基于超导磁体的快速换能系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高功率脉冲技术作为高新、尖端技术日益受到重视,其在国防建设以及国民生产中的应用越来越广泛,也越来越受到人们的关注。特别是在新概念武器及未来高速运载工具方面,具有极大的发展潜力。但脉冲功率技术指标主要取决于应用对象及应用场合,不同的应用场合需要脉冲源提供不同的输出脉冲幅值、脉冲前沿及脉冲宽度,一个脉冲电源是不可能适应所有的场合。因此,本文介绍了基于超导磁体的快速换能系统实现高功率脉冲输出的设计思路,并在此基础上改进变换系统,是本论文的核心问题所在。
     由于超导储能磁体可以使用小型低电压电源实现缓充电,同时能够无阻的长期运行,能量损耗极小,另外还有储能密度高、响应快、持续性能强、无噪音、体积小的优点。故选择超导线圈作为初级储能系统,在超导线圈向中间储能元件和中间储能元件向负载快速放电过程中研究功率脉冲技术,实现超导磁体内能量的再利用。能量通过脉冲压缩、整形、传输、匹配和开关等功率调节系统处理,得到理想的高幅度、大功率、陡前沿的电脉冲输出,为特定的应用目标提供强电流功率脉冲,是本系统的设计目的。
     本论文所述的基于超导磁体的能量快速变换系统,作为一个以电路为主的系统。首先,探讨了基于超导磁体的换能系统的关键技术,包括超导应用技术、脉冲功率技术和换流技术;其次,研究了超导磁体快速释能,通过理论计算、软件仿真和实验论证了超导磁体使用各种释能元件放电的过程及优缺点,确定基于超导磁体的快速换能系统设计方案;最后,完成了基于超导磁体的快速换能系统的电路设计,包括各种器件的选择、使用及保护;通过软件仿真和实验论证了换能系统的可行性,并研究了其改进系统,使之满足特定场合的需求。
As a high and top technology, High Power Pulse Technology is applied widely in National Defense Construction and civil manufacture. It has received more and more attentions. It has great potential for development, especially be attached to the application for the future launch vehicles and new concept weapons. But pulsed power technology application mainly depends on the requirement, different applications need the specific amplitude, pulse width and so on, so a pulse power supply can not adapt to all occasions. Therefore, this paper introduces a rapidly energy conversion system which can obtain high-power pulse output based on superconducting magnet energy system, and improve the transformation system, it is the core problem of this paper.
     Superconducting Magnetic Energy Storage system can be charged by a low-voltage power supply. At the same time it can store energy for long time with high energy density, small energy loss, fast response, no noise, small size and so on. Selecting superconducting magnet as the primary energy in the system, high power pulse technology is researched through the energy transfer system including the superconducting magnet, the middle energy storage components and the load. For getting an ideal high electrical pulse output, energy is be disposed by means of pulse compression, shaping, transmission and switching. The energy in the superconducting magnet is reused. The purpose of the system is to provide a high current pulse power output for some application of the specific device.
     In this paper, as a circuit-based system, the system based on superconducting magnetic energy storage is designed. Firstly, the experiment researches on the key technology to the system, including the application of superconducting technology, pulsed power technology and energy exchanging technology. Secondly, the quick energy released process of the superconducting magnet has been researched. The simulation and experiment is done to demonstrate the advantages of the fast transfer system. Finally, the rapid energy conversion system that based on superconductive magnet is designed, including the choice of circuit devices and the protection system. Through the software simulation and experimental verification, the transfer system is improved.
引文
[1]Fair Harry D.Electromagnetic launch science and technology in the United States Enters a new era.IEEE Transactions on Magnetics,2005,41(1):158-164.
    [2]尹宗法.新概念武器对舰炮武器系统的影响.舰载武器.1998,(3):28-35.
    [3]Erwin H.W.M.Smulders,Bert E.J.M.van Heesch,Sander S.VB.van Paasen.Pulsed Power Corona Discharges for Air Pollution Control.IEEE Transactions on Plasma Science,1998,26(5):1476-1484
    [4]刘国庆.激光武器将成为舰载防空体系中的理想武器.舰船科学技术,1995,(6):47-50.
    [5]Rahn H W.The all-electric ship-An answer to future challenges.Naval Forces,1999,20(2):38-47.
    [6]刘畅.固态开关串联型纳秒级上升时间功率脉冲发生技术的研究.哈尔滨工业大学工学硕士论文.2006.
    [7]Barnes Paul N,Rhoads Gregory L,Tolliver Justin C et al.Compact,lightweight,Superconducting power generators.IEEE Transactions on Magnetics,2005,41(1):268-273.
    [8]S.Suzuki,J.Baba,K.Shutoh.Effective Application of Superconducting Magnetic Energy Storage(SMES)to Load Leveling for High Speed Transportation System.IEEE Transactions on Applied Superconductivity.2004,14(2):713-714.
    [9]J.Biebach,P.Ehrhart,A.Muller.Compact Modular Power Supplies for Superconducting Inductive Storage and for Capacitor Charging.IEEE Transactions on Magnetics.2001,37(1):353-354.
    [10]Ian R.McNab.Developments in Pulsed Power Technology.IEEE Transactions on Magnetics,2001,37(1):375-378.
    [11]张乔根,邱毓昌,冯允平.亚纳秒前沿高压脉冲信号发生器.电工电能新技术,1996(2):1-5.
    [12]邹勇.电容式调压脉冲功率电源的研究.哈尔滨工业大学工学硕士论文,2006.
    [13]刘锡三.高功率脉冲技术.国防工业出版社,2005.
    [14]罗海林.一种新型高功率脉冲电源的研制.武汉大学硕士学位论文,2006.
    [15]王莹.高功率脉冲电源.原子能出版社,1991.
    [16]W.F.B.Punchard.A 300 kJ pulsed superconducting energy storage coil.IEEE Transactions on Magnetics,1975,11(2):508-511.
    [17]T.Onishi,H.Tateishi,K.Komuro and K.Koyama et al.Energy transfer experiments between 3 MJ and 4 MJ pulsed superconducting magnets.IEEE Transactions on Magnetics,1985,11(2):1107-1110.
    [18]Floch E,Hiebl P,Laumong Y,et al.Modelizatioin and test of a 500J superconducting pulsed power transformer.IEEE Transactions Applied Superconductivity,1999,9(2):1289-1292.
    [19]Netter D,Leveque J,Rezzoug A et al.Theoretical studies and experimental results of a SMES used in a pulsed current supply.IEEE Transactions Applied Superconductivity,1998,8(1):7-13.
    [20]Juengst K P.Fast SMES for generation of high power pulses.IEEE Transactions on Magnetics,1996,32(4):2272-2275.
    [21]Weck W,Ehrart P,Muller A,et al.Superconducing inductive pulsed power supply for electromagnetic launchers:Design aspects and experimental investigation of laboratory set-up.IEEE Transactions Applied Superconductivity,1999,33(1):524-527.
    [22]Polulyakh E P,Spiridodov A V.Pulsed power source based on the experimental superconducting magnetic energy storage with strored energy up to 5MJ for railgun installation,in Proc.of MT-15,1997:628-630.
    [23]Juengst K P,Salbert H.Fast SMES for generation of high power pulses.IEEE Transactions on Magnetics,1996,32:2272-2275.
    [24]Oberly C E,Kozlowski G,Gooden C E,et al.Principles of application of high temperature superconductors to electromagnetic launch technology.IEEE Transactions on Magnetics,1991,27(1):509-513.
    [25]严陆光,南和礼,余运佳等.快充放电超导磁体的研制.电工电能新技术,1995,(1):45-50.
    [26]戴银明,余运佳,南和礼等.空芯螺管型超导储能磁体的优化设计方法.电工电能新技术,2001,(3):9-17.
    [27]肖立业,韩朔,林良真.高温超导磁体导体尺寸的优化选择.低温与超导,1994,22(4):15-19.
    [28]郑晓静,杨绪普,周又和.三线圈超导磁体在在脉冲电流下的动力稳定性分析.核聚变与等离子体物理,2000,20(1):1-7.
    [29]Lue J W,Dresner L,Schwenterly S W et al.Stability measurements on a 1-T high temperature superconducting magnet.IEEE Transactions Applied Superconductivity, 1995,5:230-233.
    [30]Hisashi Isogami,Benjamin J.Haid,Yukikazu Iwasa.Thermal behavior of a solid nitrogen impregnated high-temperature superconducting pancake test coil under transient heating.IEEE Transactions Applied Superconductivity,2001,11(1):1852-1855.
    [31]周羽生.高温超导脉冲功率应用电磁特性的基础研究.华中科技大学博士学位论文,2006.
    [32]舒乃秋,张新华.超导储能装置变流器控制策略的分析.华北电力技术.2002(12):13-15.
    [33]周羽生,郭芳等.超导电感储能高功率脉冲技术及其仿真研究,高压电器,2005.41(2):85-88.
    [34]张国强,王赞基等.低温绝缘材料的性能和超导磁体绝缘制造技术综述.电工技术杂志,2002.9.
    [35]张裕恒.超导物理.中国科学技术大学出版社,1997.
    [36]张志鹏,朱玉群.超导磁体.华中理工大学出版社,1989.
    [37]舒泉声等.超导电工程学.机械工程出版社,1989.
    [38]王家素,王素玉.超导技术应用.成都科技大学出版社,1995.
    [39]Hazelton D W,Gardner M T,Rice J A,et al.HTS coils for the navy's superconducting hompolar motor/generator.IEEE Transactions Applied Superconductivity,1997,7(2):664-667.
    [40]单惠民,车华,耿海军.超导技术洞开未来前景.《解放军报》,2001年5月16日(http://www.people.com.cn人民网).
    [41]樊栓狮,梁德青,杨向阳等.储能材料与技术.化学工业出版社,2004.
    [42]SHPAKVG,1000pps subnanosecond high voltage generator[A],IEEE 11th pulsed power conference,1997:1575-1580.
    [43]MANKOWSKI J J.,High voltage subnanosecond dielectric break down[A],A dissertation of doctor of philosophy,1997.
    [44]邱关源.电路原理(第四版).高等教育出版社,1999.
    [45]袁伟群,栗保明,孟绍良,林庆华,田慧.电容储能脉冲功率源中ROGOWSKI线圈标定方法.高电压技术,2006,32(1):42-44.
    [46]刘锡三.高功率脉冲技术的发展及应用研究.核物理动态,1995,12(4):16-18.
    [47]卜明南,毛晓惠等.IGBT在脉冲电源中的运用及PSPICE仿真.国外电子元器件. 2002(6):4-7.
    [48]MESYTS G A.,Compact high-current accelerator based on RANDN SEF-303 pulsed power source,IEEE 9th pulsed power onference,1993:835-838.
    [49]R.C.Fletcher.Production and Measurement of Ultra-high-speed mpulses.Rev.Sci..Ilnstrum,1949,20:861-869.
    [50]Heard H G.20 Kilovolt Delta-function Generator.Rev.Sci.Instrum,1954,25:454-458.
    [51]Ian R.McNab.Developments in Pulsed Power Technology.IEEE Transactions on Magnetics,2001,37(1):375-378.
    [52]WeiHua Jiang,Kiyoshi Yatsui,Ken Takayama.Compact Solid-State Pulsed Power and Its Application.Proceeding of the IEEE,2004,92(7):1180-1194.
    [53]温家良,傅鹏,刘正之,汤广福.大功率直流晶闸管开关设计及其可靠性分析.电力系统自动化,2006,30(5):55-58.
    [54]李国栋,毛承雄,陆继明,崔艳艳.基于IGCT串联的三电平高压变频器直流环节研究.中国电机工程学报2007,27(1):82-87.
    [55]王兆安,黄俊.电力电子技术,北京机械工业出版社,1994.
    [56]王兆安,张明勋.电力电子设备设计和应用手册第二版,北京机械工业出版社,2002.
    [57]李漫华,邵可然.电感储能型高功率脉冲电源断路开关的最新发展[J].电机电器技术.2000,18(6):24-28.
    [58]李焕炀,余岳辉,胡乾,彭昭廉,杜如峰,黄秋芝.RSD开关在脉冲电源中的应用研究.中国电机工程学报,2003,23(11):23-28.
    [59]温家良,傅鹏,刘正之,汤伦军,王林森.HT-7U托卡马克高功率双向直流快速晶闸管开关的研制.电力系统自动化.2003,23(14):49-53.
    [60]刘健,张斌.SOS半导体断路开关器件研制和实验研究.电力电子技术,2006,40(5):130-132.
    [61]E.E.Bowles,W.G.Homeyer,J.M.Rawls,M.W.Heyse,J.B.Cornette,N.E.Taconi Jr.25 kA,5000 V solid state opening switch for inductive energy stores.IEEE Transactions on Magnetics,VOL.29,NO.1,JANUARY 1993.
    [62]A.Pokryvailo,V.Maron,D.Melnik.Review of opening switches for long-charge fieldable inductive storage systems.IEEE Transactions on Magnetics,1999,37(1):1341-1344.
    [63]吴岗,郑成,宁正祥.高压脉冲电场灭菌机理.食品科学,1998,19(4):7-9.
    [64]谭坚文,石立华,李炎新,张力群,谢彦召.快前沿纳秒高压脉冲源的开发及实验研究. 强激光与粒子束,2004,16(11):1434-1436.
    [65]王昕,曾乃工,韩曼.350kV可变脉宽的纳秒脉冲发生器.高电压技术,2003,29(5):31-32.
    [66]秦卫东,李洪涛,顾元朝,谢卫平,孟维涛,王治.200kV快脉冲Marx发生器.高电压技术,2002,28(11):40,51.
    [67]Ju Won Baek,Dong Wook Yoo,G.H.Rim.Solid State Marx Generator Using Series-Connected IGBTs.IEEE Transactions on Plasma Science.2005,33(4):1198-1199.
    [68]M.Sack,C.Schultheiss,H.Bluhm.Triggered Marx Generators for the Industrial-Scale Electroporation of Sugar Beets.IEEE Transactions on Industry Applications.2005,41(3):707-714.
    [69]赵科义,李治源,吕庆熬,段晓军,朱建方.电爆炸金属导体在Marx发生器中的应用.高电压技术,2003,29(10):47-51.
    [70]R.J.Baker.High Voltage Pulse Generation Using Current Mode Second Breakdown in a Bipolar Junction Transistor.Rev.Sci.Instrum,1991,62(4):1031-1036.
    [71]R.J.Baker,M.D.Pocha.Nanosecond Switching Using Power MOSFETs.Rev.Sci.Instrum,1990,61(8):2211-2213.
    [72]Jethwa J,Marinero E E,Alexader Muller.Nanosecond Risetime Avalanche Transistor Circuit for Triggering a Nitrogen Laser.Rev.Sei.Instrum,1981,52(7):989-991.
    [73]胡燕兰,刘彦琴.快速磁通变化超导线圈失超保护的改进方法.低温与超导,2003,31(4):42-44.
    [74]张永,乔秀芬,赵保志.超导磁体失超保护装置.低温与超导,1983,4:79-82.
    [75]Werner Weck Peter Ehrhar,Demonstration of a Superconducting Inductive Pulsed Power Supply at Simulated Load Conditions,IEEE Tranctions on Magnetics,1999,35(1):383-387.
    [76]张国强,王赞基等.低温绝缘材料的性能和超导磁体绝缘制造技术综述.电工技术杂志.2002.9:1-3.
    [77]田勇,张双全.高能氧化锌压敏电阻器在超导磁体移能中的应用.华中工学院学报,1980,2:90-97.
    [78]聂剑红,孙力,高晗璎,王有琨.电感储能与充磁线圈的能量转换.电机与控制学报,2003,7(3):198-200.
    [79]郝威,夏栋.IGBT的应用及专用驱动器EXB841的改进.电子技术,2004,(11):43-46.
    [80]粱中华,李勇,胡庆.基于IGBT特性的电路改进[J].沈阳工业大学学报,2004,26(1):23-25.
    [81]丁祖军,郑建勇,梅军,苏麟,柴继涛,吴恒荣等.基于EXB841的IGBT驱动电路设计及优化.电力自动化设备,2004.6(24):37-40.
    [82]孙强,陶健.新型IGBT集成驱动模块2SD315A应用研究.现代电力,2003,7(20).
    [83]蒋晓春,陈洛忠.高压IGBT集成驱动模块2SD315AI-33的应用研究.新特器件应用,2003.(11):41-44.
    [84]赵良炳.现代电力电子技术基础.清华大学出版社,2003.
    [85]王兆安,张明勋.电力电子设备设计和应用手册.第三版.机械工业出版社,2009.
    [86]温家良,傅鹏,刘正之,汤广福等.大功率直流晶闸管开关设计及其可靠性分析.电力系统自动化,2006.3(30):55-58.
    [87]秦实宏,刘克富,李劲,潘垣等.高储能密度脉冲电容器保护的研究.高电压技术,2004,30(12):40-41.
    [88]秦实宏,刘克富,李劲等.高功率激光电源系统故障与保护仿真的研究.高电压技术,2004,30(9):49-50.
    [89]秦曾衍,左公宁,王永荣等著高压强脉冲放电及其应用.北京工业大学出版社,2000.12.
    [90]金秋生.氧化锌压敏电阻的过电压保护.大众用电,2004.12:35-36.
    [91]R J Loyd,A M Bule,C L Chang.Coil Protection for the 20.4MWh SMES/ETM.IEEE Transactions on Magnetics,1991,27(2):1716-1719.
    [92]Ninomiya A,Sakaniwa K,Kado H,et al.Quench Detection of Superconducting Magnets Using Ultrasonic Wave.IEEE Transactions on Magnetics,1989,25(2):1520-1523.
    [93]Makoto Sugimoto,Takaai Iscono,Norikiyo Koizumi,et al.An Evaluation of the Inlet Flow Reduction for a Cable in Conduit Conductor by Rapid Heating.Crygenics,1999,39(11):939-945.
    [94]Seeber B.Handbook of Applied Superconductivity.Institute of Physics Publishing,Bristol and Philadelphia,1998.
    [95]喻小艳,李敬东,唐跃进,程时杰,潘恒等.超导磁储能系统的失超监测及保护综述.高压电器.2003.10(39):47-49.
    [96]Joel H Schultz.Protection of Superconducting Magnets.IEEE Transactions Applied Superconductivity,2002,12(1):1390-1395.
    [97]E Burkhardt,A Yamamoto,T Nakamoto,et al.Quench Protection Heater Studies for the 1m Model Magnets for zhe LHC Low-β Quadrupoles.IEEE Transactions Applied Superconductivity,2000,10(1):681-684.
    [98]田健,郭会军,王华民,李朝阳.大功率IGBT瞬态保护研究.电力电子技术,2000.8:29-30.
    [99]Trivedi M.et al.Internal Dynamics of IGBT During Short Circuit Switching.Proc.IEEE BCTM'96,1996:77-80.
    [100]杨斌文,胡浩,张建.IGBT的有关保护问题.电气开关,2006,6:7-9.
    [101]潘江洪,舒建徽,杜雪芳等.IGBT高压大功率驱动和保护电路的应用研究.电源技术应用,2005.11(8):51-54,58.
    [102]Powersim Inc.PSIM User's Guide Veron6.0.Powersim Inc,2003.
    [103]PSIM 用户手册[Z].USA:Powersim Inc,2007.
    [104]Kim W S,Kwak S Y,Lee J K,et al.Design of HTS Magnets for a 600 kJ SMES.IEEE Transactions on Applied Superconductivity,2006,16(2):620- 623.
    [105]Willem D J,Kolkert,Francis D J.Electric energy gun technology:Status of the French-German-Netherlands programme.IEEE Transactions on Magnetics,1999,35(1):25-30.
    [106]Picard J F,ZouitiM,Levillain C,et al.Technologies for high field HTS magnets.IEEE Transactions on Applied Superconductivity,1999,9(2):535-540.
    [107]Shao K R,Huang S L,Lavers J D,et al.Analysis and op timization of a micro SMES system usingmultip le parallel solenoids.IEEE Transactions on Magnetics,2003,39(5):2615-2617.
    [108]孙凤举,邱爱慈,邱毓昌.微妙级高功率断路开关.电工电能新技术,2000,(3):41-45.
    [109]Alois Hiebl,Kai Numssen,Helmut Kinder et aI.RF pulse triggered superconducting switches.IEEE Transactions on Applied Superconductivity,2003,13(2):1879-1881.
    [110]Mik Konen R,Lehtonen J,Passi J.Phiiosophy of a quench;two case studies:LTS wiggler magnet and HTSμ-SMES.IEEE Transactions on Applied Superconductivity,1999,9(2):596-599.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700