桑树内生拮抗细菌Burkholderia cepacia Lu10-1的抑菌机制及对家蚕病害的防治效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕细菌病和真菌病每年都给蚕桑生产造成严重的经济损失,现有药物虽有较好的防治效果,但也存在一些缺点,如长期使用能够使病原菌抗药性增强,污染环境,有些药物甚至对人有害等。为克服现有药物的诸多限制性问题,开发新型微生物药剂作为蚕药是一个重要的研究方向。
     本实验室从桑树健康叶片中分离到一株内生菌Burkholderia cepacia Lu10-1,该菌株对桑炭疽病菌(Colletotrichum morifolium)、桑粘格孢菌(Septogloeum mori)、杨树水泡溃疡病菌(Dothiorella gregaria)、金黄色葡萄球菌(Staphylococcus aureus)以及苏芸金芽孢杆菌(Bacillus thuringis)等多种动植物病原菌具有较强的拮抗作用,且能够进入桑树体内稳定定殖,呈现出良好的开发前景。
     本研究通过形态观察法和药理实验法两种方法探讨Burkholderia cepacia Lu10-1菌株对家蚕黑胸败血菌(Bacillus bombysepticus)和白僵菌(Beauveria bassiana)的抑菌机制,研究该菌株发酵上清液对家蚕黑胸败血病和白僵病的防治效果,并探讨其对家蚕生理及茧质的影响。主要研究结果如下:
     1测定了Lu10-1菌株抗菌粗提物对家蚕黑胸败血菌的拮抗效果和最小抑杀菌浓度。结果表明:抗菌粗提物对黑胸败血菌具有较强的拮抗作用,其抑菌圈直径为18.20 mm;最小抑菌浓度(MIC)和杀菌浓度(MBC)分别为1.56 mg/mL和3.13 mg/mL。
     2采用分光光度法、电导率法和SDS-PAGE分析等方法测定了Lu10-1菌株抗菌粗提物对黑胸败血菌生长、胞外溶液电导率、胞内外总糖、胞内外蛋白质的影响。结果表明:经抗菌粗提物处理后,黑胸败血菌未出现对数生长期、细胞膜的渗透性发生改变、胞内糖和蛋白质发生渗漏、胞内分子量较大的蛋白出现降解现象。
     3采用扫描电镜和透射电镜分别观察了Lu10-1菌株抗菌粗提物对黑胸败血菌菌体形态和结构的破坏情况。结果表明:抗菌粗提物能够使黑胸败血菌菌体破裂,细胞内容物流出,形成空腔,最后消融。表明抗菌粗提物的抑菌机制为破坏黑胸败血菌的细胞壁或细胞膜。
     4测定了Lu10-1菌株抗菌粗提物对家蚕白僵菌的拮抗效果、对孢子萌发和菌丝的抑制作用。结果表明:抗菌粗提物对白僵菌具有较强的拮抗作用,其抑菌圈直径为17.00 mm;抗菌粗提物可以有效的抑制白僵菌孢子的萌发和菌丝的生长。
     5采用光学显微镜、扫描电镜和透射电镜分别观察了Lu10-1菌株抗菌粗提物对白僵菌孢子、菌丝的形态和结构的破坏情况。光学显微镜观察结果表明:抗菌粗提物作用于孢子后,孢子出现聚集、内容物分布不均、变形、空腔及胞壁断裂等异常,作用于菌丝后,菌丝出现变粗、扭曲、皱褶、膨大、消融等现象;电镜观察结果表明:抗菌粗提物能够使白僵菌孢子和菌丝的细胞质浓缩,质壁发生分离,细胞壁变薄、破裂,内容物流出,形成空腔。说明抗菌粗提物的抑菌机制为破坏白僵菌的细胞壁或细胞膜。
     6测定了Lu10-1菌株发酵上清液对家蚕黑胸败血病和白僵病的防治效果、及对家蚕生长发育和茧质的影响。结果表明:发酵上清液对黑胸败血病和白僵病具有较好的防治效果,对黑胸败血病的预防和治疗有效率分别为41.19%和24.00%,对白僵病的预防和治疗有效率分别为55.88%和34.00%;发酵上清液对家蚕的生长发育和茧质无不良影响。
The bacteriosis and fungous disease of silkworm caused heavy economic losses every year. The drugs in hand have better control efficiency, but they have some disadvantages, for instance long-term using could reinforced drug resistance of pathogenic bacteria; impacted on the environment; some drugs had harmful to human body. To overcome the limiting problems of the drugs, developing new type microbial preparation as silkworm drugs is a key research direction.
     Burkholderia cepacia Lu10-1 is an antagonistic bacteria, isolated from the mulberry leaves, it was had strong antagonistic activity to the pathogenic bacteria of many animals and plants, for instance Colletotrichum morifolium, Septogloeum mori, Dothiorella gregaria, Staphylococcus aureus and Bacillus thuringis, and the strain Lu10-1 could stably colonize in the mulberry body, has a bright future.
     This research through modality observation and pharmacological experimental methods, analyzed its antagonistic activity to the Bacillus bombysepticus and Beauveria bassiana of silkworm, and the control efficiency of the supernatant of strain Lu10-1 zymotic fluid to septicemia and white muscardine, and investigated the effect of the physiological functions and the cocoon quality of silkworm by the supernatant. The main results were showed as the followings.
     1 We measured the inhibitory effect, minimal inhibitory concentration (MIC), and minimal bacteriocidal concentration(MBC) of antibacterial crude extract to the Bacillus bombysepticus. The results indicated that the antibacterial crude extract had strong antagonistic activity against the Bacillus bombysepticus. Its diameter of inhibition zone reached 18.20 mm. The MIC and MBC of antibacterial crude extract were 1.56 mg/mL and 3.13 mg/mL.
     2 Using spectrophotometric method, conductimetric method, and SDS- PAGE method measured the effect of the antibacterial crude extract to the growth, extracellular conductivity, intracellular and extracellular saccharide and proteins of the Bacillus bombysepticus. The results showed that after being treated by antibacterial crude extract, the Bacillus bombysepticus never appeared logarithmic phase, cell membrane permeability had changed, intracellular saccharide and protein leaked from the cell, macromolecular protein of intracellular degraded.
     3 The modality failure of the Bacillus bombysepticus cell was observed by electron microscope. The results showed that the antibacterial crude extract of strain Lu10-1 made the modality of the Bacillus bombysepticus damaged, inner substance outflowed, formed cavity and ablation of the cells. That just shows the antibacterial crude extract of strain Lu10-1 has apparent inhibitory effect to the Bacillus bombysepticus by destroying its cell wall and membrane.
     4 We measured the inhibitory effect of the antibacterial crude extract of strain Lu10-1 to the spore germination and growth of Beauveria bassiana. The results showed that the antibacterial crude extract had strong antagonistic activity against the Beauveria bassiana. Its diameter of inhibition zone reached 17.00 mm; and its also inhibit the growth and spore germination of Beauveria bassiana.
     5 The modality failure of the Beauveria bassiana cell was observed by electron microscope. The observation of optical microscope indicated after being treated with the antibacterial crude extract, the spore of Beauveria bassiana became collective and had such abnormalities as uneven distribution of cellular contents, deformation of spores, disappear of cellular contents and disrupted cellwall; and the mycelia of Beauveria bassiana became thicker, retorted, corrugated, and inflated with inner substance outflowed and ablation of the cells. The observation of electron microscope indicated the antibacterial crude extract could make the spore and mycelia of cytoplasm concentrated, plasmolysis, cellwall became attenuation, damaged, inner substance outflowed and formed cavity. That just shows the antibacterial crude extract has apparent inhibitory effect to the Beauveria bassiana by destroying its cell wall and membrane.
     6 We measured the control effect of the supernatant of strain Lu10-1 zymotic fluid to the septicemia and white muscardine of silkworm, and the effect of the physiological functions and the cocoon quality of silkworm. The results showed the supernatant of strain Lu10-1 had better control effect to the septicemia and white muscardine of silkworm, the supernatant of strain Lu10-1 achieved 41.19% control efficiency and 24.00% prophylactic effect on silkworm septicemia respectively; the prophylactic and treatment effective rate of supernatant to white muscardine respectively reached 55.88% and 34.00%; while no harmful effect was observed on the physiological functions and cocoon quality of the silkworm.
引文
[1]查传勇,董法宝,牟志美,等.洋葱伯克霍尔德氏菌Lu10-1产生抗菌活性物质的发酵培养基和发酵条件优化试验[J].蚕业科学, 2009, 35(2): 223-229
    [2]蔡学清,林彩萍,何红.内生枯草芽孢杆菌BS-2对水稻苗生长的效应[J].福建农林大学学报(自然科学版), 2005, 34(2): 189-194
    [3]常慧萍,祝凌云,唐欣昀,等.小麦根际固氮菌、解磷菌及解钾菌的互作效应[J].中国土壤与肥料, 2008, 4: 57-59
    [4]陈红,李平桂,王世全,等.抑制多种植物病原菌的几丁质酶产生菌X2-23的鉴定[J].四川大学学报, 2002, 39: 45-50
    [5]程惠民,金洪钧.生物降解三氯乙烯的研究及其进展[J].上海环境科学, 1997, 16 (11): 20-31
    [6]董法宝,高绘菊,牟志美,等.桑树内生拮抗细菌Lu10-1菌株对家蚕白僵病的防治效果及抑菌作用[J].蚕业科学, 2009, 35(4): 803-811
    [7]高月里,牟善好,韩霞.秋蚕僵病巧防治[J].山东蚕业, 2007, 4: 30-31
    [8]高增贵,庄敬华,陈捷,等.玉米根系内生细菌种群及动态分析[J].应用生态学报, 2004, 15(8): 1345-1347
    [9]顾觉奋.抗生素[M].上海科学技术出版社, 2001
    [10]何红,蔡学清,洪永聪,等.辣椒内生细菌的分离以及拮抗菌的筛选[J].中国生物防治, 2002, 18(4): 171-175
    [11]胡萌.植物内生细菌研究进展[J].山东农业大学学报(自然科学版), 2008, 39 (1): 148-151
    [12]黄琴,马国霞,周绪霞,等.乳链菌肽的抑菌机制[J].中国食品学报, 2007, 2: 128-133
    [13]金伟.家蚕病理学[M].中国农业出版社, 2001
    [14]刘涛,刘正学,张长乾,等.苯酚高效降解菌L68菌株的分离及分类鉴定[J].山东大学学报(理学版), 2002, 37 (4): 369-372
    [15]刘志俊,段渝峰.生物农药新概念新发展[J].农药科学与管理, 2003, 24(7): 28-32
    [16]陆玉峰,柏亚罗. Strobilurin类杀菌剂的作用机制和化学合成[J].现代农药, 2003, 2(2): 29-33
    [17]罗曼,蒋立科,戴向荣.柠檬醛损伤黄曲霉线粒体生化机理的研究[J].微生物学报, 2002, 4: 226-231
    [18]罗远婵,谢关林.伯克氏细菌是我们的敌人还是朋友[J].微生物学报, 2005, 45: 647-652
    [19]马忠华,叶钟音.嘧啶胺类杀菌剂的作用机制[J].农药科学与管理, 1996, l: 30-32
    [20]牟志美,路国兵,冀宪领,等.桑树内生拮抗细菌Burkholderia cepacia Lu10-1的分离鉴定及其内生定殖[J].微生物学报, 2008 , 48(5): 623-630
    [21]石瑞常,李云芝,刘文光.蚕病防治药物的研究现状及建议[J].山东蚕业, 2008, 4: 16-17
    [22]孙延忠,曾洪梅,李国庆.抗生素对微生物作用的研究[J].微生物学杂志, 2003, 23(3): 44-47
    [23]唐立,陈红.警惕日用品中添加抗菌物质给我们生活带来的影响—干扰正常菌群[J].中国微生态学杂志, 2002, 14(3): 179-180
    [24]王万能.烟草内生细菌118防治黑胫病的机理研究[J].西南农业大学学报, 2003, 25(1): 28-31
    [25]王彦文,牟志美,李卫国,等.新型蚕药“超微灵”的研究[J].河北林果研究, 2000, 15(4): 363-366
    [26]魏东盛,陈云芳,刘大群.芽孢杆菌B21菌株及其发酵液对番茄灰霉菌C31的影响[J].河北农业大学学报, 2002, 04: 73-79
    [27]徐铮,曹永兵,姜远英.麦角甾醇生物合成途径中的抗真菌药作用靶酶[J].国外医药抗生素分册, 2001, 22(5): 193-197
    [28]杨海莲,孙晓璐,宋未.植物根际促生细菌和内生细菌的诱导抗病性的研究进展[J].植物病理学, 2000, 30(2): 106-110
    [29]易有金,罗宽,刘仁明.内生细菌在植物病害生物防治中的作用[J].核农学报, 2007, 21(5): 474-477
    [30]于晓庆,郗丽君,刘永光,等.洋葱伯克霍尔德氏菌株Lyc2的鉴定及对棉苗的防病促生作用[J].植物病理学报, 2007, 37 (4): 426-432
    [31]张立新,谢关林,楼妙苗.洋葱伯克氏菌作为植物病害生防菌的研究进展及其风险评价[J].中国生物防治, 2006, 22(4): 260-264
    [32]张致平.微生物药物学[M].化学工业出版社, 2004
    [33]郑维,权春善,范圣第.产生多种抗真菌活性物质菌种的筛选分离和鉴定[J].大连民族学院学报, 2004, 6(5): 37-42
    [34]中华人民共和国农业部. NY/T 1156.1-2006农药室内生物试验测定准则-杀菌剂[S].中国农业大学出版社, 2006
    [35]周垂钦,李云芝,李树贞,等.新型蚕药克红素的研究和应用[J].山东农业科学, 1993 (3): 46-47
    [36]周垂钦,梁明芝,李云芝,等.蚕药克僵一号和克氯素的研究[J].蚕业科学, 1990, 16(3): 135-139
    [37] Agudi A, Mahenthiralingam E, Barchitta M, et al. Burkholderia cepacia complex infection in Italian patients with cystic fibrosis: prevalence, epidemiology, and genomovar status[J]. Journal of Clinical Microbiology, 2001, 39(8): 2891-2896
    [38] Azevedo J L, Walter M J, Jose O P, et al. Endophytic microorganisms: a review on insect control and recent advances on tropical plants[J]. Electronic Journal of Biotechnology, 2000, 3(1): 40-65
    [39] Banic S, Lunder M. Additive effect of the combination of griseofulvin and ketoconazole against Microsporum canisin vitro [J]. Mycoses, 1989, 32(9): 47-489
    [40] Cartwright D K, Benson D M. Pseudomonas cepacia strain 5·5B and method of controlling Rhizoctonia solani[J]. U.S.Patent, 1994,5: 630-633
    [41] Charles W Bacon, Ida E Yates, Dorothy M Hinton, et al. Biological control of Fusarium boniliforme in maize[J]. Environmental Health Perspectives, 2001, 109(2): 325–332
    [42] Chin-A-Woeng T F C, Bloemberg G V, Lugtenbe B J J. Phenazines and their role in biocontrol by Pseudommomas[J]. New Phytologist, 2003, 157: 503-523
    [43] Coenye T, Vandamme P, Govan J R W, et al. Taxonomy and identification of the Burkholderia cepacia complex[J]. Journal of Clinical Microbiology, 2001, 39: 3427-3436
    [44] Corbell N, Loper J E. A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5[J]. J Bacteriology, 1995, 177(21): 6230-6236
    [45] De Costa D M, Erabadupitiya H R U T. An integrated method to control postharvestdiseases of banana using a member of the Burkholderia cepacia complex[J]. Postharvest Biology and Technology, 2005, 36: 31-39
    [46] Fallik K E, Sarig S, Okon Y. Morphology and physiology of plant roots associated with Azospirillum[J]. Soil Biol Biochem, 1994, 21: 77-85
    [47] Huang J. Ultrastructure of bacterial penetration in plants[J]. Phytopathol, 1986, 24: 141-157
    [48] Jiang C Y, Sheng X F, Qian M, et al. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal- polluted soil[J]. Chemosphere, 2008, 72: 157-164
    [49] Kleopper J W, Schipper B R, Bakker P A H M. Proposed elimination of the term endorhizosphere[J]. Phytopathol, 1992, 82: 726-727
    [50] Lacy D E, Spencer D A, Goldstein A, et al. Chronic granulomatous disease presenting in childhood with Pseudomonas cepacia septicaemia[J]. J Infect, 1993, 27: 301-304
    [51] Lata H, Li X C, Silva B, et al. Identification of IAA-producing endophytic bacteria from micropropagated Echinacea plants using 16S rRNA sequencing[J]. Plant Cell, Tissue and Organ Culture, 2006, 85(3): 353-359
    [52] Lee J Y, Moon S S, Hwang B K. Isolation and in vitroandin vivo activity against Phytophthora capsici and Colletotrichum orbiculare of phenazine-1-carboxylic acid from Pseudomonas aeruginosa strain GC-B26[J]. Pest Manag Sci, 2003, 59(8): 872-882
    [53] Ligon J M, Hill D S, Hammer P E, et al. Natural products with antifungal activity from Pseudomonas biocontrol bacteria[J]. Pest Management Science, 2000, 56: 688-695
    [54] Mahenthiralingam E, Urban T A, Goldberg J B. The multifarious, multireplicon Burkholderia cepacia complex[J]. Nat Rev Microbiol, 2005, 3(2): 144-156
    [55] Malik K A , Zafar Y, Mehnaz S, et al. Use of 15N isotope dilution for quantification of N2 fixation associated with the roots of kallar grass (Leptochloafusca)[J]. Biol. Fertil. Soil, 1987, 4: 103-108
    [56] Malik K A, Bilal R, Samina Mehnaz, et al. Association of nitrogen-fixing, plant growth promoting rhizobacteria(PGPR) with kallar grass and rice[J]. Plant Soil, 1997, 194: 37-44
    [57] Michael D, Adjei, Yoshiyuki Ohta. Isolation and characterization of a yanide utilizing Burkholderia cepacia strain[J]. World Journal of Microbiology and Biotechnology. 1999, 15: 699-704
    [58] Omar 1, O'Neill TM, Rossall S. Biological control of fusarium crown and root rot of tomato with antagonistic bacteria and integrated control when combined with the fungicide carbendazim[J]. Plant Pathology, 2006, 55: 92-99
    [59] Parke J L, Gurian-schennan D. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains[J]. Annual Review of Phytopathology, 2001, 39: 225-258
    [60] Petrini O. Fungfl endophytes of tree leaves. In: Andrews J H. Hirano S S. eds Microbial ecology of leaves[C]. NewYork: Springer-Verlag, 1991, 179-197
    [61] Schnider U, Keel C, Blumer C, et al. Amplification of the house keeping sigma factor in Pseudomonas fluorescens CHAO enhances antibiotic production and improves biocontrol abilities[J]. J Bacteriology, 1995, 177(18): 5387-5392
    [62] Selosse M A, Baudoin E, Vanden P. Symbiotic microorganisms, a key for ecological success and protection of plants[J]. Comptes Rendus Biologies, 2004, 327: 639-648
    [63] Souza J T. Distribution, diversity, and activity of antibiotic producing Pseudomonas spp. PhD thesis[M]. Wageningen University, The Netherlands. 2002
    [64] Sturz A V, Christie B R, Norwak J. Bacterial endophytes: potential role in developing sustainable systems of crop production[J]. Critical Reviews in Plant Sciences, 2000, 19(1): 1-30
    [65] Sturz A V, Christie B R, Matheson B G, et a1. Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth[J]. Biol Fertil Soils, 1997, 25: 13-19
    [66] Sugiyama M, Mochizuki H, Nimi O. Mechanism of protection of protein synthesis against streptomycin inhibition in a producing strain[J]. J Antibiot, 1981, 34(9): 1183-1188
    [67] Tanaka N. Studies on the mechanism of action of antibiotics[J]. Nippon Saikingaku Zasshi, 1987, 42(5): 707-716
    [68] Thomashow L S, Weller D M. Role of a phenazine antibiotic from Pseudomonas fluorescensin biological control of Gaeumannomyces graminisvar tritici[J]. J Bacteriology, 1988, 170(8): 3499-3508
    [69] Van Perr R, Niemann G J, Schipper B. Induced resistance and phytoalexin accunulation in biological control of fusarium wilt of camation by Pseudomonas sp. strain WCS417[J]. Phytopathology, 1991, 81: 728-734
    [70] Wilson D. Endophyte 2 the evolution of aterm, and clarification of its use and definition[J]. Oikos, 1995, 73: 274-276
    [71] Zinniel D K, Pat L, Harris N B, et al. Isolation and characterization of endophytic colonizing bacteria from crops and prairie plants[J]. Appl Microbiol, 2002, 68(5): 2198-2208

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700