根瘤菌接种对豌豆/玉米间作体系的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
接种适宜根瘤菌可提高共生固氮的效果,把豆科作物纳入间混套作体系的原因之一是为了充分发挥共生固氮对作物氮素营养的改善作用。但目前,豆科/禾本科复合体系根瘤菌接种的研究较少。本文采用盆栽试验研究了单作及复合体系中接种(不接种、接种XC3.1、接种ACCC16101)及施氮量(不施氮、施氮0.3gN/kg土)对豌豆、玉米生长及其氮素营养状况和根际微生物数量的影响。主要研究结果如下:
     (1)氮素影响豌豆、玉米根际微生物的数量,豌豆根际微生物数量高于玉米,玉米根际的微生物数量对氮素供应的敏感性大于豌豆。施氮显著增加了玉米根际的细菌、真菌、放线菌数量,根际细菌、真菌、放线菌数量以间作条件下施氮处理最多,单作条件下不施氮处理最少,且单作条件下施氮后根际微生物数量的增幅大于间作。豌豆根际的细菌、真菌、放线菌数量的变化对氮素的敏感性明显小于玉米,仅根际放线菌数量在单作时受施氮的影响而显著增加。
     (2)种植模式影响豌豆、玉米根际微生物的数量,间作显著增加了两种作物根际细菌、真菌和放线菌数量,对微生物增殖的促进作用呈现玉米的间作效应大于豌豆的趋势;间作效应随氮肥用量不同而异,豌豆和玉米在不施氮条件下间作对根际细菌、放线菌、真菌的增殖效应更加明显;豌豆间作对根际微生物的影响在两个氮水平间无显著差异,玉米在不施氮水平下的间作效应大于施氮,也显著高于豌豆在不施氮条件下的间作效应;总体间作效应呈现不施氮>施氮的趋势。
     (3)接种根瘤菌影响豌豆、玉米根际微生物的数量,接种对玉米根际微生物数量的影响大于豌豆;对微生物增殖的促进作用XC3.1>ACCC16101,间作条件下的接种效应大于单作。本试验条件下,施氮与否,接种均显著影响了豌豆和玉米的根际细菌、放线菌数量,但真菌数量仅在施氮条件下受接种水平的影响而显著增加;接种ACCC16101和XC3.1均显著增加了玉米和豌豆根际细菌的数量:豌豆根际放线菌的数量仅受接种XC3.1的影响而显著增加,玉米根际的放线菌数量在接种ACCC16101和XC3.1的条件下都显著高于未接种处理;且菌株之间也存在差异,总体呈现XC3.1>ACCC16101的趋势。
     (4)施氮影响结瘤及共生固氮的效果,XC3.1对豌豆氮阻遏的敏感性低于ACCC16101。较高的施氮量对侵染结瘤具有一定的抑制效果,但还受根瘤菌自身的适应性与抗逆性的影响。
     (5)种植模式影响结瘤及共生体固氮的效果,复合体系中玉米、豌豆的氮素营养状况均优于相应的单作。复合体系中,豌豆和玉米地上部分的氮含量分别大于相应的单作,未接种条件下间作使豌豆的含氮量平均增加18.2%,玉米以接种根瘤菌XC3.1处理的增幅最大,平均增加25.8%。豌豆/玉米体系中,玉米的竞争力较强,接种XC3.1不但加强了复合群体中玉米的竞争能力,而且豌豆对玉米的竞争抵抗力也明显提高。
     (6)接种水平影响豌豆—根瘤菌共生体系的固氮效果,接种XC3.1对豌豆有效结瘤的促进效果优于ACCC16101.复合体系豌豆的有效结瘤数量和根瘤鲜重,以及豌豆的地上部分含氮量和生物量均呈现XC3.1>ACCC16101,与之间作的玉米的地上部分含氮量及生物量亦呈现XC3.1>ACCC16101的趋势。接种菌株XC3.1,豌豆的结瘤、固氮效果均显著优于未接种的处理;接种ACCC16101对豌豆有效结瘤状况及其含氮量的影响因氮素的供应水平、种植模式不同而存在差异;XC3.1对共生固氮的促进作用具有广泛的适应性。复合体系土壤含氮量和植株氮素积累量因菌株而异,均呈现XC3.1>ACCC16101的趋势,间作时每盆的氮素累积量也显著高于单作。
     (7)不施氮条件下接种根瘤菌XC3.1显著增加了豌豆、玉米的生物量及豌豆的籽粒产量;施氮显著抑制了接种的促生效应。
Inoculating appropriate rhizobium can increase the effect of symbiotic nitrogen fixation. One reason that incorporating leguminous crops into intercropping systems is to exptoit the rule of symbiotic nitrogen fixation on improvement N-nutrition of crop. But now, rhizobium inoculation in legume/cereal system is seldom studied. Pot experiment was used to study the rhizobium inoculation (Non-Inoculation, Inoculating XC3.1, Inoculating ACCC16101) and nitrogen application (Non-N,0.3gN/kg soil) on pea/maize system. The major results are as follows:
     (1) Nitrogen affected the number of rhizosphere microorganism in maize and peas, the number of rhizosphere microorganisms in pea is more than that of maize, the sensitivity of maize's rhizosphere microbial to nitrogen supply was higher than that of pea's. Nitrogen treatment significantly increased maize rhizosphere bacteria, fungi and actinomycetes, the quantity of rhizosphere microorganisms was highest in intercropping with N fereilization and lowest in mono-cropping with no N treatment, and the amplification of rhizospheric microorganism was higher in mono-cropping than that in intercropping when nitrogen was supplied. The sensitivity of the number of bacteria, fungi and actinomycetes to nitrogen in pea rhizosphere was significantly lower than that in maize, only the quantity of rhizosphere actinomycetes was increased in mono-cropping with nitrogen supply.
     (2) Cropping patterns affected the amount of rhizosphere microorganisms. Intercropping significantly increased the amount of rhizosphere bacteria, fungus and actinomyces of the two crops, and the intercropping promotion of maize was larger than that of pea. The effect of intercropping on microorganism amount changed with N level, and the multiplication of bacteria, fungus and actinomyces resulted from intercropping was more obvious under non-N condition.
     (3) Nodule bacteria inoculation affected the amount of rhizosphere microorganisms of pea and maize, the promotion was XC3.1>ACCC16101. Inoculation ACCC16101 and XC3.1 significantly increased the amount of rhizosphere bacteria of maize and pea; the amount of rhizosphere actinomyces of pea significantly increased only by inoculating XC3.1. Maize's actinomyces was significantly increased by inoculation ACCC16101 and XC3.1. Inoculated XC3.1 resulted higher increase of microorganism amount than that of ACCC16101.
     (4) Nitrogen application affected nodulation and symbiotic nitrogen fixation. XC3.1 had higher N fixiation under higher N level than ACCC16101. Higher nitrogen fertilization inhibited nodule bacteria infection, the ability of infection and N fixiation were also affected by bucteria's adaptability and stress resistance.
     (5) Planting patterns affected nodulation and symbiotic nitrogen fixation, nitrogen nutrition of maize and peas in intercropping was superior to that in mono-cropping. Inoculation XC3.1 not only strengthened competition of intercropped maize, but also increased the resistance of pea to maize's competition.
     (6) Nodule bacteria inoculation rates affected nodulation and nitrogen-fixiation, the promotion of XC3.1 was better than that of ACCC16101. Pea's nodulation character, N nutrition and dry matter accumulation of pea and intercropped maize were better with XC3.1 treatment than that with ACCC16101. ACCC16101's effects on nodulation and nitrogen nutrition were affected by nitrogen supply level and cropping patterns.
     (7) Inoculation XC3.1 under non-N significantly increased biomass of pea and maize, so did the grain yield of pea. Nitrogen application significantly inhibited the promoting effects on pea and maize growth.
引文
[1]陈文新,李季伦,朱兆良,等.建议利用合理的农作物种植体系减少化肥污染[C].陈文新主编.陈文新论文集.北京:中国农业大学出版社,2006,9:1~2.
    [2]朱兆良.合理使用化肥充分利用有机肥发展环境友好的施肥体系[J].中国科学院院刊,2003,18(2):89~93.
    [3]陈文新,李季伦,朱兆良,等.发挥豆科植物——根瘤菌共生固氮作用——从源头控制滥施氮肥造成的面源污染[J].科学新闻,2006,24(19):4~5.
    [4]郐士鹏.我国微生物肥料的现状及其发展趋势[J].现代化农业,2005,11(9):15~17.
    [5]吴海燕,孙淑荣,刘春光,等.“白色农业(微生物农业)”与农业可持续发展[J].微生物学杂志,2006,23(1):89~92.
    [6]张夫道.正确认识现代农业中的有机肥料问题[J].农资科技,2003,2(5):8~10.
    [7]Raivio TL, Silhavy TJ. Periplasmic stress and ECF sigma factors[J]. Annu Rev Microbiol,2001,55: 591~624.
    [8]Missiakas D, Raina S. The extracytoplasmic function sigma factors:role and regulation[J]. Molecular Microbiol,1998,28(6):1059~1066.
    [9]吴巍.科学施肥技术[M].科学出版社,1998,5:81~94.
    [10]张宏,张桂芝,孙淑荣,等.吉林省土壤中大豆根瘤菌的共生特性、固氮量、血清型工作总结[J].大豆科学,2007,11.
    [11]葛诚.微生物肥料生产应用基础[M].中国农业科技出版社,2000,9:59~138.
    [12]曾昭海,隋新华,胡跃高,等.紫花苜蓿—根瘤菌高效共生体筛选及其田间作用效果研究[C].中国草学会.第二届中国苜蓿大会论文集,2003:12~14.
    [13]T.A Lie. Symbiotic specialization in pea plants:the requirement of specific Rhizobium strains for peas[J]. Afghanistan Annals of Applied Biology,1978,88:462~465.
    [14]何庆元,胡艳,玉永雄.生态环境对根瘤菌竟争结瘤影响的研究进展[J].大豆科学,2003,23(1):65~70.
    [15]李友国,周俊初.影响根瘤菌共生固氮效率的主要因素及遗传改造[J].微生物学通报,2002,29(6):86~89.
    [16]马晓彤,刘惠琴,宁国赞.我国根瘤菌与首楷共生固氮优良组合研究进展及前景[A].中国草学会,第二届中国苜蓿大会论文集[C].2003:58~60.
    [17]李新民,谷思玉,窦新田,等.不同土壤大豆接种根瘤菌剂反应的研究[J].黑龙江农业科学,1998,4:1~5.
    [18]Scupham A J, Bosworth A H, Ellis W R, et al. Inoculation with Sinorhizobium meliloti RMBPC-2 increases alfalfa yield compared with inoculation with a non-engineered wild-type strain[J]. Appl. Environ. Microbiol,1996,62:4260~4262.
    [19]Robleto EA., K Kmiecik, ES.Oplinger, et al. Trifolitoxin Production Increases Nodulation Competitive-ness of Rhizobium etli CE3 under Agricultural Conditions[J]. Appl. Environ. Microbiol,1998,64(7): 2630~2633.
    [20]Robleto E.A., Scupham A.J., Triplett E.W. Trifolitoxin production in Rhizobium etli strain CE3 increase competitiveness for rhizosphere growth and root nodulation of Phaseolus vulgaris in soil[J]. Mol. Plant Microbe Interact,1997,10:228~233.
    [21]Hashem F M, AngIeJ S. Rhizobiophage effects on Bradyrhizobium japonicum, nodulation and soybean growth[J]. Soil Biol Biochem.,1988,20:69~73.
    [22]Angle J S, Pugashetti B K, Wagner G H. Fungal effects on Rhizobium japonicum soybean symbiosis. Agron[J].1981,73:301~306.
    [23]Berggren I, Alstrtlm S, van Vuurde JWL, Martensson AM. Rhizoplane colonisation of peas by Rhizobium leguminosarum by and a deleterious Pseudomonas pulida[J]. FEMS Microbiology Ecology,2005,52(1): 71-78.
    [24]董昌金.根瘤菌与AM真菌双接种对大豆植株生长的影响[J].湖北农业科学,2004,15(5):41~43.
    [25]李淑敏,李隆,张福锁.丛枝菌根真菌和根瘤菌对蚕豆吸收磷和氮的促进作用[J].中国农业大学学报,2004,9(1):11~15.
    [26]冯娜,郑慧芬,何绍江,等.用gfp基因检测饭豆根瘤菌在饭豆根部的定殖动态[J].华中农业大学学报,2005(2):49~51.
    [27]Masaoka Y, Koshino H, Arakawa Y, Asanuma S. Growth-promoting effect of root exudates of Fe-deficient alfalfa on Rhizobium meliloti// Ando T, Fujita K, Mae T, Matsumoto H, Mori S, Sekiya J. Plant Nutrition for Sustainable Food Production and Environment. Tokyo, Japan:Proceeding of Ⅷ International[J]. Plant Nutrition Colloquium,1997:505~506.
    [28]陈龙池,廖利平,汪思龙,等.根系分泌物生态学研究[J].生态学杂志,2002,21(6):57~62.
    [29]胡振宇,黄怀琼,刘世全.快生型花生根瘤菌株与土著性根瘤菌竞争结瘤能力的探讨[J].四川农业大学学报,1994,12(1):42~49.
    [30]窦新田,李树藩,李晓鸣,等.大豆根瘤菌在黑龙江省接种效果与接种有效性的研究[J].中国农业科学,1989,22(3):62~70.
    [31]赵丹丹,李涛,赵之伟.丛枝菌根真菌—豆科植物—根瘤菌共生体系的研究进展[J].生态学杂志,2006,25(3):327~333.
    [32]Beauchamp C J, Kloepper J W, Antoun H. Detection of genetically engineered biolumjnescent Pseudomonads in potato rhizosphere at diverent temperatures[J]. Microbial Relenses,1993,1:203~207.
    [33]Mahler, R L, Wollum, A G. Seasonal variation of Rhizobium meliloti in alfalfa hay and cultivated fields in North Carolina[J]. Agronomy Journal,1982,74(3):428~431.
    [34]马其东,刘自学,洪绂曾,等.不同根系发育能力的苜蓿品种接种根瘤菌的效果[J].草业学报,1999,8(4):46~52.
    [35]宁国赞,李元芳,刘惠琴.我国豆科牧草根瘤菌选育及应用研究的进展[J].中国草地,1989,(3):68~73.
    [36]张志芳,张榕.利用菌根菌提高红豆草根瘤固氮能力的研究[J].草业科学,1996,13(3):45~47.
    [37]赵小蓉,林启美.微生物解磷的研究进展[J].土壤肥料,2001,(3):7~11.
    [38]Okeny. Root associative azosprillum species can stimulate plants[J]. ASM News,1997,63(7):366~370.
    [39]Fuentes remirez. Acetobacter diazotrophicus, an IAA producing bacterium isolated from sugar cane cultivates of Mexico[J]. Plant and Soil,1993,154:145~150.
    [40]陈明,张维,林敏.粪产碱菌耐铵工程菌与水稻联合共生固氮作用[J].核农学报,1999,13(6):373~376.
    [41]祁娟,师尚礼.不同品种紫花苜蓿种子内生根瘤溶磷和分泌生长素能力[J].草原与草坪,2006,118(5):18~25.
    [42]Evans J., N. A. Fettell, D. R. Conventry, et al. Wheat response after temperate crop legumes in south eastern Australia[J]. Australian Journal of Agricultural Research,1991(42):31~43.
    [43]Herridge D.F, H.Marcellos, Felton W.L, et al. Chickpea increases soil N fertility in cereal systems through nitrate sparing and nitrogen fixation[J]. Soil Biol. Biochem.,1995(27):545~551.
    [44]Ofosu-Budu K.G., K.Fujita, T. Gamo, et al. Dinitrogen fixation and nitrogen release from roots of soybean cultivar Bragg and its mutants Nts 1116 and Nts 1007[J]. Soil Sci. Plant Nutr.,1993(39):497~506.
    [45]Pothet M., J. S. La Farre, D. D. Focht. Quatification by direct 15N dilution of fixed N2 incorporated into soil by Cajanus cajan (pigeon pea)[J]. Soil Biol. Biochem.,1986(18):125~127.
    [46]Sawatsky N., R. J. Soper. A quantitative measurement of the nitrogen loss from root systemof peas (Pisum avense L.) grown in the soil[J]. Soil Biol. Biochem.,1991(23):255~259.
    [47]Chalk P.M. Nitrogen transfer from legume to cereals in intercropping. Roots and nitrogen in cropping systems of the semi-arid tropics[J], Edited by Osamu Ito, Chris Johansen, Joseph J, Adu-Gyamfi, Katsuyuki Katayama, Jangala V.D.Kumar Rao and Thomas J.Rego. Published by Japan International Research Center for Agricultural Science.1996,1~2 Ohwashi, Tsukuba, Tsukuba 305, Japan:351~374.
    [48]中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].北京:科学出版社,1985,9.
    [49]Willey R.W. Intercroppin-its importanee and researeh needs[J]. part Ⅱ. Agronomy and researeh approaehes. Field Crop Abstr.1979,32:2~10.
    [50]Chalk P.M. Dynamies of biologieally fixed N inlegume-real rotations a review[J]. Aust. Agrie. Res, 1998,49:303~316.
    [51]金绍龄,赵太勤,曹耘.小麦玉米间作播期与密度对氮竞争影响的模拟研究[J].甘肃农业科技,1999,14(2):26~28.
    [52]温海洋,肖洪东,赖秀霞.花生固氮根瘤菌应用研究[J].佛山科学技术学院学报(自然科学版),2002,20(1):64~66.
    [53]左元梅,刘永秀,张福锁.NO3-态氮对花生结瘤与固氮作用的影响[J].生态学报,2003,23(4): 758~764.
    [54]Tang C, Unkovich M J, Browden J M. Factors affecting soil acidification under legumes Ⅲ Acid production by N2-fixing legumes as influenced by nitrate supply[J]. New Phytol.1999,143:51~52.
    [55]董艳,汤利,郑毅,等.小麦—蚕豆间作条件下氮肥施用量对根际微生物区系的影响[J].应用生态学报,2008,19(7):1559~1566.
    [56]李阜棣,胡正嘉.微生物学(第5版)[M].北京:中国农业出版社,2000,7.
    [57]陈华癸.土壤微生物学[M].上海:上海利技出版社,1979,6.
    [58]罗明,文启凯,陈全家,等.不同用量的氮磷化肥对棉田土壤微生物区系及活性的影响[J].土壤通报,2000,31(2):66~70.
    [59]张彦东,孙志虎,沈有信.施肥对金沙江干热河谷退化草地土壤微生物的影响[J].水土保持学报,2005,19(2):88~91.
    [60]庞欣,张福锁.不同供氮水平对根际微生物量氮及微生物活动的影响[J].植物营养与肥料学,2000,6(4):476~480.
    [61]陈芝兰,何建清,彭岳林,等.不同施肥处理对西藏山南地区麦田土壤微生物变化的影响[J].土壤肥料,2005,(2):35~41.
    [62]胡俊,高翔,郑红丽.覆膜、灌水、氮肥对春玉米根部土壤微生物数量的影响[J].内蒙古农业大学学报(自然科学版),2000,21(增刊):115~119.
    [63]孙瑞莲,朱鲁生,赵秉强.长期施肥对土壤微生物的影响及其在养分调控中的作用[J].应用生态学报,2004,15(10):1907~1910.
    [64]孔维栋,朱永官,傅伯杰,等.农业土壤微生物基因与群落多样性研究进展[J].生态学报,2004,24(12):2894~2900.
    [65]赵艳,张晓波.影响植物根际微生物区系之因素研究进展[J].中国农学通报,2007,23(8):425~430.
    [66]王湖清,敬岩,张慧,等.提高蚕豆共固氮的研究[J].土壤,1997,(6):307~310.
    [67]陈文新,李阜棣,闫章才.我国土壤微生物学和生物固氮研究的回顾与展望[J].世界科技研究与发展,2002,(4):7-12.
    [68]马剑,黄高宝,高亚琴,等.接种根瘤菌对豌豆根际细菌数量动态变化及产量的影响[J].干旱地区农业研究,2009,27(6):7-10.
    [69]王静,马玉珍,史清亮.大豆根瘤菌与光合细菌混合接种效果[J].土壤肥料,1997(2):41~42.
    [70]张楠楠,孙艳梅,李宝珍,等.蚕豆压米间作及接种根瘤菌对土壤细菌、古菌及氮循环相关菌群数量的影响[A].第五次全国土壤生物与生物化学学术研讨会论文集[C].中国重庆.2009.
    [71]黄鹏,张恩和,柴强.施氮对新灌区不同间套作种植模式产量及茬口养分特性的影响[J].草业学报,2001,10(1):86~91.
    [72]李隆,杨思存,孙建好,等.春小麦大豆间作条件下作物养分吸收积累动态的研究[J].植物营养与肥料学报,1999,5(2):163~171.
    [73]张恩和,李玲玲,黄高宝,等.供肥对小麦间作蚕豆群体产量及根系的调控[J].应用生态学报,2002,13(8):939~942.
    [74]Jensen E.S. Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops[J]. Plant Soil,1996,18(2):25~28.
    [75]Elabbadi K, M.Ismaili, L.A.Materon. Competition between medicago truncatula and wheat for 15N labeled soil nitrogen and influence of phosphorus[J]. Soil Biol. Biochem.1996,28(1):83~88.
    [76]李隆,李晓林.小麦/大豆间作中作物种间的竟争作用和促进作用[J].应用生态学报,1999.10(2):197~200.
    [77]肖焱波.豆科禾本科间作体系中养分竞争和氮素转移研究[D].北京:中国农业大学,博十学位论文,2003:46~52
    [78]Ikram A. No significant transfer of N and P from Pueraria phaseoloides to hevea brasiliensis via hyphal links of arbuscular mycorrhiz[J]. Soil Bio.& Biochem,1994, (26):1541~1547.
    [79]Sinclair T.R. Field and model analysis of the effect of accmulation by soybean, cow pea and blank gram[J]. Field Crops water deficits on carbon and nitrogen Res,1987, (17):121~140.
    [80]胡博.不同氮素水平、接种对混作的影响初步研究—以玉米/紫花苜蓿为例[D].北京林业大学学报,博士学位论文,2007,5.
    [81]Ribet J. and J.J.Drevon. Phosphorus deficiency increases the acetylene-induced decline in nitrogenase activity in soybean[J]. Experi Botany,1995,46(291):1479~1486.
    [82]Prosser J.I. Molecular and functional diversity in soil micro-organisms[J]. Plant Soil,2002,244:9~17.
    [83]焦念元,宁堂原,赵春,等.施氮量和玉米/花生间作模式对氮磷吸收与利用的影响[J].作物学报,2008,34(4):706~712.
    [84]李隆,李晓林,张福锁,等.小麦/大豆间作条件下作物养分吸收利用对间作优势的贡献[J].植物营养与肥料学报,2000,6(2):140~146.
    [85]Stern W R. Nitrogen fixation and transfer in intercropping system[J]. Field Crops Research,1993,34: 335~356.
    [86]褚贵新,沈其荣,李弈林,等.用15N叶片标记法研究旱作水稻与花生间作系统中氮素的双向转移[J].生态学报,2004,24(2):278~284.
    [87]Rerkasem B K, Rerkasem M B, Peoples D F. Measurement of N2 fixation in maize (Zea mays L.)-ricebean (Vigna um-bellata [Thumb.] Ohwi and Ohashi) intercrops[J]. Plant and Soil,1988,198: 125~135.
    [88]Xiao Y B, Li L, Zhang F S. Effect of root contact on interspecific competition and N transfer between wheat and fababean using direct and indirect 15N techniques[J]. Plant and Soil,2004,26(2):45~54.
    [89]房增国,左元梅,赵秀芬,等.玉米/花生混作系统中的氮铁营养效应[J].生态环境,2006,15(1):134~139.
    [90]肖焱波,李隆,张福锁.根瘤菌菌株NM353对小麦/蚕豆间作体系中作物生长及养分吸收的影响[J].植物营养与肥料学报,2006,12(1):89~96.
    [91]肖焱波,李隆,张福锁.接种不同根瘤菌对间作蚕豆和小麦生长的促进作用研究[J].农业现代化研究,2003,24(4):275~277.
    [92]钟增涛,沈其荣,冉伟,等.旱作水稻与花生混作体系中接种根瘤菌对植株生长的促进作用[J].中国农业科学,2002,35(3):303~308.
    [93]钟增涛,沈其荣,孙晓红,等.根瘤菌在小麦与紫云英混作中的作用[J].应用生态学报,2003,14(2):187~190.
    [94]房增国,赵秀芬,孙建好,等.接种根瘤菌对蚕豆/玉米间作系统氮营养的影响[J].华北农学报,2009,24(4):124~128.
    [95]房增国,赵秀芬,孙建好,等.接种根瘤菌对蚕豆/玉米间作系统产量及结瘤作用的影响[J].土壤学报,2009,46(5):887~893.
    [96]邹超亚,陈颖.玉米大豆间作复合群体优化配置与生产力研究[J].资源科学,1999,21(4):75~79.
    [97]房增国,左元梅,李隆,等.玉米—花生混作体系中不同施氮水平对花生铁营养及固氮的影响[J].植物营养与肥料学报,2004,10(4):386~390.
    [98]Sinclair T.R. Field and model analysis of the effect of accmulation by soybean, cow pea and blank gram[J]. Field Crops water deficits on carbon and nitrogen Res,1987, (17):121~140.
    [99]Chalk P.M. Nitrogen transfer from legume to cereals in intercropping. Roots and nitrogen in cropping systems of the semi-arid tropics[J], Edited by Osamu Ito, Chris Johansen, Joseph J, Adu-Gyamfi, Katsuyuki Katayama, Jangala V.D.Kumar Rao and Thomas J.Rego. Published by Japan International Research Center for Agricultural Science.1996,1~2 Ohwashi, Tsukuba, Tsukuba 305, Japan:351~374.
    [100]左元梅.石灰性土壤上玉米/花生间作改善花生铁营养的效应与机制[D].北京:中国农业大学,博士学位论文,1997:67-70.
    [101]李湘,杨红玉.豆科植物根瘤形成条件初探[J].西南农业学报,2007,20(1):95~98.
    [102]邹春琴,高霄,张福锁.施硅对玉米生长及蒸腾速率的影响[J].中国生态农业学:2007,15(3):55~57.
    [103]鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社,2005:42~48,264~268.
    [104]吴金水,林启美,等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006,7.
    [105]胡开辉,罗庆国,汪世华,等.化感水稻根际微生物类群及酶活性变化[J].应用生态学报,2006,17(6):1060~1064.
    [106]郭天才,宋晓,马冬云,等.氮素营养水平对小麦际微生物及土壤酶活性的影响[J].水土保持报,2006,20(3):129~140.
    [107]林雁兵,薛泉红,刘海斌,等.旱地不同栽培模式及施氮量对小麦根区土壤微生物区系的影响[J].西北农业学报,2005,14(2):38~43.
    [108]魏兰芳,董艳,汤利,等.小麦蚕豆间作条件下不同施氮量对作物根际微生物数量的影响[J].云南 农业大学学报,2008,23(3):368~372.
    [109]Li L, Zhang FS, Li X L, et al. Inter-specific facilitation of nutrient uptakes by intercropped maize and fiber bean[J]. Nutrient Cycling in Agroecosystems,2003,65:61~71.
    [110]艾为党,李晓林,左元梅,等.玉米、花生根间菌丝桥对氮传递的研究[J].作物学报,2000,26(4):473~481.
    [111]贺永华,沈东升,朱荫湄.根系分泌物及其根际效应[J].科技通报,2006,22(6):761~766.
    [112]郝艳茹,劳秀荣.玉米/花生间作对土壤微生物和土壤养分状况的影响[J].中国农学通报,2001,17(2):47~49.
    [113]章家恩,高爱霞,徐华勤,等.玉米/花生间作对土壤微生物和土壤养分状况的影响[J].应用生态学报,2009,20(7):1597~1602.
    [114]宋亚娜,Petra M,张福锁,等.小麦/蚕豆,玉米/蚕豆和小麦/玉米间作对根际细菌群落结构的影响[J].生态学报,2006,26(7):2268~2274.
    [115]Smalla K, Wieland G, Buchner A, et al. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis:Plant-dependent enrichment and seasonal shifts revealed[J]. Applied and Environmental Microbiology,2001,67(10):4742~4751.
    [116]Peoples M B, Herridge D F, Ladha J K. Enhancing legumes N2 fixation through plant, soil management[J]. Plant and Soil,1995,174(1-2):83~101.
    [117]Kessel C V, Hartley C. Agricultural management of grain legumes:has it led to an increase in nitrogen fixation[J]. Field Crops Research,2000,65(2-3):165~181.
    [118]孙建好,李隆,李娟.小麦/大豆间作氮磷肥效的双变量分析[J].干旱地区农业研究,2007,25(4):183~186.
    [119]李玉英,孙建好,李春杰,等.施氮对蚕豆/玉米间作系统蚕豆农艺性状及结瘤特性的影响[J].中国农业科学,2009,42(10):3467~3474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700