噬菌体ФC31整合酶互作细胞蛋白的鉴定与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
噬菌体ФC31整合酶介导的基因转运相对于逆转录病毒载体往往被视为是一种更为安全的方法,因为该整合酶可以将目的基因插入到哺乳动物基因组的有限位点上。为了弄清ФC31整合酶在哺乳动物细胞中的整合机制以及可能存在的风险,研究ФC31整合酶和细胞蛋白的相互作用则是必要的。以pLexA-ФC31为诱饵,用酵母双杂交的方法对ФC31整合酶的互作蛋白进行了筛选。从10~6个阳性克隆中挑选了61个进行测序,结果鉴定到了11个可能的ФC31整合酶互作蛋白,分别是DAXX,TTRAP,SP100,RIP,BRD7,ZNF403,RPL14,UBA2,TARDBP,SEC61G和PRKDC。其中DAXX出现的频率最高(51/61),它和ФC31整合酶的相互作用又使用免疫共沉淀的方法得以确认。缺失突变分析表明DAXX的Fas结合域负责和ФC31整合酶的相互作用。而利用ФC31整合酶的肽段阵列和HEK293细胞裂解液之间的杂交表明ФC31整合酶C端的一个四氨基酸肽段,即451RFGK454,负责和DAXX的相互作用。这四个氨基酸对ФC31整合酶的活性也是必需的,因为缺失这四个氨基酸以后几乎丧失了全部的整合活性。DAXX和ФC31整合酶的功能上的相互作用也得以证实,因为在沉默细胞内源DAXX的情况下,ФC31整合酶介导的整合反应效率有显著的提高。另外,我们也对ФC31整合酶和TTRAP的相互作用进行了深入的研究。首先利用免疫共沉淀的方法进一步确认了二者的相互结合。突变分析表明TTRAP的N端和ФC31整合酶的C端分别负责彼此的结合。在TTRAP沉默的情况下,ФC31整合酶介导整合反应的效率也有明显的提高。有趣的是,类似于DAXX,TTRAP被证实是一个新的PML核体相关蛋白,因为我们发现TTRAP可以和PML共定位,其转录和表达可以受IFN-γ的上调。另外,我们利用酵母配对实验发现了TTRAP可以和PML以及DAXX相互作用。因此,DAXX和TTRAP作为PML核体相关蛋白,可能是作为宿主细胞的防御机制来抑制ФC31整合酶的活性。我们接着对TTRAP的功能进行了初步的分析。首先我们鉴定到TTRAP也可以和P53,CDC20,SP100,噬菌体ФBT1整合酶以及HIV整合酶相互作用,其次TTRAP可能是P53转录的调节因子,对P53转录活性有促进作用。另外,我们表达和纯化了GST-TTRAP的融合蛋白并对其酶活性进行分析,结果我们并没有发现TTRAP具有生物信息学所推测的磷酸二酯酶活性。我们也初步分析了ФC31整合酶对细胞信号通路的影响,结果表明ФC31整合酶对TNFαNIL-1激活的NFκB活性具有显著的抑制作用,然而这个过程是否通过DAXX或TTRAP起作用的还有待证实。
PhageφC31 integrase-mediated gene delivery is believed to be safer than using retroviral vectors since,the protein confines its insertion of the target gene to a limited number of sites in mammalian genomes.To understand the mechanism involved inφC31 integrase-mediated integration and potential risk of the integrase,it is essential to study interactions between integrase and cellular proteins.Using pLexA-φC31 as bait,we employed yeast two hybridization assay to screen theφC31 integrase interacting proteins.61 positives were isolated from independent clones and analyzed, the result suggested that 11 potentialφC31 integrase-interacting proteins were identified,known as DAXX,TTRAP,SP100,RIP,BRD7,ZNF403,RPL14,UBA2, TARDBP,SEC61G and PRKDC.DAXX was identified to interact withφC31 integrase by the highest frequency(51/61),which was also confirmed by co-immunoprecipitation assay.Deletion analysis revealed that the Fas-binding domain of DAXX is also the region forφC31 integrase binding.Hybridization between aφC31 integrase peptide array and an HEK293 cell extract revealed that a tetramer, 451RFGK454,in the C-terminus ofφC31 integrase is responsible for the interaction with DAXX.This tetramer is also necessary forφC31 integrase activity as removal of this tetramer resulted in a complete loss of integration activity.The functional interaction between DAXX andφC31 integrase was also investigated.Knocking down endogenous DAXX resulted in significantly increased integration efficiency. Furthermore,the interaction between TTRAP andφC31 integrase was further studied. At first,the interaction between TTRAP andφC31 integrase was confirmed by co-immunoprecipitation assay.And mutation analysis revealed that N-terminus of TTRAP and C-terminus ofφC31 integrase was responsible for binding.TheφC31 integrase-mediated integration efficiency was also significantly improved when endogenous TTRAP was silenced.Interestingly,like DAXX,TTRAP was also demonstrated to be associated PML nuclear bodies,since we found that TTRAP could be co-localized with PML and induced by IFN-γ.In addition,interaction between TTRAP and PML/DAXX was also confirmed by yeast-mating assay.Hence,given PML NBs-associated proteins,DAXX and TTRAP could play a role as host defense mechanism to inhibitφC31 integrase activity.Subsequently,we performed some preliminary functional analysis of TTRAP.It was identified that TTRAP could interact with P53,CDC20,SP100,phageφBT1 integrase and HIV integrase.TTRAP might also serve as an activator of P53 transcription.Furthermore.GST-TTRAP was expressed and purified,whose enzyme activity was also analyzed.However,we didn't identify the phosphodiesterase activity as predicted by bioinformatics analysis.At last, the effect ofφC31 integrase on cellular signaling was also investigated.The result suggested thatφC31 integrase could inhibit the NFκB activity-stimulated by TNFαand IL-1.However,it will be under further investigation whether the phenotype was correlated with DAXX or TTRAP.
引文
1.Hacein-Bey-Abina,S.,Von Kalle,C.,Schmidt,M.,Le Deist,F.,Wulffraat,N.,Mclntyre,E.,Radford,I.,Villeval,JL.,Fraser,C.C.,Cavazzana-Calvo,M.and Fischer,A.(2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency.N.Engl.J.Med.,348(3),255-256.
    2.Kuhstoss S.,and Rao R.N.(1991).Analysis of the integration function of the Streptomycete bacteriophage ΦC31.J.Mol.Biol.222,897-908.
    3.Rausch H.,and Lehmann M.(1991).Structural analysis of the actinophage ΦC31attachment site.Nucleic Acids Research 19:5187-5189.
    4.Smith M.C.M.,and Thorpe H.M.(2002).Diversity in the serine recombinases.Molec.Microbiol.44,299-307.
    5.Groth A.C.,Olivares E.C.,Yhyagarajan B.,and Calos M.P.(2000).A phage integrase directs efficient site-specific integration in human cells.Proc.Natl.Acad.Sci.USA 97,5995-6000.
    6.Thyagarajan B.,Olivares E.C.,Hollis R.P.,Ginsburg D.S.,and Calos M.P.(2001).Site-specific genomic integration in mammalian cells mediated by phage ΦC31 integrase.Molecular and Cellular Biology 21,3926-3934.
    7.Chalberg T.C.,Portlock J.I,.,Oiivares E.C.,Thyagarajan B.,Kirby P.,Hillman R.T.,Hoelters J.,and Calos M.P.(2006).Integration specificity of phage ΦC31integrase in the human genome.J.Mol.Biol.357,28 - 48.
    8.Olivares E.C.,Hollis R.P.,Chalberg T.W.,Meuse L.,Kay M.A.,and Calos M.P.(2002).Site-specific genomic integration produces therapeutic factor IX levels in mice.Nature Biotechnology 20,1124-1128.
    9.Held P.K.,Olivares E.C.,Aguilar C.P.,Finegold M.,Calos M.P.,and Grompe M.(2005).In vivo correction of murine hereditary tyrosinemia type Ⅰ by ΦC31 integase -mediated gene delivery.Molecular Therapy 11,399-408.
    10.Bertoni C.,Jarrahian S.,Wheeler T.M.,Li Y.,Olivares E.C.,Calos M.P..and Rando T.A.(2006).Enhancement of plasmid-mediated gene therapy for muscular dystrophy by directed plasmid integration.Proc.Natl.Acad.Sci.USA 103,419 - 424.
    11. Hollis R. P., Stoll S. M., Sclimenti C. R., Lin J., Chen-Tsai Y., and Calos M. P.(2003). Phage integrases for the construction and manipulation of transgenic mammals. Reproductive Biology and Endocrinology 1. 79.
    
    12. Ma Q., Sheng H., Yan J., Cheng S., Huang Y., Chen-Tsai Y., Ren Z., Huang S.,and Zeng Y. (2006). Identification of pseudo attP sites for phage phiC31 integrase in bovine genome. Biochem Biophys Res Comm 345,984 - 988.
    
    13. Groth A. C., Fish M., Nusse R., and Calos M. P. (2004). Creation of transgenic Drosophila by using the site-specific integrase from phage ΦC31. Genetics 166,1775-1782.
    
    14. Nimmo D. D., Alphey L., Meredith J. M., and Eggleston P. (2006). High efficiency site-specific genetic engineering of the mosquito genome. Insect Mol Biol 15,129-136.
    
    15. Nakayama G., Kawaguchi Y., Koga K., and Kusakabe T. (2006). Sites-pecific integration in cultured silkworm cells mediated by phiC31 integrase. Mol. Genet.Genomics 275, 1 - 8.
    
    16. Bateman J. R., Lee A. M., and Wu C. T. (2006). Site-specific transformation of Drosophila via phiC31 integrase-mediated cassette exchange. Genetics 173, 769 - 777.
    
    17. Thomason L. C., Calendar R., and Ow D. W. (2001). Gene insertion and replacement in Schizosaccharomyces pombe mediated by the Streptomyces bacteriophage ΦC31 site-specific recombination system. Mol. Genet. Genomics 265,1031-1038.
    
    18. Belteki G., Gertsenstin M., Ow D. W., and Nagy A. (2003). Site-specific cassette exchange and germline transmission with mouse ES cells expressing the ΦC31 integrase. Nature Biotechnology 21,321 -324.
    
    19. Allen B. G., and Weeks D. L. (2005). Transgenic Xenopus laevis embryos can be generated using phiC31 integrase. Nature Methods 2: 975 - 979.
    
    20. Thyagarajan B., and Calos M. P. (2005). Site-specific integration for highlevel protein production in mammalian cells. In "Therapeutic Proteins: Methods and Protocols" (C. M. Smales, and D. C. James, Eds.), pp. 99- 106. Humana Press.Totowa, NJ.
    21. Liu F., Song Y. K., and Liu D. (1999). Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Therapy 6, 1258-1266.
    
    22. Miao C. H., Ohashi K., Patijn G. A., Meuse L., Ye X., Thompson A. R., and Kay M. A. (2000). Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro. Molecular Therapy 1, 522-532.
    
    23. Held P. K., Olivares E. C., Aguilar C. P., Finegold M., Calos M. P., and Grompe M. (2005). In vivo correction of murine hereditary tyrosinemia type I by ΦC31 integrase -mediated gene delivery. Molecular Therapy 11: 399-408.
    
    24. Ortiz-Urda S., Keene D., Lin Q., Calos M. P., and Khavari P. (2003a). □C31 integrase-mediated nonviral genetic correction of junctional epidermolysis bullosa.Human Gene Therapy 14: 923-928.
    
    25. Chalberg T. C., Genise H. L., Vollrath D., and Calos M. P. (2005). ΦC31 integrase confers genomic integration and long-term transgene expression in rat retina.Investigative Ophthalmology & Visual Science 46: 2140-2146.
    
    26. Keravala A., Portlock J., Nash J. A., Vitrant D. G., Robbins P. D., and Calos M. P.(2006). PhiC31 integrase mediates integration in cultured synovial cells and enhances gene expression in rabbit joints. J. Gene Med 8, 1008 -1017.
    
    27. Futreal P. A., Coin L., Marshall M., Down T., Hubbard T., Wooster R., Rahman N., and al. e. (2004). A census of human cancer genes. Nature Rev Cancer 4. 177 -183.
    
    28. Mitelman F., Johansson B., and Mertens F. (2004). Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nature Genet. 36.331 -334.
    
    29. Ivics Z., Hackett P. B., Plasterk R. H., and Izsvak Z. (1997). Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish. Cell 91, 501-510.
    
    30. Yant S., Meuse L.. Chiu W., Ivies Z.. Izsvak Z.. and Kay M. A. (2000). Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nature Genetics 25, 35-41.
    
    31. Ehrhardt A., Xu H., Huang Z., Engler J. A., and Kay M. A. (2005). A direct comparison of two nonviral gene therapy vectors for somatic integration:in vivo evaluation of the bacteriophage integase ΦC31 and the Sleeping Beauty transposase.Molecular Therapy 11, 695-706.
    
    32. Greger, J.G., Katz, R.A., Ishov, A.M., Maul, GG and Skalka, A.M. (2005) The Cellular Protein Daxx Interacts with Avian Sarcoma Virus Integrase and Viral DNA To Repress Viral Transcription. J. Virol, 79(8), 4610-4618.
    
    33. Negorev, D.G, Vladimirova, O.V., Ivanov, A. Frank Rauscher III and Maul, GG.(2006) Differential role of Sp100 isoforms in interferon-mediated repression of Herpes Simplex Virus type 1 immediate-early protein expression. J. Virol., 80(16),8019-8029.
    
    34. Ou, S.H., Wu, F., Harrich, D., Garcia-Martinez, L.F. and Gaynor, R.B. (1995) Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J. Virol., 69(6),3584-3596.
    
    35. Chen, J.Z., Ji, C.N.. Xu, G.L., Pang, R.Y., Yao, J.H., Zhu, H.Z., Xue. J.L. and Jia,W. (2006) DAXX interacts with phage ΦC31 integrase and inhibits recombination.Nucleic Acids Res., 34. 6298-6304.
    
    36. Negorev. D. and Maul, G.G (2001) Cellular proteins localized at and interacting within ND10/PML nuclear bodies/POPs suggest functions of a nuclear depot.Oncogene, 20, 7234-7242.
    
    37. Perlman, R., Schiemann, W.P., Brooks, M.W., Lodish, H.F. and Weinberg, R.A.(2001) TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat. Cell Biol., 3(8),708-714.
    
    38. Ko, Y.G., Kang. Y.S., Park, H., Seol. W., Kim. J., Kim. T., Park, H.S., Choi. E.J.and Kim, S. (2001) Apoptosis signal-regulating kinase 1 controls the proapoptotic function of death-associated protein (Daxx) in the cytoplasm. J. Biol. Chem., 276 (42).39103-39106.
    
    39. Song, J.J. and Lee, Y.J. (2004) Tryptophan 621 and serine 667 residues of Daxx regulate its nuclear export during glucose deprivation. J. Biol. Chem., 279 (29).30573-30578.
    40. Andreas, S., Schwenk, F., Kuter-Luks, B., Faust, N., Kuhn, R. (2002) Enhanced efficiency through nuclear localization signal fusion on phage PhiC31-integrase:activity comparison with Cre and FLPe recombinase in mammalian cells. Nucleic Acids Res.,30,2299-2306.
    
    41. Groth, A.C., Calos, M.P. (2004) Phage integrases: biology and applications. J. Mol.Biol., 335, 667-678.
    
    42. Sclimenti, C.R., Thyagarajan, B., Calos, M.P. Directed evolution of a recombinase for improved genomic integration at a native human sequence. Nucleic Acids Res.2001 Dec 15;29(24):5044-51.
    
    43. Takahashi, Y., Lallemand-Breitenbach, V., Zhu, J., de The, H. (2004) PML nuclear bodies and apoptosis. Oncogene, 23(16), 2819-24.
    
    44. Salomoni, P., Khelifi, AF. (2006) Daxx: death or survival protein? Trends Cell Biol., 16(2),97-104.
    
    45. Greger, J.G. Katz, R.A., Ishov, A.M., Maul, GG and Skalka, A.M. (2005) The cellular protein daxx interacts with avian sarcoma virus integrase and viral DNA to repress viral transcription. J. Virol., 79(8). 4610-4618
    
    46. Cantrell. S.R., Bresnahan, W.A. (2005) Interaction between the human cytomegalovirus UL82 gene product (pp71) and hDaxx regulates immediate-early gene expression and viral replication. J Virol., 79(12), 7792-802.
    
    47. Preston, C.M., Nicholl, M.J. (2006). Role of the cellular protein hDaxx in human cytomegalovirus immediate-early gene expression. J Gen Virol., 87(Pt 5), 111 3-21.
    
    48. Saffert, R.T., Kalejta. R.F. (2006) Inactivating a cellular intrinsic immune defense mediated by Daxx is the mechanism through which the human cytomegalovirus pp71 protein stimulates viral immediate-early gene expression. J Virol., 80(8), 3863-71.
    
    49. Pei. H.P.. Yordy, J.S., Leng. Q.X., Zhao, Q.H., Watson, D.K. and Li, R.Z. (2003) EAPⅡ interacts with ETS1 and modulates its transcriptional function. Oncogene, 22,2699-2709.
    
    50. Pype, S., Declercq, W., Ibrahimi A., Michiels, Christine., Rietschoten, J.G.I.V., Dewulf, N.,Boer, M.D., Vandenabeele, D.H. and Remacle, J.E. (2000) TTRAP, a novel protein that associates with CD40, tumor necrosis factor (TNF) receptor-75 and TNF receptor-associated factors (TRAFs), and that inhibits nuclear factor-κB activation. J. Biol. Chem., 275 (24), 18586-18593.
    
    51. Li, X.D., Makela, T.P., Guo, D., Soliymani, R., Koistinen, V., Vapalahti, O., Vaheri,A. and Lankinen, H. (2002) Hantavirus nucleocapsid protein interacts with the Fas-mediated apoptosis enhancer Daxx. J. Gen. Virol., 83, 759-766.
    
    52. Lee, B.H.. Yoshimatsu, K., Maeda, A., Ochiai, K., Morimatsu, M, Araki, K...Ogino, M., Morikawa, S. and Arikawa, J. (2003) Association of the nucleocapsid protein of the Seoul and Hantaan hantaviruses with small ubiquitin-like modifier-1 -related molecules. Virus Res., 98, 83-91.
    
    53. Li, R.Z., Pei, H.P.. Watson, D.k. and Papas,T.S. (2000) EAP1/Daxx interacts with ETS1 and represses transcriptional activation of ETS1 target genes. Oncogene, 19,745-753.
    
    54. Ishov. A.M., Sotnikov, A.G., Negorev, D., Vladimirova, O.V., Neff, N., Kamitani,T., Yeh, E.T.H., StraussIII, J.F. and Maul, GG (1999) PML is critical for ND10 formation and recruits the PML-interacting protein Daxx to this nuclear structure when modified by SUMO-1. J. Cell Biol, 147(2), 221-233.
    
    55. Hecker, C.M., Rabiller, M., Haglund, K., Bayer, P. and Dikic, I. (2006) Specification of SUMO1- and SUMO2- interacting motifs. J. Biol. Chem., 281 (23), 16117-16127.
    
    56. Negorev, D. and Maul, GG (2001) Cellular proteins localized at and interacting within ND10/PML nuclear bodies/POPs suggest functions of a nuclear depot.Oncogene, 20, 7234-7242.
    
    57. Maul, GG (1998) Nuclear domain 10, the site of DNA virus transcription and replication.BioEssays, 20, 660-667.
    
    58. Bernardi, R. and Pandolfi, P.P. (2007) Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nature Rev. Mol. Cell Biol., 8, 1006-1016.
    
    59. Everett. R.D. (2006) Interactions between DNA virus, ND10 and the DNA damage response. Cell Microbio., 8(3), 365-374.
    
    60. Everett, R.D. and Chelbi-Alix, M.K. (2007) PML and PML nuclear bodies:implications in antiviral defence. Biochimie, 89 (6-7), 819-830.
    
    61. Rodrigues-Lima, F., Josephs, M. Katan. M. and Cassinat, B. (2001) Sequence analysis identifies TTRAP, a protein that associates with CD40 and TNF receptor-associated factors, as a member of a superfamily of divalent cation-dependent phosphodiesterases. Biochem Biophys Res Comm, 285, 1273-1279.
    62. Yordy, J. S., Li, R. Z., Sementchenko, V. I., Pei, H. P., Muise-Helmericks, R. C.and Watson, D. K. (2004) SP100 expression modulates ETSl transcriptional activity and inhibits cell invasion. Oncogene, 23, 6654-6665.
    Andre, F. and Mir, L.M. (2004) DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene Ther. (Suppl. 1), 33-42.
    Chan, C.K. and Jans, D.A. (2002) Using nuclear targeting sinals to enhance non-viral gene transfer. Immunol. Cell Biol, 80, 119-130.
    Chen, J.Z., Ji, C.N., Xu, G.L., Pang, R.Y., Yao, J.H., Zhu, H.Z., Xue, J.L. and Jia, W.(2006) DAXX interacts with phage ΦC31 integrase and inhibits recombination.Nucleic Acids Res 34, 6298-6304.
    DengMin Feng, JinZhong Chen, YangBo Yue, HuanZhang Zhu, JingLun Xue and William WeiGuo Jia. A 16bp Rep binding element is sufficient for mediating Rep-dependent integration into AAVS1. (2006) J. Mol. Biol., 358, 38-45.
    Dominic J. Glover, Hans J. Lipps, and David A. Jans. (2005) Towards safe, non-viral therapeutic gene expression in humans. Nat. Rev. Genet. 6, 299-311.
    Eric C. Olivares, Roger P. Hollis, Thomas W. Chalberg, Leonard Meuse, Mark A. Kay and Michele P. Calos. (2002) Site-specific genomic integration produces therapeutic Factor Ⅸ levels in mice. Nat Biotech, 20, 1124-1128.
    Hacein-Bey-Abina, S. et al. (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415-419.
    Hollon, T. (2000) Researchers and regulators reflect on first gene therapy death.Nature Med. 6, 6.
    Li, Z. et al. (2002) Murine leukemia induced by retroviral gene marking. Science 296,497.
    Matsui, H., Johnson, L.G, Randell, S.H. and Boucher .R.C. (1997) Loss of binding and entry of liposome-DNA complexes decreases transfection efficiency in differentiated airway epithelial cells. J. Biol. Chem. 272, 1117-1126.
    McCormack, M.P., Forster, A., Drynan. L., Pannell, R. & Rabbitts, T.H. (2003) The LMO2 T-cell oncogene is activated via chromosomal translocations or retroviral insertion during gene therapy but has no mandatory role in normal T-cell development. Mol. Cell Biol. 23, 9003-9013.
    Nicola J. Philpott, Janette Gomos, Kenneth I. Berns and Erik Falck-Pedersen. A p5 integration efficicency element mediates Rep-dependent integration into AAVS 1 at chromosome 19.PNAS. 2002, 99(19), 12381-12385.
    Schroder, A.R. et al. (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110. 521-529.
    Sonawane, N.D., Szoka, F.C. and Verkman, A.S. (2003) Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J.Biol. Chem, 278,44826-44831.
    Thomas, C.E., Ehrhardt, A. & Kay, M.A. (2003) Progress and problems with the use of viral vectors for gene therapy. Nature Rev. Genet. 4, 346-358.
    Woods, N.B. et al. (2003) Lentiviral vector transduction of NOD/SCID repopulating cells results in multiple vector integrations per transduced cell: risk of insertional mutagenesis.Blood 101, 1284-1289.
    Wu, X., Li, Y., Crise, B. & Burgess, S.M. (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300, 1749-1751.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700