新型HSP90抑制剂抗胃癌作用及机制研究高通量筛选eIF4E抑制剂及其抗肿瘤作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热休克蛋白90(Hsp90)是一种广泛存在于细胞中的分子伴侣(molecular chaperone)。它通过稳定肿瘤细胞中的原癌蛋白(例如Akt和c-Raf)从而参与多种细胞内信号转导过程。Hsp90抑制剂17-AAG在临床试验中展现出颇具希望的抗肿瘤效应,但由于其潜在的毒性和不良的药代特性,进一步的应用受到限制。因此现阶段的努力集中于开发具有更强药效和更低副作用的新型Hsp90抑制剂。本研究利用荧光偏振竞争结合实验筛选了百余种小分子化合物,并筛选出一种作用较强的间苯二酚衍生物LD053,它能与Hsp90ATP结合口袋有效地结合。LD053与Hsp90的结合能将辅分子伴侣cdc37从Hsp90上解离下来,导致Akt和c-Raf的不稳定,并通过提高泛素化而使两者降解,进而抑制下游的PI3K/Akt和c-Raf/Mek/Erk信号通路。结果,LD053降低了BGC8231中瘤细胞的活力并诱导其凋亡,表现为细胞在subGO/G1期的积累,同时cleaved-caspase3和PARP的增多。但正常细胞对LD053并不敏感。与体外抗肿瘤活性一致,LD053能显著抑制裸鼠体内BGC823异种移植瘤的生长,而体重却未见明显降低。以上结果均表明,LD053是一种新型的Hsp90抑制剂,并具有潜力用于胃癌的治疗。
     近期研究表明,由eIF4F复合物起始的帽依赖的翻译过程对多种原癌蛋白的表达是必需的,这些原癌蛋白包括c-Myc, survivin, Cyclin D1, Mcl-1, VEGF等。因此帽依赖的翻译在人类肿瘤中常常是处于上调的状态。作为eIF4F复合物的重要组成部分,真核生物翻译起始因子4E (eIF4E)是帽依赖翻译的限速因子,并且经常因为基因扩增和转录上调而在肿瘤细胞中过表达。siRNA或反义寡核苷酸引起的eIF4E的表达下调能够有效地抑制肿瘤细胞的生长并诱导凋亡,而且没有明显毒性。这些结果使研究者们对开发新型的小分子药物产生了浓厚的兴趣,这些小分子药物能靶向于eIF4E区动的翻译起始装置。基于FRT介导的同源重组,本实验室建立了一种基于荧光素酶报告体的检测方法,能够高通量地筛选抑制eIF4E表达的小分子化合物。应用该方法我们筛选了NCI Diversity-Set化合物库,筛选出一个小分子,代号为48F10,它能在较低的微摩尔浓度显著地抑制几种乳腺癌细胞eIF4E的mRNA表达,进而剂量和时间依赖性地降低HS578T细胞中eIF4E的蛋白水平,导致下游蛋白survivin, cyclin D1, Mcl-1和c-myc的下调,同时抑制乳腺癌细胞的生长,并诱导凋亡,表现为cleaved-caspase3和cleaved-PARP的明显增多。因此,48F10代表了一类新的eIF4E抑制剂,能通过抑制eIF4E的转录而抑制帽依赖的翻译。
Heat shock protein90(Hsp90) is a molecular chaperone engaging in multiple cellular signaling by stabilizing oncoproteins (e.g., Akt and c-Raf) in tumor cells. Whereas Hsp90inhibitors such as17-AAG exert promising antitumor effects in clinical trials, current efforts focus on developing agents targeting Hsp90with improved efficacy and lower toxicity. Using a fluorescence polarization assay, over a hundred of synthetic small molecules were screened and a resorcinol derivative LD053that bound the Hsp90ATP-binding pocket effectively was identified. The binding of LD053to Hsp90dissociated the co-chaperone protein cdc37from Hsp90, resulting in destabilization of Akt and c-Raf and subsequent inhibition of PI3K/Akt and c-Raf/Mek/Erk signaling in BGC823gastric cancer cells. As a consequence, LD053decreased cancer cell viability and induced apoptosis evidenced by increased subGO/G1cell population and increased cleavage of caspase3and PARP. Interestingly, normal human cells appeared insensitive to LD053treatments. Consistent with its in vitro anticancer activities, LD053significantly inhibited growth of BGC823xenografts in nude mice without apparent body weight loss. These results thus demonstrate that LD053is a novel Hsp90inhibitor and has potential to be used to treat gastric cancer.
     Recent studies have demonstrated that cap-dependent translation initiated by the eIF4F complex is required for expression of a variety of oncogenic proteins including c-Myc, survivin, Cyclin D1, Mcl-1, VEGF. It is thus not surprising that cap-dependent translation is often elevated in human cancers. As a major component of the eIF4F initiation complex, eukaryotic translation initiation factor4E (eIF4E) is the rate-limiting factor for cap-dependent translation initiation and frequently overexpressed in cancers due to gene amplification and transcriptional upregulation. Down-regulation of eIF4E expression by siRNA or anti-sense oligonucleotides was shown to inhibit cancer cell growth and promote apoptosis without apparent toxicity. These results have generated increasing interests in the discovery of novel molecules targeting eIF4E-driven translation-initiation apparatus. Based on FRT-mediated homologous recombination, we developed a luciferase-based reporter assay that can be used to screen for small molecules inhibitory for eIF4E expression in a high-throughput manner. We screened the NCI Diversity-Set chemical library, and identified a small molecule, referred to as48F10, that significantly decreased the eIF4E mRNA level at lower micromolar concentrations in several kinds of breast cancer cells. As a consequence, this small molecule decreased the eIF4E protein level dose dependently, leading to reduced expression of survivin, cyclin D1, Mcl-1and c-Myc. Moreover, we found that this novel eIF4E inhibitor inhibited breast cancer cell growth and induced apoptosis sharply evidenced by increased cleavage of caspase3and PARP.48F10thus represents a novel class of eIF4E inhibitors that suppress cap-dependent translation through inhibiting eIF4E expression.
引文
[1]Workman P, Burrows F, Neckers L, Rosen N. Drugging the cancer chaperone HSP90:combinatorial therapeutic exploitation of oncogene addiction and tumor stress [J]. Ann N YAcad Sci 2007,1113:202-216.
    [2]Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer [J]. Nat Rev Cancer 2005,5:761-772.
    [3]Maloney A, Workman P. HSP90 as a new therapeutic target for cancer therapy: the story unfolds [J]. Expert Opin Biol Ther 2002,2:3-24.
    [4]Neckers L, Workman P. Hsp90 molecular chaperone inhibitors:are we there yet? Clin Cancer Res 2012,18:64-76.
    [5]Taiyab A, Rao Ch M. HSP90 modulates actin dynamics:inhibition of HSP90 leads to decreased cell motility and impairs invasion [J]. Biochim Biophys Acta 2011,1813:213-221.
    [6]Pacey S, Banerji U, Judson I, Workman P. Hsp90 inhibitors in the clinic [J]. Handb Exp Pharmacol 2006:331-358.
    [7]Guo W, Reigan P, Siegel D, Zirrolli J, Gustafson D, Ross D. Formation of 17-allylamino-demethoxygeldanamycin (17-AAG) hydroquinone by NAD(P)H:quinone oxidoreductase 1:role of 17-AAG hydroquinone in heat shock protein 90 inhibition [J]. Cancer Res 2005,65:10006-10015.
    [8]Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H, et al. Molecular targeting therapy of cancer:drug resistance, apoptosis and survival signal [J]. Cancer Sci 2003,94:15-21.
    [9]Li Y, Zhang T, Schwartz SJ, Sun D. New developments in Hsp90 inhibitors as anti-cancer therapeutics:mechanisms, clinical perspective and more potential [J]. Drug Resist Updat 2009,12:17-27.
    [10]Barril X, Beswick MC, Collier A, Drysdale MJ, Dymock BW, Fink A, et al. 4-Amino derivatives of the Hsp90 inhibitor CCT018159 [J]. Bioorg Med Chem Lett 2006,16:2543-2548.
    [11]Sharp SY, Boxall K, Rowlands M, Prodromou C, Roe SM, Maloney A, et al. In vitro biological characterization of a novel, synthetic diaryl pyrazole resorcinol class of heat shock protein 90 inhibitors [J]. Cancer Res 2007,67:2206-2216.
    [12]Cheung KM, Matthews TP, James K, Rowlands MG, Boxall KJ, Sharp SY, et al. The identification, synthesis, protein crystal structure and in vitro biochemical evaluation of a new 3,4-diarylpyrazole class of Hsp90 inhibitors [J]. Bioorg Med Chem Lett 2005,15:3338-3343.
    [13]Brough PA, Aherne W, Barril X, Borgognoni J, Boxall K, Cansfield JE, et al. 4,5-diarylisoxazole Hsp90 chaperone inhibitors:potential therapeutic agents for the treatment of cancer [J]. J Med Chem 2008,51:196-218.
    [14]Howes R, Barril X, Dymock BW, Grant K, Northfield CJ, Robertson AG, et al. A fluorescence polarization assay for inhibitors of Hsp90 [J]. Anal Biochem 2006,350:202-213.
    [15]Hede K. Gastric cancer:trastuzumab trial results spur search for other targets [J]. JNatl Cancer Inst 2009,101:1306-1307.
    [16]Sherman W, Day T, Jacobson MP, Friesner RA, Farid R. Novel procedure for modeling ligand/receptor induced fit effects [J]. J Med Chem 2006,49:534-553.
    [17]Sherman W, Beard HS, Farid R. Use of an induced fit receptor structure in virtual screening [J]. Chem Biol Drug Des 2006,67:83-84.
    [18]Zhang Y, Li H, Wang H, Su F, Qu R, Yin D, et al. Syl611, a novel semisynthetic taxane derivative, reverses multidrug resistance by p-glycoprotein inhibition and facilitating inward transmembrane action [J]. Cancer Chemother Pharmacol 2010,66:851-859.
    [19]Wang H, Jiang M, Cui H, Chen M, Buttyan R, Hayward SW, et al. The stress response mediator ATF3 represses androgen signaling by binding the androgen receptor [J]. Mol Cell Biol 2012,32:3190-3202.
    [20]Dymock BW, Barril X, Brough PA, Cansfield JE, Massey A, McDonald E, et al. Novel, potent small-molecule inhibitors of the molecular chaperone Hsp90 discovered through structure-based design [J]. J Med Chem 2005,48:4212-4215.
    [21]Roe SM, Ali MM, Meyer P, Vaughan CK, Panaretou B, Piper PW, et al. The Mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37) [J]. Cell 2004,116:87-98.
    [22]Pearl LH. Hsp90 and Cdc37--a chaperone cancer conspiracy [J]. Curr Opin Genet Dev 2005,15:55-61.
    [23]Clarke PA, Hostein I, Banerji U, Stefano FD, Maloney A, Walton M, et al. Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17-demethoxygeldanamycin, an inhibitor of the hsp90 molecular chaperone [J]. Oncogene 2000,19:4125-4133.
    [24]Bedin M, Gaben AM, Saucier C, Mester J. Geldanamycin, an inhibitor of the chaperone activity of HSP90, induces MAPK-independent cell cycle arrest [J]. Int J Cancer 2004,109:643-652.
    [25]Meyer PN, Roychowdhury S, Kini AR, Alkan S. HSP90 inhibitor 17AAG causes apoptosis in ATRA-resistant acute promyelocytic leukemia cells [J]. Leuk Res 2008,32:143-149.
    [26]Lamottke B, Kaiser M, Mieth M, Heider U, Gao Z, Nikolova Z, et al. The novel, orally bioavailable HSP90 inhibitor NVP-HSP990 induces cell cycle arrest and apoptosis in multiple myeloma cells and acts synergistically with melphalan by increased cleavage of caspases [J]. Eur J Haematol 2012,88:406-415.
    [27]Wang SX, Ju HQ, Liu KS, Zhang JX, Wang X, Xiang YF, et al. SNX-2112, a novel Hsp90 inhibitor, induces G2/M cell cycle arrest and apoptosis in MCF-7 cells [J]. Biosci Biotechnol Biochem 2011,75:1540-1545.
    [28]Yu W, Rao Q, Wang M, Tian Z, Lin D, Liu X, et al. The Hsp90 inhibitor 17-allylamide-17-demethoxygeldanamycin induces apoptosis and differentiation of Kasumi-1 harboring the Asn822Lys KIT mutation and down-regulates KIT protein level [J]. Leuk Res 2006,30:575-582.
    [29]Munster PN, Srethapakdi M, Moasser MM, Rosen N. Inhibition of heat shock protein 90 function by ansamycins causes the morphological and functional differentiation of breast cancer cells [J]. Cancer Res 2001,61:2945-2952.
    [30]Stepanova L, Leng X, Parker SB, Harper JW. Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4 [J]. Genes Dev 1996,10:1491-1502.
    [31]Mahony D, Parry DA, Lees E. Active cdk6 complexes are predominantly nuclear and represent only a minority of the cdk6 in T cells [J]. Oncogene 1998,16:603-611.
    [32]Goes FS, Martin J. Hsp90 chaperone complexes are required for the activity and stability of yeast protein kinases Mikl, Weel and Swel [J]. Eur J Biochem 2001,268:2281-2289.
    [33]Aligue R, Akhavan-Niak H, Russell P. A role for Hsp90 in cell cycle control: Weel tyrosine kinase activity requires interaction with Hsp90 [J]. EMBO J 1994,13:6099-6106.
    [34]Wang H, Li H, Zuo M, Zhang Y, Liu H, Fang W, et al. Lx2-32c, a novel taxane and its antitumor activities in vitro and in vivo [J]. Cancer Lett 2008,268:89-97.
    [35]Neckers L. Heat shock protein 90:the cancer chaperone [J]. J Biosci 2007,32:517-530.
    [36]Lee KH, Lee JH, Han SW, Im SA, Kim TY, Oh DY, et al. Antitumor activity of NVP-AUY922, a novel heat shock protein 90 inhibitor, in human gastric cancer cells is mediated through proteasomal degradation of client proteins [J]. Cancer Sci 2011,102:1388-1395.
    [37]Lang SA, Klein D, Moser C, Gaumann A, Glockzin G, Dahlke MH, et al. Inhibition of heat shock protein 90 impairs epidermal growth factor-mediated signaling in gastric cancer cells and reduces tumor growth and vascularization in vivo [J]. Mol Cancer Ther 2007,6:1123-1132.
    [38]Kelland LR, Sharp SY, Rogers PM, Myers TG, Workman P. DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90 [J]. J Natl Cancer Inst 1999,91:1940-1949.
    [39]Caplan AJ, Mandal AK, Theodoraki MA. Molecular chaperones and protein kinase quality control [J]. Trends Cell Biol 2007,17:9,7-92.
    [40]Terasawa K, Minami M, Minami Y. Constantly updated knowledge of Hsp90 [J]. JBiochem 2005,137:443-447.
    [41]Hartson SD, Irwin AD, Shao J, Scroggins BT, Volk L, Huang W, et al. p50(cdc37) is a nonexclusive Hsp90 cohort which participates intimately in Hsp90-mediated folding of immature kinase molecules [J]. Biochemistry 2000,39:7631-7644.
    [42]De Luca A, Maiello MR, D'Alessio A, Pergameno M, Normanno N. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways:role in cancer pathogenesis and implications for therapeutic approaches [J]. Expert Opin Ther Targets 2012,16 Suppl 2:S17-27.
    [43]Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases:a family of protein kinases with diverse biological functions [J]. Microbiol Mol Biol Rev 2004,68:320-344.
    [44]Baccarini M. Second nature:biological functions of the Raf-1 "kinase" [J]. FEBS Lett 2005,579:3271-3277.
    [45]Meloche S, Pouyssegur J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1-to S-phase transition [J]. Oncogene 2007,26:3227-3239.
    [46]Taiyab A, Sreedhar AS, Rao Ch M. Hsp90 inhibitors, GA and 17AAG, lead to ER stress-induced apoptosis in rat histiocytoma [J]. Biochem Pharmacol 2009,78:142-152.
    [47]Yu HG, Ai YW, Yu LL, Zhou XD, Liu J, Li JH, et al. Phosphoinositide 3-kinase/Akt pathway plays an important role in chemoresistance of gastric cancer cells against etoposide and doxorubicin induced cell death [J]. Int J Cancer 2008,122:433-443.
    [48]Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR. Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1 [J]. Mol Cell 2006,21:749-760.
    [1]Sonenberg N, Rupprecht KM, Hecht SM, Shatkin AJ. Eukaryotic mRNA cap binding protein:purification by affinity chromatography on sepharose-coupled m7GDP [J]. Proc Natl Acad Sci U S A 1979,76:4345-4349.
    [2]Tahara SM, Morgan MA, Shatkin AJ. Two forms of purified m7G-cap binding protein with different effects on capped mRNA translation in extracts of uninfected and poliovirus-infected HeLa cells [J]. J Biol Chem 1981,256:7691-7694.
    [3]De Benedetti A, Harris AL. eIF4E expression in tumors:its possible role in progression of malignancies [J]. Int JBiochem Cell Biol 1999,31:59-72.
    [4]Mamane Y, Petroulakis E, Rong L, Yoshida K, Ler LW, Sonenberg N. eIF4E--from translation to transformation [J]. Oncogene 2004,23:3172-3179.
    [5]Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin [J]. Science 1997,277:99-101.
    [6]Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N.4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway [J]. Genes Dev 1998,12:502-513.
    [7]Bjornsti MA, Houghton PJ. The TOR pathway:a target for cancer therapy [J]. Nat Rev Cancer 2004,4:335-348.
    [8]Pyronnet S, Imataka H, Gingras AC, Fukunaga R, Hunter T, Sonenberg N. Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnkl to phosphorylate eIF4E [J]. EMBO J 1999,18:270-279.
    [9]Scheper GC, Morrice NA, Kleijn M, Proud CG. The mitogen-activated protein kinase signal-integrating kinase Mnk2 is a eukaryotic initiation factor 4E kinase with high levels of basal activity in mammalian cells [J]. Mol Cell Biol 2001,21:743-754.
    [10]Ueda T, Watanabe-Fukunaga R, Fukuyama H, Nagata S, Fukunaga R. Mnk2 and Mnkl are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development [J]. Mol Cell Biol 2004,24:6539-6549.
    [11]Topisirovic I, Ruiz-Gutierrez M, Borden KL. Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities [J]. Cancer Res 2004,64:8639-8642.
    [12]Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T, et al. Dissecting eIF4E action in tumorigenesis [J]. Genes Dev 2007,21:3232-3237.
    [13]Konicek BW, Dumstorf CA, Graff JR. Targeting the eIF4F translation initiation complex for cancer therapy [J]. Cell Cycle 2008,7:2466-2471.
    [14]Silvera D, Formenti SC, Schneider RJ. Translational control in cancer [J]. Nat Rev Cancer 2010,10:254-266.
    [15]Rajasekhar VK, Holland EC. Postgenomic global analysis of translational control induced by oncogenic signaling [J]. Oncogene 2004,23:3248-3264.
    [16]Rosenwald IB, Kaspar R, Rousseau D, Gehrke L, Leboulch P, Chen JJ, et al. Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels [J]. J Biol Chem 1995,270:21176-21180.
    [17]Rosenwald IB, Lazaris-Karatzas A, Sonenberg N, Schmidt EV. Elevated levels of cyclin Dl protein in response to increased expression of eukaryotic initiation factor 4E [J]. Mol Cell Biol 1993,13:7358-7363.
    [18]Rousseau D, Kaspar R, Rosenwald I, Gehrke L, Sonenberg N. Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E [J]. Proc Natl Acad Sci U S A 1996,93:1065-1070.
    [19]Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL. eIF4E is a central node of an RNA regulon that governs cellular proliferation [J]. J Cell Biol 2006,175:415-426.
    [20]Lazaris-Karatzas A, Montine KS, Sonenberg N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5'cap [J]. Nature 1990,345:544-547.
    [21]Zimmer SG, DeBenedetti A, Graff JR. Translational control of malignancy: the mRNA cap-binding protein, eIF-4E, as a central regulator of tumor formation, growth, invasion and metastasis [J]. Anticancer Res 2000,20:1343-1351.
    [22]Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C, et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis [J]. Nat Med 2004,10:484-486.
    [23]Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, Kogan S, et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy [J]. Nature 2004,428:332-337.
    [24]Avdulov S, Li S, Michalek V, Burrichter D, Peterson M, Perlman DM, et al. Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells [J]. Cancer Cell 2004,5:553-563.
    [25]Rinker-Schaeffer CW, Graff JR, De Benedetti A, Zimmer SG, Rhoads RE. Decreasing the level of translation initiation factor 4E with antisense RNA causes reversal of ras-mediated transformation and tumorigenesis of cloned rat embryo fibroblasts [J]. IntJCancer 1993,55:841-847.
    [26]Graff JR, Boghaert ER, De Benedetti A, Tudor DL, Zimmer CC, Chan SK, et al. Reduction of translation initiation factor 4E decreases the malignancy of ras-transformed cloned rat embryo fibroblasts [J]. Int J Cancer 1995,60:255-263.
    [27]Nathan CO, Carter P, Liu L, Li BD, Abreo F, Tudor A, et al. Elevated expression of eIF4E and FGF-2 isoforms during vascularization of breast carcinomas [J]. Oncogene 1997,15:1087-1094.
    [28]DeFatta RJ, Nathan CO, De Benedetti A. Antisense RNA to eIF4E suppresses oncogenic properties of a head and neck squamous cell carcinoma cell line [J]. Laryngoscope 2000,110:928-933.
    [29]Graff JR, De Benedetti A, Olson JW, Tamez P, Casero RA, Jr., Zimmer SG. Translation of ODC mRNA and polyamine transport are suppressed in ras-transformed CREF cells by depleting translation initiation factor 4E [J]. Biochem Biophys Res Commun 1997,240:15-20.
    [30]Rousseau D, Gingras AC, Pause A, Sonenberg N. The eIF4E-binding proteins 1 and 2 are negative regulators of cell growth [J]. Oncogene 1996,13:2415-2420.
    [31]Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2 [J]. PLoS Biol 2009,7:e38.
    [32]Yu K, Shi C, Toral-Barza L, Lucas J, Shor B, Kim JE, et al. Beyond rapalog therapy:preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2 [J]. Cancer Res 2010,70:621-631.
    [33]Garcia-Martinez JM, Moran J, Clarke RG, Gray A, Cosulich SC, Chresta CM, et al. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR) [J]. Biochem J 2009,421:29-42.
    [34]Xue Q, Hopkins B, Perruzzi C, Udayakumar D, Sherris D, Benjamin LE. Palomid 529, a novel small-molecule drug, is a TORC1/TORC2 inhibitor that reduces tumor growth, tumor angiogenesis, and vascular permeability [J]. Cancer Res 2008,68:9551-9557.
    [35]Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G [J]. Mol Cell 1999,3:707-716.
    [36]Moerke NJ, Aktas H, Chen H, Cantel S, Reibarkh MY, Fahmy A, et al. Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G [J]. Cell 2007,128:257-267.
    [37]Tamburini J, Green AS, Bardet V, Chapuis N, Park S, Willems L, et al. Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia [J]. Blood 2009,114:1618-1627.
    [38]Graff JR, Konicek BW, Lynch RL, Dumstorf CA, Dowless MS, McNulty AM, et al. eIF4E activation is commonly elevated in advanced human prostate cancers and significantly related to reduced patient survival [J]. Cancer Res 2009,69:3866-3873.
    [39]Graff JR, Konicek BW, Vincent TM, Lynch RL, Monteith D, Weir SN, et al. Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity [J]. J Clin Invest 2007,117:2638-2648.
    [40]Zhang M, Fu W, Prabhu S, Moore JC, Ko J, Kim JW, et al. Inhibition of polysome assembly enhances imatinib activity against chronic myelogenous leukemia and overcomes imatinib resistance [J]. Mol Cell Biol 2008,28:6496-6509.
    [41]Kentsis A, Topisirovic I, Culjkovic B, Shao L, Borden KL. Ribavirin suppresses eIF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap [J]. Proc Natl Acad Sci U S A 2004,101:18105-18110.
    [42]Assouline S, Culjkovic B, Cocolakis E, Rousseau C, Beslu N, Amri A, et al. Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof-of-principle clinical trial with ribavirin [J]. Blood 2009,114:257-260.
    [43]Bitterman PB, Polunovsky VA. Attacking a nexus of the oncogenic circuitry by reversing aberrant eIF4F-mediated translation [J]. Mol Cancer Ther 2012,11:1051-1061.
    [44]Shoemaker RH, Scudiero DA, Melillo G, Currens MJ, Monks AP, Rabow AA, et al. Application of high-throughput, molecular-targeted screening to anticancer drug discovery [J]. Curr Top Med Chem 2002,2:229-246.
    [45]Wang W, Kim SH, El-Deiry WS. Small-molecule modulators of p53 family signaling and antitumor effects in p53-deficient human colon tumor xenografts [J]. Proc Natl Acad Sci USA 2006,103:11003-11008.
    [46]Rapisarda A, Uranchimeg B, Scudiero DA, Selby M, Sausville EA, Shoemaker RH, et al. Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway [J]. Cancer Res 2002,62:4316-4324.
    [47]Wakimoto BT. Beyond the nucleosome:epigenetic aspects of position-effect variegation in Drosophila [J]. Cell 1998,93:321-324.
    [48]Yan C, Boyd DD. Histone H3 acetylation and H3 K4 methylation define distinct chromatin regions permissive for transgene expression [J]. Mol Cell Biol 2006,26:6357-6371.
    [49]Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome [J]. Cell 2007,129:823-837.
    [50]Yan C, Wang H, Aggarwal B, Boyd DD. A novel homologous recombination system to study 92 kDa type IV collagenase transcription demonstrates that the NF-kappaB motif drives the transition from a repressed to an activated state of gene expression [J]. FASEB J 2004,18:540-541.
    [51]Li Y, Fan S, Koo J, Yue P, Chen ZG, Owonikoko TK, et al Elevated expression of eukaryotic translation initiation factor 4E is associated with proliferation, invasion and acquired resistance to erlotinib in lung cancer [J]. Cancer Biol Ther 2012,13:272-280.
    [52]Zhou S, Wang GP, Liu C, Zhou M. Eukaryotic initiation factor 4E (eIF4E) and angiogenesis:prognostic markers for breast cancer [J]. BMC Cancer 2006,6:231.
    [53]Coleman LJ, Peter MB, Teall TJ, Brannan RA, Hanby AM, Honarpisheh H, et al. Combined analysis of eIF4E and 4E-binding protein expression predicts breast cancer survival and estimates eIF4E activity [J]. Br J Cancer 2009,100:1393-1399.
    [54]Pandolfi PP. Transcription therapy for cancer [J]. Oncogene 2001,20:3116-3127.
    [55]Ghosh D, Papavassiliou AG. Transcription factor therapeutics:long-shot or lodestone [J]. Curr Med Chem 2005,12:691-701.
    [56]Melnick A. Predicting the effect of transcription therapy in hematologic malignancies [J]. Leukemia 2005,19:1109-1117.
    [57]Liu R, Hsieh CY, Lam KS. New approaches in identifying drugs to inactivate oncogene products [J]. Semin Cancer Biol 2004,14:13-21.
    [58]Naylor LH. Reporter gene technology:the future looks bright [J]. Biochem Pharmacol 1999,58:749-757.
    [59]Thorne N, Inglese J, Auld DS. Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology [J]. Chem Biol 2010,17:646-657.
    [60]Song H, Wang R, Wang S, Lin J. A low-molecular-weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells [J]. Proc Natl Acad Sci USA 2005,102:4700-4705.
    [61]Nakahara T, Kita A, Yamanaka K, Mori M, Amino N, Takeuchi M, et al. YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts [J]. Cancer Res 2007,67:8014-8021.
    [62]Nair RR, Avila H, Ma X, Wang Z, Lennartz M, Darnay BG, et al. A novel high-throughput screening system identifies a small molecule repressive for matrix metalloproteinase-9 expression [J]. Mol Pharmacol 2008,73:919-929.
    [63]Karimi M, Goldie LC, Ulgiati D, Abraham LJ. Integration site-specific transcriptional reporter gene analysis using Flp recombinase targeted cell lines [J]. Biotechniques 2007,42:217-224.
    [64]Wang H, Ma X, Ren S, Buolamwini JK, Yan C. A small-molecule inhibitor of MDMX activates p53 and induces apoptosis [J]. Mol Cancer Ther 2011,10:69-79.
    [65]Yan C, Boyd DD. Regulation of matrix metalloproteinase gene expression [J]. J Cell Physiol 2007,211:19-26.
    [66]Holm N, Byrnes K, Johnson L, Abreo F, Sehon K, Alley J, et al. A prospective trial on initiation factor 4E (eIF4E) overexpression and cancer recurrence in node-negative breast cancer [J]. Ann Surg Oncol 2008,15:3207-3215.
    [67]Chen CN, Hsieh FJ, Cheng YM, Lee PH, Chang KJ. Expression of eukaryotic initiation factor 4E in gastric adenocarcinoma and its association with clinical outcome [J]. JSurg Oncol 2004,86:22-27.
    [68]Rosenwald IB, Chen JJ, Wang S, Savas L, London IM, Pullman J. Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis [J]. Oncogene 1999,18:2507-2517.
    [69]Salehi Z, Mashayekhi F, Shahosseini F. Significance of eIF4E expression in skin squamous cell carcinoma [J]. Cell Biol Int 2007,31:1400-1404.
    [70]Hiller DJ, Chu Q, Meschonat C, Panu L, Burton G, Li BD. Predictive value of eIF4E reduction after neoadjuvant therapy in breast cancer [J]. J Surg Res 2009,156:265-269.
    [71]Flowers A, Chu QD, Panu L, Meschonat C, Caldito G, Lowery-Nordberg M, et al. Eukaryotic initiation factor 4E overexpression in triple-negative breast cancer predicts a worse outcome [J]. Surgery 2009,146:220-226.
    [72]Rojo F, Najera L, Lirola J, Jimenez J, Guzman M, Sabadell MD, et al. 4E-binding protein 1, a cell signaling hallmark in breast cancer that correlates with pathologic grade and prognosis [J]. Clin Cancer Res 2007,13:81-89.
    [73]Fujita T, Mizukami T, Okawara T, Inoue K, Fujimori M. Identification of a novel inhibitor of triple-negative breast cancer cell growth by screening of a small-molecule library [J]. Breast Cancer 2013.
    [74]Baudino TA, Cleveland JL. The Max network gone mad [J]. Mol Cell Biol 2001,21:691-702.
    [75]Henriksson M, Luscher B. Proteins of the Myc network:essential regulators of cell growth and differentiation [J]. Adv Cancer Res 1996,68:109-182.
    [76]Grandori C, Cowley SM, James LP, Eisenman RN. The Myc/Max/Mad network and the transcriptional control of cell behavior [J]. Annu Rev Cell Dev Biol 2000,16:653-699.
    [77]Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2 [J]. Proc Natl Acad Sci USA 1993,90:3516-3520.
    [78]Sato T, Hanada M, Bodrug S, Irie S, Iwama N, Boise LH, et al. Interactions among members of the Bcl-2 protein family analyzed with a yeast two-hybrid system [J]. Proc Natl Acad Sci U S A 1994,91:9238-9242.
    [79]Zhou P, Qian L, Kozopas KM, Craig RW. Mcl-1, a Bcl-2 family member, delays the death of hematopoietic cells under a variety of apoptosis-inducing conditions [J]. Blood 1997,89:630-643.
    [80]Hirai H, Roussel MF, Kato JY, Ashmun RA, Sherr CJ. Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6 [J]. Mol Cell Biol 1995,15:2672-2681.
    [81]Sherr CJ. Cancer cell cycles [J]. Science 1996,274:1672-1677.
    [82]Reed JC, Reed SI. Survivin' cell-separation anxiety [J]. Nat Cell Biol 1999,1:E199-200.
    [83]Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, et al. Control of apoptosis and mitotic spindle checkpoint by survivin [J]. Nature 1998,396:580-584.
    [84]Li F, Ackermann EJ, Bennett CF, Rothermel AL, Plescia J, Tognin S, et al. Pleiotropic cell-division defects and apoptosis induced by interference with survivin function [J]. Nat Cell Biol 1999,1:461-466.
    [85]Yanagiya A, Suyama E, Adachi H, Svitkin YV, Aza-Blanc P, Imataka H, et al. Translational homeostasis via the mRNA cap-binding protein, eIF4E [J]. Mol Cell 2012,46:847-858.
    [86]Hinnebusch AG. Translational homeostasis via eIF4E and 4E-BP1 [J]. Mol Cell 2012,46:717-719.
    [1]Argon Y, Simen BB. GRP94, an ER chaperone with protein and peptide binding properties [J]. Semin Cell Dev Biol 1999,10:495-505.
    [2]Nicchitta CV. A platform for compartmentalized protein synthesis:protein translation and translocation in the ER [J]. Curr Opin Cell Biol 2002,14:412-416.
    [3]Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade KL. Heat shock proteins come of age:primitive functions acquire new roles in an adaptive world [J]. Immunity 1998,8:657-665.
    [4]Jaattela M. Programmed cell death:many ways for cells to die decently [J]. Ann Med 2002,34:480-488.
    [5]Jaattela M. Escaping cell death:survival proteins in cancer [J]. Exp Cell Res 1999,248:30-43.
    [6]Martin KJ, Kritzman BM, Price LM, Koh B, Kwan CP, Zhang X, et al. Linking gene expression patterns to therapeutic groups in breast cancer [J]. Cancer Res 2000,60:2232-2238.
    [7]Conroy SE, Latchman DS. Do heat shock proteins have a role in breast cancer [J]? Br J Cancer 1996,74:717-721.
    [8]Kawanishi K, Shiozaki H, Doki Y, Sakita I, Inoue M, Yano M, et al. Prognostic significance of heat shock proteins 27 and 70 in patients with squamous cell carcinoma of the esophagus [J]. Cancer 1999,85:1649-1657.
    [9]Jameel A, Skilton RA, Campbell TA, Chander SK, Coombes RC, Luqmani YA. Clinical and biological significance of HSP89 alpha in human breast cancer [J]. Int J Cancer 1992,50:409-415.
    [10]Ferrarini M, Heltai S, Zocchi MR, Rugarli C. Unusual expression and localization of heat-shock proteins in human tumor cells [J]. Int J Cancer 1992,51:613-619.
    [11]Lebeau J, Le Chalony C, Prosperi MT, Goubin G. Constitutive overexpression of a 89 kDa heat shock protein gene in the HBL100 human mammary cell line converted to a tumorigenic phenotype by the EJ/T24 Harvey-ras oncogene [J]. Oncogene 1991,6:1125-1132.
    [12]Craig EA, Weissman JS, Horwich AL. Heat shock proteins and molecular chaperones:mediators of protein conformation and turnover in the cell [J]. Cell 1994,78:365-372.
    [13]Johnson JL, Craig EA. Protein folding in vivo:unraveling complex pathways [J]. Cell 1997,90:201-204.
    [14]Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery [J]. Exp Biol Med (Maywood) 2003,228:111-133.
    [15]Nollen EA, Morimoto RI. Chaperoning signaling pathways:molecular chaperones as stress-sensing 'heat shock' proteins [J]. J Cell Sci 2002,115:2809-2816.
    [16]Neckers L. Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 2002,8:S55-61.
    [17]Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins:essential role for stress proteins in oncogenic transformation [J]. Proc Natl Acad Sci U S A 1994,91:8324-8328.
    [18]Neckers L, Schulte TW, Mimnaugh E. Geldanamycin as a potential anti-cancer agent:its molecular target and biochemical activity [J]. Invest New Drugs 1999,17:361-373.
    [19]Smith DF, Whitesell L, Katsanis E. Molecular chaperones:biology and prospects for pharmacological intervention [J]. Pharmacol Rev 1998,50:493-514.
    [20]Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G. The 90-kDa molecular chaperone family:structure, function, and clinical applications [J]. A comprehensive review. Pharmacol Ther 1998,79:129-168.
    [21]Buchner J. Hsp90 & Co.-a holding for folding [J]. Trends Biochem Sci 1999,24:136-141.
    [22]Young JC, Schneider C, Hartl FU. In vitro evidence that hsp90 contains two independent chaperone sites [J]. FEBS Lett 1997,418:139-143.
    [23]Minami Y, Kawasaki H, Miyata Y, Suzuki K, Yahara I. Analysis of native forms and isoform compositions of the mouse 90-kDa heat shock protein, HSP90 [J]. JBiol Chem 1991,266:10099-10103.
    [24]Chen CF, Chen Y, Dai K, Chen PL, Riley DJ, Lee WH. A new member of the hsp90 family of molecular chaperones interacts with the retinoblastoma protein during mitosis and after heat shock [J]. Mol Cell Biol 1996,16:4691-4699.
    [25]Song HY, Dunbar JD, Zhang YX, Guo D, Donner DB. Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor [J]. JBiol Chem 1995,270:3574-3581.
    [26]Radanyi C, Renoir JM, Sabbah M, Baulieu EE. Chick heat-shock protein of Mr=90,000, free or released from progesterone receptor, is in a dimeric form [J]. JBiol Chem 1989,264:2568-2573.
    [27]Perdew GH, Hord N, Hollenback CE, Welsh MJ. Localization and characterization of the 86-and 84-kDa heat shock proteins in Hepa 1c1c7 cells [J]. Exp Cell Res 1993,209:350-356.
    [28]Garnier C, Lafitte D, Jorgensen TJ, Jensen ON, Briand C, Peyrot V. Phosphorylation and oligomerization states of native pig brain HSP90 studied by mass spectrometry [J]. Eur JBiochem 2001,268:2402-2407.
    [29]Nemoto T, Sato N. Oligomeric forms of the 90-kDa heat shock protein [J]. Biochem J 1998,330 (Pt 2):989-995.
    [30]Iannotti AM, Rabideau DA, Dougherty JJ. Characterization of purified avian 90,000-Da heat shock protein [J]. Arch Biochem Biophys 1988,264:54-60.
    [31]Pearl LH, Prodromou C. Structure, function, and mechanism of the Hsp90 molecular chaperone [J]. Adv Protein Chem 2001,59:157-186.
    [32]Marcu MG, Chadli A, Bouhouche I, Catelli M, Neckers LM. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone [J]. J Biol Chem 2000,275:37181-37186.
    [33]Soti C, Racz A, Csermely P. A Nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket [J]. J Biol Chem 2002,277:7066-7075.
    [34]Garnier C, Lafitte D, Tsvetkov PO, Barbier P, Leclerc-Devin J, Millot JM, et al. Binding of ATP to heat shock protein 90:evidence for an ATP-binding site in the C-terminal domain [J]. J Biol Chem 2002,277:12208-12214.
    [35]Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network [J]. Nat Rev Mol Cell Biol 2001,2:127-137.
    [36]Nagy P, Jenei A, Kirsch AK, Szollosi J, Damjanovich S, Jovin TM. Activation-dependent clustering of the erbB2 receptor tyrosine kinase detected by scanning near-field optical microscopy [J]. J Cell Sci 1999,112 (Pt 11):1733-1741.
    [37]Xu W, Mimnaugh EG, Kim JS, Trepel JB, Neckers LM. Hsp90, not Grp94, regulates the intracellular trafficking and stability of nascent ErbB2 [J]. Cell Stress Chaperones 2002,7:91-96.
    [38]Xu Y, Lindquist S. Heat-shock protein hsp90 governs the activity of pp60v-src kinase [J]. Proc Natl Acad Sci U S A 1993,90:7074-7078.
    [39]An WG, Schulte TW, Neckers LM. The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome [J]. Cell Growth Differ 2000,11:355-360.
    [40]Aligue R, Akhavan-Niak H, Russell P. A role for Hsp90 in cell cycle control: Weel tyrosine kinase activity requires interaction with Hsp90 [J]. EMBO J 1994,13:6099-6106.
    [41]Goes FS, Martin J. Hsp90 chaperone complexes are required for the activity and stability of yeast protein kinases Mikl, Weel and Swel [J]. Eur J Biochem 2001,268:2281-2289.
    [42]Schulte TW, Blagosklonny MV, Ingui C, Neckers L. Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association [J]. JBiol Chem 1995,270:24585-24588.
    [43]Matts RL, Hurst R. Evidence for the association of the heme-regulated eIF-2 alpha kinase with the 90-kDa heat shock protein in rabbit reticulocyte lysate in situ [J]. J Biol Chem 1989,264:15542-15547.
    [44]Minet E, Mottet D, Michel G, Roland I, Raes M, Remaele J, et al. Hypoxia-induced activation of HIF-1:role of HIF-lalpha-Hsp90 interaction [J]. FEBS Lett 1999,460:251-256.
    [45]Hanahan D, Weinberg RA. The hallmarks of cancer [J]. Cell 2000,100:57-70.
    [46]DeBoer C, Meulman PA, Wnuk RJ, Peterson DH. Geldanamycin, a new antibiotic [J]. JAntibiot (Tokyo) 1970,23:442-447.
    [47]Schulte TW, An WG, Neckers LM. Geldanamycin-induced destabilization of Raf-1 involves the proteasome [J]. Biochem Biophys Res Commun 1997,239:655-659.
    [48]Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP. Crystal structure of an Hsp90-geldanamycin complex:targeting of a protein chaperone by an antitumor agent [J]. Cell 1997,89:239-250.
    [49]Supko JG, Hickman RL, Grever MR, Malspeis L. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent [J]. Cancer Chemother Pharmacol 1995,36:305-315.
    [50]Schulte TW, Neckers LM. The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin [J]. Cancer Chemother Pharmacol 1998,42:273-279.
    [51]Brunton VG, Steele G, Lewis AD, Workman P. Geldanamycin-induced cytotoxicity in human colon-cancer cell lines:evidence against the involvement of c-Src or DT-diaphorase [J]. Cancer Chemother Pharmacol 1998,41:417-422.
    [52]Egorin MJ, Rosen DM, Wolff JH, Callery PS, Musser SM, Eiseman JL Metabolism of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) by murine and human hepatic preparations [J]. Cancer Res 1998,58:2385-2396.
    [53]Kelland LR, Sharp SY, Rogers PM, Myers TG, Workman P. DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90 [J]. J Natl Cancer Inst 1999,91:1940-1949.
    [54]Clarke PA, Hostein I, Banerji U, Stefano FD, Maloney A, Walton M, et al. Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17-demethoxygeldanamycin, an inhibitor of the hsp90 molecular chaperone [J]. Oncogene 2000,19:4125-4133.
    [55]Hostein I, Robertson D, DiStefano F, Workman P, Clarke PA. Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis [J]. Cancer Res 2001,61:4003-4009.
    [56]Egorin MJ, Zuhowski EG, Rosen DM, Sentz DL, Covey JM, Eiseman JL. Plasma pharmacokinetics and tissue distribution of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) in CD2F1 micel [J]. Cancer Chemother Pharmacol 2001,47:291-302.
    [57]Grem JL, Morrison G, Guo XD, Agnew E, Takimoto CH, Thomas R, et al. Phase I and pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors [J].J Clin Oncol 2005,23:1885-1893.
    [58]Munster PN, Basso A, Solit D, Norton L, Rosen N. Modulation of Hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB-and schedule-dependent manner [J]. See:E. A. Sausville, Combining cytotoxics and 17-allylamino,17-demethoxygeldanamycin: sequence and tumor biology matters, Clin. Cancer Res.,7:2155-2158,2001. Clin Cancer Res 2001,7:2228-2236.
    [59]Kwon HJ, Yoshida M, Fukui Y, Horinouchi S, Beppu T. Potent and specific inhibition of p60v-src protein kinase both in vivo and in vitro by radicicol [J]. Cancer Res 1992,52:6926-6930.
    [60]Roe SM, Prodromou C, O'Brien R, Ladbury JE, Piper PW, Pearl LH. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin [J]. J Med Chem 1999,42:260-266.
    [61]Agatsuma T, Ogawa H, Akasaka K, Asai A, Yamashita Y, Mizukami T, et al. Halohydrin and oxime derivatives of radicicol:synthesis and antitumor activities [J]. Bioorg Med Chem 2002,10:3445-3454.
    [62]Hur E, Kim HH, Choi SM, Kim JH, Yim S, Kwon HJ, et al. Reduction of hypoxia-induced transcription through the repression of hypoxia-inducible factor-lalpha/aryl hydrocarbon receptor nuclear translocator DNA binding by the 90-kDa heat-shock protein inhibitor radicicol [J]. Mol Pharmacol 2002,62:975-982.
    [63]Fuertes MA, Castilla J, Alonso C, Perez JM. Novel concepts in the development of platinum antitumor drugs [J]. Curr Med Chem Anticancer Agents 2002,2:539-551.
    [64]Jamieson ER, Lippard SJ. Structure, Recognition, and Processing of Cisplatin-DNA Adducts [J]. Chem Rev 1999,99:2467-2498.
    [65]Wong E, Giandomenico CM. Current status of platinum-based antitumor drugs [J]. Chem Rev 1999,99:2451-2466.
    [66]Marcu MG, Schulte TW, Neckers L. Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins [J]. J Natl Cancer Inst 2000,92:242-248.
    [67]Chiosis G, Timaul MN, Lucas B, Munster PN, Zheng FF, Sepp-Lorenzino L, et al. A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells [J]. Chem Biol 2001,8:289-299.
    [68]Chiosis G, Lucas B, Shtil A, Huezo H, Rosen N. Development of a purine-scaffold novel class of Hsp90 binders that inhibit the proliferation of cancer cells and induce the degradation of Her2 tyrosine kinase [J]. Bioorg Med Chem 2002,10:3555-3564.
    [69]Byrd CA, Bornmann W, Erdjument-Bromage H, Tempst P, Pavletich N, Rosen N, et al. Heat shock protein 90 mediates macrophage activation by Taxol and bacterial lipopolysaccharide [J]. Proc Natl Acad Sci U S A 1999,96:5645-5650.
    [70]Torres K, Horwitz SB. Mechanisms of Taxol-induced cell death are concentration dependent [J]. Cancer Res 1998,58:3620-3626.
    [71]Zheng FF, Kuduk SD, Chiosis G, Munster PN, Sepp-Lorenzino L, Danishefsky SJ, et al. Identification of a geldanamycin dimer that induces the selective degradation of HER-family tyrosine kinases [J]. Cancer Res 2000,60:2090-2094.
    [72]Grammatikakis N, Lin JH, Grammatikakis A, Tsichlis PN, Cochran BH. p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function [J]. Mol Cell Biol 1999,19:1661-1672.
    [73]Neckers L, Workman P. Hsp90 molecular chaperone inhibitors:are we there yet [J]? Clin Cancer Res 2012,18:64-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700