Meziane T., Lee S.Y., Mfilinge P.L., Shin P.K.S., Lam M.H.W. and Tsuchiya M.,2007. Inter-specific and geographical variation in the fatty acid composition of mangrove leaves:implications for using fatty acids as a taxonomic tool and tracers of organic matter. Marine Biology,150,1103-1113.
    Mfilinge P.L., Meziane T., Bachok Z. and Tsuchiya M.,2003. Fatty acids in decomposing mangrove leaves:microbial activity, decay and nutritional quality. Marine Ecology Progress Series,265,97-105.
    Mills C.E.,2001. Jellyfish blooms:are populations increasing globally in response to changing ocean conditions? Hydrobiologia,451,55-68.
    Michener R.H. and Kaufman L.,2007. Stable isotopes as tracers in marine food webs: an update. In Michener R. and Lajtha K. (eds) Stable isotopes in ecology and environmental science. MA:Blackwell Publishing, pp.238-270.
    Moorthy K.S.V., Reddy H.R.V. and Annappaswamy T.S.,2002. Diel feeding patterns, Gastric evacuation rate and diets of the mullet, Valamugil seheli (Forskal) in the Mulki Estuary, West coast of India. Asian Fisheries Science,15,73-81.
    Murphy D.E. and Abrajano T.A.,1994. Carbon isotope compositions of fatty acids in mussels from Newfoundland Estuaries. Estuarine, Coastal and Shelf Science,39, 261-272.
    Mutlu E.,2001. Distribution and abundance of moon jellyfish (Aurelia aurita) and its zooplankton food in the Blank sea. Marine Biology,138,329-339.
    Nagelkerken I. and Van der Velde G.,2004. Are Caribbean mangroves important feeding grounds for juvenile reef fish from adjacent seagrass beds? Marine Ecology Progress Series,274,143-151.
    Nagahama Y., Nomura M., Fujibayashi M., Shin W.S., Nishimura O.,2011. Characterization of the carbon stable isotope ratio and fatty acid structure of Zostera japonica in coastal areas. Journal of Water and Environment Technology,9 (2), 101-109.
    Nelson M.M., Phleger C.F., Mooney B.D. and Nichols P.D.,2000. Lipids of gelatinous Antarctic zooplankton: Cnidaria and Ctenophora. Lipids,35,551-559.
    Newell R.I.E., Marshall N., Sasekumar A. and Chong V.C.,1995. Relative importance of benthic microalgae, phytoplankton, and mangroves as sources of nutrition for penaeid prawns and other coastal invertebrates from Malaysia. Marine Biology,123, 595-606.
    Nybakken J.W.,1997. Marine biology-an ecological approach, Chapter 8:Estuaries and salt marshes. Addison-Wesley Educational Publishers, UAS, pp.304-337.
    Odum W.E. and Heald E.J.,1975. The detritus-based food web of an estuarine mangrove community. In:Cronin L.E. (ed). Estuarine research. Academic Press, New York, pp.265-286.
    Oliveira A.C.B., Soares M.G.M., Martinelli L.A. and Moreira M.Z.,2006. Carbon sources of fish in an Amazonian floodplain lake. Aquatic Science,68,229-238.
    Olsen Y.,1999. Lipids and essential fatty acids in aquatic food webs:what can freshwater ecologists learn from marine culture. In Arts M.T., Wainman B.C. (eds) Lipids in Freshwater Ecosystems. New York: Springer, pp.161-202.
    Ong J.E.,1995. The ecology of mangrove conservation and management. Hydrobiologia,295,343-351.
    Overman N.C. and Parrish D.L.,2001. Stable isotope composition of walleye:15N accumulation with age and area-specific differences in δ13C. Canadian Journal of Fisheries and Aquatic Sciences,58,1253-1260.
    Pauly D., Christensen V., Dalsgaard J., Froese R. and Torres Jr. F.,1998. Fishing down marine food webs. Science,279,860-863.
    Pauly D., Palomares M.L., Froese R., et al,2001. Fishing down Canadian aquatic food webs. Canadian Journal of Fisheries Aquatic Science,58,51-62.
    Pauly D., Graham W., Libralato S., Morissette L. and Deng Palomares M.L.,2009. Jellyfish in ecosystems, online databases, and ecosystem models. Hydrobiologia,616, 67-85.
    Paul K.S. Shin, K.M. Yip, W.Z. Xu, ect,2008. Fatty acid as markers to demonstrating trophic relationships among diatoms, rotifers and green-lipped mussels. Journal of Experimental Marine Biology and Ecology,357,75-84.
    Parrish C.C., Abrajano T.A., Budge S.M., Helleur R.J., Hudson E.D., Pulchan K., Ramos C.,2000. Lipid and Phenolic Biomarkers in Marine Ecosystems:Analysis and Applications. The Handbook of Environmental Chemistry, Part D, Marine Chemistry. Springer, Berlin, Heidelberg, pp.193-223.
    Page H.M.,1997. Importance of vascular paint and algal production to macro-invertebrate consumers in a Southern California salt marsh. Estuarine, Coastal and Shelf Science,45,823-834.
    Pakhomov E.A., McClelland J.W., Bernard K., Kaehler S. and Montoya J.P.,2004. Spatial and temporal shifts in stable isotope values of the bottom-dwelling shrimp Nauticaris marionis at the sub-Antarctic archipelago. Marine Biology,144,317-325.
    Peterson B.J. and Howarth R.W.,1987. Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island, Georgia. Limnology and Oceanography,32,1195-1213.
    Peterson B.J. and Fry B.,1987. Stable isotopes in ecosystem studies. Annual review of ecology systematics,18,293-320.
    Peterson B.J.,1999. Stable isotopes as tracers of organic matter input and transfer in benthic food webs:a review. Acta Oecologica,20 (4),479-487.
    Petersen F.S., Hagen W., Kattner G., ect,2000. Lipids,trophic relationships, and biodiversity in Arctic and Antarctic krill. Canadian Journal of Fisheries and Aquatic Science,57,178-191.
    Peterson F.S., Dahl T.M., Scott C.L., Sargent J.R., Gulliksen B., Kwasniewski S., Hop H. and Millar R.,2002. Lipid biomarkers and trophic linkages between ctenophores and copepods in Svalbard waters. Marine Ecology Progress Series,227,187-194.
    Petersen F.S., Haug T., Hop H., ect,2008. Transfer of lipids from plankton to blubber of harp and hooded seals off East Greenland. Deep-Sea Research Ⅱ,1-7.
    Petursdottir H., Gislason A., Peterson F.S., Hop H. and Svavarsson J.,2008. Trophic interactions of the pelagic ecosystem over the Reykjanes Ridge as evaluated by fatty acid and stable isotope analyses. Deep-Sea Research II,55,83-93.
    Pinnegar J.K. and Polunin N.V.C.1999. Differential fractionation of δ13C and δ15N among fish tissues:implications for the study of trophic interactions. Functional Ecology,13,225-231.
    Pitt K.A., Clement A.L. and Connolly R.M.,2008. Predation by jellyfish on large and emergent zooplankton:Implications for benthic pelagic coupling. Estuarine, Coastal and Shelf Science,76,827-833.
    PittK.A., Welsh D.T. and Condon R.H.,2009a. Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia,16, 133-149.
    Pitt K.A., Connolly R.M. and Meziane T,2009b. Stable isotope and fatty acid tracers in energy and nutrient studies of jellyfish:a review. Hydrobiologia,616,119-132.
    Pinnegar J.K. and Polunin N.V.C.,1999. Differential fractionation of δ13C and δ15N among fish tissues:implications for the study of trophic interactions. Functional Ecology,13,225-231.
    Pond D.W., Bell M.V., Harris R.P. and Sargent J.R.,1998. Microplanktonic polyunsaturated fatty acid markers:a mesocosm trial. Estuarine, Coastal and Shelf Science A,61-67.
    Pond D.W.,2009b. Trophic position of deep-sea fish-assessment through fatty acid and stable isotope analyses. Deep-Sea Research I,56,812-826.
    Post D.M.,2002. Using stable isotopes to estimate trophic position:models, methods, and assumptions. Ecology,83 (3),703-718.
    Primavera J.H.,1996. Stable carbon and nitrogen isotope ratios of penaeid juveniles and primary producers in a riverine mangrove in Guimaras, Philippines. Bullitin of Marine Science,58,675-683.
    Purcell J.E.,2005. Climate effects on formation of jellyfish and ctenophore blooms:a review. Journal of the Marine Biological Association of the United Kingdom,85, 461-476.
    Purcell J.E., Uye S. and Lo W.T.,2007. Anthropogenic causes of jellyfish blooms and their direct consequences for humans:a review. Marine Ecology Progress Series,350, 153-174.
    Purcell J.E.,2009. Extension of methods for jellyfish and ctenophore trophic ecology to large-scale research. Hydrobiologia,616,23-50.
    Rajendran N., Suwa, Y., Urushigaa, Y.,1993. Distribution of phospholipids ester-linked fatty acid biomarkers for bacteria in the sediment of the Ise Bay. Marine Chemistry 42,39-56.
    Ravet J.L., Brett M.T. and Arhonditsis G.B.,2010. The effects of seston lipids on zooplankton fatty acid compostion in Lake Washington, Washington, USA. Ecology, 91 (1),180-190.
    Reuss N. and Poulsen L.K.,2002. Evaluation of fatty acids as biomarkers for a natural plankton community. A field study of a spring bloom and a post-bloom period off West Greenland. Marine Biology,2002,141 (3),423-434.
    Ricardo J. Pollero, Ana M. Gayoso, ect,1997. Fatty acids as trophic markers of phytoplankton blooms in the Bahia Blanca estuary and in Trinity bay. Biochemical Systematics and Ecology,25,739-755.
    Richoux N.B., Deibel D., Thompson R.J. and Parrish C.C.,2005. Seasonal and development variation in the fatty acid composition of Mysis mixta (Mysidacea) and Acanthostepheia malmgreni (Amphipoda) from the hyperbenthos of a cold-ocean environment (Conception Bay, Newfoundland). Journal of plankton research,27, 719-733.
    Robertson A.I. and Alongi D.M,1992. Tropical mangrove ecosystmes. American Geophysical Union, pp.329.
    Rossi S., Youngbluth M.J., Jacoby C.A., Pages F. and Garrofe X.,2008. Fatty acid trophic markers and trophic links among seston, crustacean zooplankton and the siphonophore Nanomia cara in Georges Basin and Oceanographer Canyon (NW Atlantic). Scientia Marina,72,403-416.
    Saddler J.B., Koski K.V. and Cardwell R.D.,1972. Fatty acid alterations during migration and early sea water growth of Chum Salmon (Oncorhynchus keta). Lipids, 7 (2),90-95.
    Saupe S.M., Schell D.M. and Griffiths W.B.,1989. Carbon-isotope ratio gradients in western arctic zooplankton. Marine Biology,103,427-432.
    Schafer, L.N., Platell, M.E., Valesini, F.J. and Potter, I.C.2002. Comparisons between the influence of habitat type, season and body size on the dietary compositions of fish species in nearshore marine waters. Journal of Experimental Marine Biology and Ecology,278,67-92.
    Scott C.L., Petersen F.S., Sargent J.R., Hop H., ect,1999. Lipids and trophic interactions of ice fauna and pelagic zooplankton in the marginal ice zone of the Barents Sea. Polar Biology,21,65-70.
    Shoji J., Kudoh T., Takatsuji H., Kawaguchi O. and Kasai A.,2010. Distribution of moon jellyfish Aurelia aurita in relation to summer hypoxia in Hiroshima Bay, Seto Inland Sea. Estuarine, Coastal and Shelf Science,86,485-490.
    Shang X., Zhang GS. and Zhang J.,2008. Relative importance of vascular plants and algal production in the food web of a Spartina-invaded salt marsh in the Yangtze River estuary. Marine Ecology Progress Series,367,93-107.
    Snyder R.J. and Hennessey T.M.,2003. Cold tolerance and homeoviscous adaption in freshwater alewives. Fish Physiology and Biochemistry,29,117-126.
    Soto L.A.,2009. Stable carbon and nitrogen isotopic signatures of fauna associanted with the deep-sea hydrothermal vent system of Guaymas Basin, Gulf of California. Deep-Sea Research,56,1675-1682.
    S(?)reide J.E., Petersen F.S., Hegseth E.N.. Seasonal feeding strategies of Calanus in the high-Arctic Svalbard region. Deep-Sea Research Ⅱ,2008,55,2225-2244.
    Steinke T.D., Rajh A., Holland A.J.,1993. The feeding behaviour of the red mangrove crab Sesarma meinerti De Man,1887 (Crustacea:Decapoda:Grapsidae) and its effect on the degradation of mangrove leaf litter. South African Journal of Marine Science,13,151-160.
    Stowasser G, Mcaallen R., Pierce G.J., Collins M.A., Moffat C.F., Priede I.G and Sweeting C.J., Jennings S. and Polunin N.V.C,2005. Variance in isotopic signatures as a descriptor of tissue turnover and degree of omnivory. Functional Ecology,19, 777-784.
    Stowasser G, Pond D.W. and Collins M.A.,2009a. Using fatty acid analysis to elucidate the feeding habits of Southern Ocean mesopelagic fish. Marine Biology,156, 2289-2302.
    Stowasser G, Mcaallen R., Pierce GJ., Collins M.A., Moffat C.F., Priede I.G and Pond D.W.,2009b. Trophic position of deep-sea fish-assessment through fatty acid and stable isotope analyses. Deep-Sea Research I,56,812-826.
    Stubing D., Hagen W. and Schmidt K.,2003. On the use of lipid biomarkers in marine food web analyses:an experimental case study on the Antarctic krill, Euphausia superba. Limnology and Oceanography,48,1685-1700.
    Sugisaki H. and Tsuda A.,1995. Nitrogen and carbon stable isotopic ecology in the ocean:the transportation of organic materials through the food web. In:Sakai H.and Nozaki Y. (Eds), Biogeochemical Processes and Ocean Flux in the Western Pacific, Terra Scientific Publishing Company, Tokyo, pp.307-317.
    Sullivan B.K., Garcia J.R. and MacPhee G.K.,1994. Prey selection by the scyphomedusan predator Aurelia aurita. Marine Biology,121,335-341.
    Takai N., Yorozu A., Tanimoto T., Hoshika A. and Yoshihara K.,2004. Transport pathways of microphytobenthos-originating organic carbon in the food web of an exposed hard bottom shore in the Seto Inland Sea, Japan. Marine Ecology Progress Series,284,97-108.
    Thongtham N. and Kristensen E.,2005. Carbon and nitrogen balance of leafeating sesarmid crabs (Neoepisesarma versicolor) offered different food sources. Estuarine, Coastal and Shelf Science,65,213-222.
    Tocher D.R.,2003. Metabolism and functions of lipids and fatty acids in teleost fish. Reviews in Fisheries Science,11(2),107-184.
    Tue N.T., Hamaoka H., Sogabe A., Quy T.D., Nhuan M.T. and Omori K.,2011. Sources of sedimentary organic carbon in mangrove ecosystems from Ba Lat Estuary, Red River, Vietnam. In:Interdisciplinary studies on environmental chemistry-marine environmental modeling and ananlysis. Omori K., Guo X., Yoshie N., Fujii N., Handoh I.C., Isobe A. and Tanabe S. (eds), TERRAPUB, pp.151-157.
    Twilley R.R., Poro M., Garcia V.H., Rivera-Monroy V.H., Zambrano R., Bodero A., 1997. Litter dynamics in riverine mangrove forests in the Guayas River Estuary. Ecuador. Oecologia,111,109-122.
    Uhle M.E., Macko S.A., Spero H.J., Engel M.H. and Lea D.W.,1997. Sources of carbon and nitrogen in modern planktonic foraminifera: the role of algal symbionts as determined by bulk and compound specific stable isotopic analyses. Organic Geochemistry,27(3/4),103-113.
    Vander Zanden M.J., Cabana G. and Rasmussen J.B.,1997. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature data. Canadian Journal of Fisheries and Aquatic Sciences,54,1142-1158.
    Vande Zanden M.J., Hulshof M., Ridgway M.S. and Rasmussen J.B.,1998. Application of stable isotope techniques to trophic studies of age-0 smallmouth bass. Transactions of the American Fisheries Society,127,729-739.
    Vander Zanden M.J. and Rasmussen J.B.,1999. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology,80 (4),1395-1404.
    Vander Zanden M.J. and Rasmussen J.B.,2001. Variation in δ15N and δ13C trophic fractionations for aquatic food web studies. Limnology and Oeanography,46 (8), 2061-2066.
    Vander Zanden, M.J. and Vadeboncoeur, Y.2002. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology,83,2152-2161.
    Vander Zanden, M.J. and Fetzer, W.W.2007. Global patterns of aquatic food chain length. Oikos,116,1378-1388.
    Viso C.A., and Marty J.,1993. Fatty acids from 28 marine microalgae. Progress Lipid Research,32,1521-1533.
    Vizzini S. and Mazzola A.,2004. Stable isotope evidence for the environmental impact of a land-based fish farm in the western Mediterranean. Marine Pollution Bulletin,49,61-70.
    Volkman, J.K., Barrett, S.M., Blackburn, S.I. Mansour, M.P., Sikes, E.L. and Gelin, F. 1998. Microalgal biomarkers:a review of recent research developments. Organic Geochemistry,29,1163-1179.
    Wan R.J., Wu Y., Huang L., Zhang J., Gao L., Wang N.,2010. Fatty acids and stable isotopes of a marine ecosystem:study on the Japanese anchovy (Engraulis japonicus) food web in the Yellow Sea. Deep sea research Ⅱ,57,1047-1057.
    Wannigama, G.P., Volkman, J.K., Gillan, F.T., Nichiols, P.D., Hohns, R.B.,1981. A comparison of lipid components of the fresh and dead leaves and pneumatophores of the mangrove Avicennis marina. Phytochemistry 20,659-666.
    Waite A.M., Muhling B.A., Holl C.M., Beckleyb L.E., Montoyac J.P., Strzeleckie J., Thompsond P.A. and Pesantet S.,2007. Food web structure in two counter-rotating eddies based on δ15N and δ13C isotopic analyses. Deep-Sea Research II,54, 1055-1075.
    Wedin, D.A., Tieszen L.L., Dewey B. And Pastor J.,1995. Carbon isotope dynamics during grass decomposition and soil organic matter formation. Ecology,76, 1383-1392.
    Weerts S.P., Cyrus D.P and Forbes A.T.,1997. The diet of juvenile Sillago sihama (Forsskal,1775) from three estuarine systems in KwaZulu-Natal. Water SA,23(1), 95-100.
    West E.J., Welsh D.T. and Pitt K.A.,2009. Influence of decomposing jellyfish on the sediment oxygen demand and nutrient dynamics. Hydrobiologia,616,151-160.
    Williams S. and Heck, Jr. K.L.,2000. Seagrass community ecology. In Bertness M.D., Gaines S.D. and Hay M. (eds), Marine community ecology, pp.317-337. Sinauer Associates, Inc. USA.
    Williams S.L. and Heck, Jr. K.L.,2001. Seagrass community ecology. In Bertness M.D., Gaines S.D and Hay M. (eds). Marine community ecology, pp.317-337.
    Wiirzberg L., Peters J., Schiiller M., Brandt A.,2011. Diet insights of deep-sea polychaetes derived from fatty acid analyses. Deep-Sea Research Ⅱ,58,153-162.
    Xu J., Xie P., Zhang M. and Yang H.,2005. Variation in stable isotope signatures of seston and a zooplanktivorous fish in a eutrophic Chinese lake. Hydrobiologia,541, 215-220.
    Xu J., Zhang M., Xie P.,2007. Size-related shifts in reliance on benthic and pelagic food webs by lake anchovy. Ecoscience,14(2),170-177.
    Zavolokin A.V., Glebov I.I. and Kosenok N.S.,2008. Distribution, quantitative composition, and feeding of jellyfish in the Western Bering Sea in summer and fall. Russian Journal of Marine Biology,34,461-467.
    Zhukova N.V. and Kharlamenko V.I.,1999. Sources of essential fatty acids in the marine microbial loop. Aquatic Microbial Ecology,17,153-157.
    Zheng F.Y., Chen S.Q. and Ni J.,2010. Biological characteristics of moon jellyfish (Aurelia aurita Linnaeus,1758) and its bloom. Advances in Marine Science,28, 126-132.
    Zieman J.C., Macko S.A. and Mills A.L.,1984. Role of seagrass and mangroves in estuarinne food webs:temporal and spatial changes in stable isotope composition and amino acid content during decomposition. Bulletin of Marine Science,35 (3), 380-392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700