深海来源生物活性真菌的筛选与初步鉴定及WP3次生代谢产物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深海环境占地球表面积的49%,被认为是目前地球上物种资源最丰富的地区。深海微生物处于高压、低温(部分区域如热液口为高温)、厌氧、极端pH、高盐浓度、高金属浓度、无光照、寡营养、高卤素等特殊极端环境中。由于其生态环境的特殊性,决定了深海微生物具有一些特异的代谢途径和遗传背景,导致深海微生物次生代谢产物具有化学结构奇特、新颖,生物活性多样等特点。特殊结构天然产物,对于增强药物的特异性和有效性、减少毒副作用和防止耐药性等均至关重要,对发现药物先导化合物、研究药物作用新靶点、新机理等具有重要科学意义。
     自20世纪60年代以来,海洋天然产物开发越来越受人关注,分离自海洋的化合物总数和新化合物数量都快速增长,2007年有报道的海洋的新天然产物数量为961个,较2006年数量增长24%。海洋微生物来源的天然产物开发成为热点,其化合物增长速度远高于海洋天然产物中比重最大的海绵动物来源化合物的增长速度。2007年来自海洋微生物的化合物数量较1965至2005年平均数量增长了5倍,比2006年增长了60%以上。
     本文利用中国大洋一号20航次采集的深海沉积物样品进行了真菌分离鉴定,获得110株深海来源真菌,这些菌分属于15个属。其中曲霉和青霉最多,共为55株,占50%,且重复较多,只分布于10个种。利用CCK8法及琼脂扩散法对其中的100株深海来源真菌进行了抗肿瘤及抗菌活性检测,发现深海来源真菌具有良好的生物活性,细胞毒阳性率占49%,26%的菌株具有明显抗大肠杆菌效果,23%明显抗枯草,5%抗白假丝酵母,21%抗金黄色葡萄球菌。生物活性与培养基成分及筛选用肿瘤细胞株类型相关。对具有生物活性的20株深海来源真菌发酵粗提物进行了HPLC指纹图谱初步分析,发现其HPLC指纹图谱与培养基成分相关。该研究为后期分离鉴定深海来源真菌产生的生物活性化合物奠定了良好基础。
     细菌Shewanella piezotolerans wp3为一株分离自西太平洋1914米深海沉积物中的一株革兰氏阴性菌。通过检测WP3和分离自同一深海位点的两株深海耐嗜压菌Shewanella psychrophila WP2次生代谢产物的抗肿瘤活性,研究了温度、压力、嗜菌体对WP3次生代谢产物抗肿瘤活性的影响。发现WP3次生代谢产物具有良好抗肿瘤活性,低温因素可提高其抗肿瘤活性,在最适温度情况下,压力因素可降低其抗肿瘤活性,而在低温情况下,压力因素对其抗肿瘤活性无影响,嗜菌体对抗肿瘤活性影响不大。HPLC指纹图谱分析发现不同温度条件下,其次生代谢产物指纹图谱有变化。
     结合细胞毒活性分析结果,通过色谱分离、质谱、核磁共振技术,对WP3发酵浸膏进行了化合物的分离鉴定,目前已经解析了两个单体化合物,但该两个化合物不具有细胞毒活性,后期还需进一步分离鉴定发酵浸膏中具有抗肿瘤活性的次生代谢产物,探讨细胞毒活性化合物与WP3深海环境适应性之间的可能关系。
Deep-sea environment, accounting for 49% of the Earth's surface, is considered the present species of the planet's most resource-rich areas. Deep-sea micro-organisms live in the high-pressure, low temperature (some regions in high-temperature such as hydrothermal mouth), anaerobic, extreme pH, high salt concentration, high metal concentrations, no light, oligotrophic, high-halogen and other special extreme enviroment. Because of its environment specificity, deep-sea microbes have some specific metabolic pathways and genetic background, their secondary metabolites have peculiar, novel chemical structures, and diverse characteristics. Special structure of natural products are very important to enhance drugs'specificity and effectiveness, reduce drugs'side effects, prevent drugs'resistance, they also have important scientific significance on lead compounds discovery and drug study of new targets, new mechanism.
     Since the 60s'20th century, the concern in the development of marine natural products is growing,961 new compounds were isolated from marine in 2007, there was an increase of 24% from the number of compounds reported for 2006. Marine microbial natural products development became a hot spot, its growth rate is much higher than sponge which was the most large part of marine natural compounds. In 2007 the number of compounds from marine organisms got five-fold increase to the average number from 1965 to 2005, above 60% increase to 2006.
     In our study,deep sea sedimental samples collected by the 20th voyage of Chinese Ocean No.1 ship were used to isolate and identify deep sea originated fungus and 110 strains have been obtained. These strains belonged to 15 genus,50% of them,55 stains, are Penicillium or Aspergillus. These 55 stains just belonged to 10 different species. Antitumor and antibacterial activity analysis of second metabolites of 100 fungi were performed by CCK-8 method and agar diffusion method. Results showed that deep sea originated fungi possess good antitumor and antibacterial activity,49% strains indicate cytotoxical activities,26% stains showed significant anti Escherichia coli activities and 32% against Bacillus subtilis,5% against Candida albicans,21% inhibited Staphlococcus aureus growth. the bioactivity related to culture medium and tumor cell type. HPLC analysis of 20 fungus second metabolism product fingerprints indicated map changes with culture medium. These results could be useful to next isolation of bioactive compounds from deep sea originated fungus second metabolism product.
     The deep-sea bacterium Shewanella piezotolerans WP3 and Shewanella psychrophila WP2 used in this study was isolated from deep-sea sediments of 1914m depth in west Pacific. Cytotoxic activity analysis of second metabolism products of them were detected through CCK-8 method. Study on impacts of temperature, pressure and phage on cytotoxic activity of Shewanella piezotolerans WP3 second metabolism product were also conducted. Results showed that Shewanella piezotolerans wp3 second metabolism product had strong cytotoxic activity to tumor cells, and low temperature could enhance this activity. Pressure could reduce cytotoxic activity at most optimal temperature and had almost no effect on this activity at low temperature on the contrary. Meanwhile, phage had no effect on cytotoxic activity. HPLC analysis of Shewanella piezotolerans WP3 second metabolism product fingerprints indicated map changes at different temperature.
     Based on the analysis of cytotoxic activity, by chromatographic separation, mass spectrometry, nuclear magnetic resonance technology, two compounds of wp3 fermentation extract have been isolated and identified, but the two compounds showed no cytotoxic activity, further work will focus on the active compound isolation of WP3 secondary metabolites to explore the possible relationship between the compounds and the environmental adaptability of WP3.
引文
[1]Butler M S. Natural products to drugs:natural product-derived compounds in clinical trials[J]. Natural product reports,2008,25(3):475-516.
    [2]Newman D J and Cragg G M. Natural Products as Sources of New Drugs over the Last 25 Years⊥[J]. J. Nat. Prod,2007,70(3):461-477.
    [3]Proudfoot J R. Drugs, leads, and drug-likeness:an analysis of some recently launched drugs[J]. Bioorganic & Medicinal Chemistry Letters,2002,12(12): 1647-1650.
    [4]Newman D J, Cragg G M, and Snader K M. Natural products as sources of new drugs over the period 1981? 2002[J]. J. Nat. Prod,2003,66(7):1022-1037.
    [5]Capranico G. Camptothecin works are still in progress. The Camptothecins: from Discovery to the Patient[J]. Trends in Pharmacological Sciences,1997, 18(11):445-446.
    [6]乐长高,林永成.海洋真菌的化学研究[J].华东地质学院学报,2001,24(1):48-51.
    [7]Malakoff D. Extinction on the high seas[J]. Science(Washington),1997. 277(5325):486-488.
    [8]Pomponi S A. The bioprocess-technological potential of the sea[J]. Journal of Biotechnology,1999,70(1-3):5-13.
    [9]Nigrelli R F, Stempien Jr M F, Ruggieri G D, et al. Substances of potential biomedical importance from marine organisms.
    [10]黄建设,龙丽娟,张偲.海洋天然产物及其生理活性的研究进展[J].海洋通报,2001,4(20):83-91.
    [11]Faulkner D J. Highlights of marine natural products chemistry (1972-1999)[J]. Natural product reports,2000,17(1):1-6.
    [12]Faulkner D J. Marine pharmacology[J]. Antonie van Leeuwenhoek,2000,77(2): 135-145.
    [13]Blunt J W, Copp B R, Hu W P, et al. Marine natural products[J]. Natural product reports,2009,26(2):170-244.
    [14]Department of Chemistry U o and Canterbury:. MarinLit database.2008 http://www.chem.canterbury.ac.nz/marinlit/marinlit.shtml.
    [15]韦成礼,李玲,游丽云.国内外从海洋微生物开发新型药物的研究概况[J].生物技术通报,1998,2(4):1-4.
    [16]Kosta S, Jain R, and Tiwari A. Marine Fungi:Potential Source of Pharmacological Compounds[J]. Pharmacology online,2008,1(1):1-3.
    [17]关美君,林文翰,丁源.海洋药物--二十一世纪中国药学研究的新热点[J].中国海洋药物,2001,l(1):1-5.
    [18]张秀明,张晓华.海洋微生物培养新技术的研究进展[J].海洋科学,2009(006):99-104.
    [19]吴世伟,李国骥,宋祥春.深海高压试验罐制造技术[J].压力容器,2008,25(006):35-36.
    [20]李世伦,深海超临界高温高压极端环境模拟与监控技术研究.2006,浙江大学.
    [21]李峰,深海沉积物无扰动保压取样技术的研究.2008,浙江大学.
    [22]朱亮,顾临怡,秦华伟.深海沉积物保真采样技术及应用[J].浙江大学学报:工学版,2005,39(007):1060-1063.
    [23]王廷,窦科峰.内皮细胞抑制素-一种新的抗肿瘤药物[J].国外医学外科学分册,2001,28(1):17-19.
    [24]闫世凤,王小兵.海洋抗癌活性物质的研究进展[J].Foreign Medical Sciences Section On Pharmacy,2005,32(4):233-237.
    [25]Cragg G M and Newman D J. Antineoplastic anents from natural sources: achievements and future directions[J]. Expert OpinInvestigDrugs,2000,9(12): 2783.
    [26]Munro M H, Blunt J W, Dumdei E J, et al. The discovery and developent of marine compounds with phamaceutical potential[J]. J Biotechol,1999,70(1-3): 15-19.
    [27]Gunasekera S P, Paul G K, Longley R E, et al. Five new discodemolide analogues from the marine sponge Discodermia specues[J]. J Nat Prod,2002, 65(11):135-139.
    [28]Margolin K, Longmate J, and Synold T W. Dolastatin-10 in metastatic melanoma:a phase II and pharmokinetic trial of the California Cancer Consortium[J]. Invest New Drugs,2001,19(4):335-339.
    [29]Rinehart K L, Gloer J B, Hughes R G, et al. Didemnins:antiviral and antitumor marine natueal products[J]. Science,1981,212(4497):933-939.
    [30]Nuijen B, Bouma M, Manada C, et al. Phamaceutical development of anticancer agents derived from Marine sources[J]. anticancer Drugs,2000, 11(10):793-794.
    [31]Schwartsmann G, Brondani R A, Berlinck R G, et al. Marine organisms as a source of new anticancer agents[J]. The lancet oncology,2001,2(4):221.
    [32]Jun'ichi Kobayashi M T and Ishibashi M. Bioactive products from marine micro-and macro-organisms[J]. Pure Appl. Chem,1999.71(6):1123-1126.
    [33]Newton G G F and Abraham E P. Isolation of cephalosporin C, a penicillin-like antibiotic containing d-a-aminoadipic acid[J]. Biochemical Journal,1956,62(4): 651.
    [34]Bugni T S and Ireland C M. Marine-derived fungi:a chemically and biologically diverse group of microorganisms[J]. Natural product reports,2004. 21(1):143-163.
    [35]Usami Y, Ikura T, Amagata T, et al. First total syntheses and configurational assignments of cytotoxic trichodenones A-C[J]. Tetrahedron:Asymmetry,2000, 11(18):3711-3725.
    [36]Iwamoto C, Minoura K, Oka T, et al. Absolute stereostructures of novel cytotoxic metabolites, penostatins A-E, from a Penicillium species separated from an Enteromorpha alga[J]. Tetrahedron,1999,55(50):14353-14368.
    [37]Cueto M, MacMillan J B, Jensen P R, et al. Tropolactones A-D, four meroterpenoids from a marine-derived fungus of the genus Aspergillus[J]. Phytochemistry,2006,67(16):1826-1831.
    [38]Jadulco R, Edrada R A, Ebel R, et al. New communesin derivatives from the fungus Penicillium sp. derived from the mediterranean sponge Axinella verrucosa[J]. J. Nat. Prod,2004,67(1):78-81.
    [39]Tan R X, Jensen P R, Williams P G, et al. Isolation and Structure Assignments of Rostratins A? D, Cytotoxic Disulfides Produced by the Marine-Derived Fungus Exserohilum rostratum?[J]. J. Nat. Prod,2004,67(8):1374-1382.
    [40]Garo E, Starks C M, Jensen P R, et al. Trichodermamides A and B, cytotoxic modified dipeptides from the marine-derived fungus Trichoderma virens[J]. J. Nat. Prod,2003,66(3):423-426.
    [41]Tan L T, Cheng X C, Jensen P R, et al. Scytalidamides A and B, new cytotoxic cyclic heptapeptides from a marine fungus of the genus Scytalidium[J]. J. Org. Chem,2003,68(23):8767-8773.
    [42]Cueto M, Jensen P R, and Fenical W. N-Methylsansalvamide, a cytotoxic cyclic depsipeptide from a marine fungus of the genus Fusarium[J]. Phytochemistry, 2000,55(3):223-226.
    [43]Belofsky G N, Jensen P R, and Fenical W. Sansalvamide:A new cytotoxic cyclic depsipeptide produced by a marine fungus of the genus Fusarium[J]. Tetrahedron Letters,1999,40(15):2913-2916.
    [44]Iwamoto C, Yamada T, Ito Y, et al. Cytotoxic cytochalasans from a Penicillium species separated from a marine alga[J]. Tetrahedron,2001,57(15):2997-3004.
    [45]Numata A, Takahashi C, Ito Y, et al. Penochalasins, a novel class of cytotoxic cytochalasans from a penicillumspecies aeparated from a marine alga:structure determination and solution conformation[J]. Journal of the Chemical Society. Perkin transactions. I,1996(3):239-245.
    [46]Namikoshi M, Akano K, Meguro S, et al. A new macrocyclic trichothecene,12, 13-deoxyroridin E, produced by the marine-derived fungus Myrothecium roridum collected in Palau[J]. J. Nat. Prod,2001,64(3):396-398.
    [47]Laurent D, Guella G, Roquebert M F, et al. Cytotoxins, mycotoxins and drugs from a new deuteromycete, Acremonium neo-caledoniae, from the southwestern lagoon of New Caledonia[J]. Planta medica,2000,66(1):63-66.
    [48]Yamada T, Iwamoto C, and Yamagaki N. Leptosins M-N1, cytotoxic metabolites from a Leptosphaeria species separated from a marine alga.Structure determination and biological activities[J]. Tetrahedron,2002, 58(23):479-487.
    [49]M T, T M, and K K. Modiolides A and B, two new 10-membered macrolides from a marine-derived fungus[J]. J.Nat.Prod.,2003,66(11):412-413.
    [50]Qian-Cutrone J, Huang S, and Shu Y-Z. Stephacidin A and B:Two Structurally Novel, Selective inhibitors of the Testosterone-Dependent Prostate LNCaP Cells[J]. JACS communications,2002,24(21):134-138.
    [51]Kasai Y, Komatsu K, and Shigemori H. Cladionol A, a poly-ketide Glycoside from Marine-Derived Fungus Gliocladium sp.[J]. J.Nat.Prod.,2005,68(2): 777-779.
    [52]Cruz L J, Insua M M, Baz J P, et al. IB-01212, a new cytotoxic cyclodepsipeptide isolated from the marine fungus Clonostachys sp. ESNA-A009[J]. Journal of Organic Chemistry,2006,71(9):3335-3338.
    [53]Huang Y F, Qiao L, Lv A L, et al. Eremophilane sesquiterenes from the marine fungus Penicillium sp. BL27-2[J]. Chinese Chemical Letters,2008.19(5): 562-564.
    [54]Gu W, Cueto M, Jensen P R, et al. Microsporins A and B:new histone deacetylase inhibitors from the marine-derived fungus Microsporum cf. gypseum and the solid-phase synthesis of microsporin A[J]. Tetrahedron,2007, 63(28):6535-6541.
    [55]Burkholder P R, Pfister R M, and Leitz F H. Production of a pyrrole antibiotic by a marine bacterium[J]. Applied and Environmental Microbiology,1966, 14(4):649.
    [56]Andersen R J, Wolfe M S, and Faulkner D J. Autotoxic antibiotic production by a marine Chromobacterium[J]. Marine Biology,1974,27(4):281-285.
    [57]Fudou R, lizuka T, and Yamanaka S. Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium:1. Fermentation and biological characteristics[J]. The Journal of Antibiotics,2001,54(2):149-152.
    [58]Harrigan G G, Harrigan B L, and Davidson B S. Kailuins A-D, new cyclic acyldepsipeptides from cultures of a marine-derived bacterium[J]. Tetrahedron, 1997,53(5):1577-1582.
    [59]Kobayashi M, Kurosu M, Wang W, et al. A total synthesis of arenastatin A, an extremely potent cytotoxic depsipeptide, from the Okinawan marine sponge Dysipea arenaria[J]. Chemical and pharmaceutical bulletin,1994,42(11): 2394-2396.
    [60]Ca Edo L M, FernaNdez Puentes J L, Baz J P, et al. PM-94128, a new isocoumarin antitumor agent produced by a marine bacterium[J]. The Journal of Antibiotics,1997,50(2):175-176.
    [61]Gerwick W H and Sitachitta N. Nitrogen-containing metabolites from marine bacteria[J]. Chemistry and Biology,1999:239.
    [62]Ca edo L M, de la Fuente J A, Gesto C, et al. Agrochelin, a new cytotoxic alkaloid from the marine bacteria Agrobacterium sp[J]. Tetrahedron Letters, 1999,40(37):6841-6844.
    [63]Kobayashi J. Study on Symbiotic Marine Microorganisms as a Source of New Bioactive Substances[J]. Asahigarasu Zaidan Jyosei Kenkyu Seika Hokoku (Web),1997,1996.
    [64]Gil-Turnes M S, Hay M E, and Fenicai W. Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus[J]. Science, 1989,246(4926):116.
    [65]Takahashi A, Nakamura H, Kameyama T, et al. Bisucaberin,n new siderophore, sensitizing tumor cells to macrophage-mediated cytolysis[J]. The Journal of Antibiotics,1987,40(12):1671-1676.
    [66]Kameyama T, Takahashi A, Kurasawa S, et al. Bisucaberin,n new siderophore, sensitizing tumor cells to macrophage-mediated cytolysi [J]. The Journal of Antibiotics,1987,40(12):1664-1670.
    [67]Gustafson K, Roman M, and Fenical W. The macrolactins, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium[J]. Journal of the American Chemical Society,1989,111(19):7519-7524.
    [68]Jaruchoktaweechai C, Suwanborirux K, Tanasupawatt S, et al. New macrolactins from a marine Bacillus sp. Sc026[J]. J. Nat. Prod,2000,63(7): 984-986.
    [69]Li D H, Cai S X, Tian L, et al. Two New Metabolites with Cytotoxicities from Deep-Sea Fungus[J]. Arch Pharm Res,2007,30(9):1051-1054.
    [70]Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening[J]. jnci,1990,82(13):1107-1112.
    [71]Trischman J A, Jensen P R, and Fenical W. Halobacilin:a cytotoxic cyclic acylpeptide of the iturin class produced by a marine Bacillus[J]. Tetrahedron Letters,1994,35(31).
    [72]Introducth 1. Chemical Studies of Marine Bacteria:Developing a New Resource[J].
    [73]杨文鸽.海洋生物中抗肿瘤活性成分的研究进展[J].海洋科学,2000,24(007):38-41.
    [74]lmamura N, Nishijima M, Takadera T, et al. New anticancer antibiotics pelagiomicins, produced by a new marine bacterium Pelagiobacter variabilis[J]. The Journal of Antibiotics,1997,50(1):8-12.
    [75]Kis-Papo T. Marine fungal communities[J]. MYCOLOGY SERIES,2005,23: 61.
    [76]Lorenz R and Molitoris H P. Cultivation of fungi under simulated deep sea conditions[J]. Mycological Research,1997,101(11):1355-1365.
    [77]Raghukumar C, Raghukumar S, Sheelu G, et al. Buried in time:culturable fungi in a deep-sea sediment core from the Chagos Trench, Indian Ocean[J]. Deep-Sea Research Part I,2004,51(11):1759-1768.
    [78]Turley C M, Lochte K, and Patterson D J. A barophilic flagellate isolated from 4500 m in the mid-North Atlantic[J]. Deep-sea research. Part A. Oceanographic research papers,1988,35(7):1079-1092.
    [79]Bass D, Howe A, Brown N, et al. Yeast forms dominate fungal diversity in the deep oceans[J]. Proceedings of the Royal Society B,2007,274(1629):3069.
    [80]Saleem M, Ali M S, Hussain S, et al. Marine natural products of fungal origin[J]. Natural product reports,2007,24(5):1142-1152.
    [81]Skropeta D. Deep-sea natural products[J]. Natural product reports,2008,25(6): 1131-1166.
    [82]Gao Z, Li B, Zheng C, et al. Molecular detection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata[J]. Applied and Environmental Microbiology,2008,74(19):6091.
    [83]DeLong E F, Franks D G, and Yayanos A A. Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria[J]. Applied and Environmental Microbiology,1997,63(5):2105.
    [84]Hau H H and Gralnick J A. Ecology and biotechnology of the genus Shewanella[J].2007.
    [85]Wang F, Wang J, Jian H, et al. Environmental adaptation:genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3[J]. PLoS One,2008,3(4).
    [86]Myers C, Nealson K H, and Wisconsin Univ M. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor[J]. Science, 1988,240(4857):1319-1321.
    [87]Fredrickson J K, Romine M F, Beliaev A S, et al. Towards environmental systems biology of Shewanella[J]. Nature Reviews Microbiology,2008,6(8): 592-603.
    [88]Yayanos A A, Dietz A S, and Van Boxtel R. Isolation of a deep-sea barophilic bacterium and some of its growth characteristics[J]. Science,1979,205(4408): 808.
    [89]Nogi Y, Kato C, and Horikoshi K. Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov[J]. Archives of microbiology,1998,170(5):331-338.
    [90]Xu Y, Nogi Y, Kato C, et al. Psychromonas profunda sp. nov., a psychropiezophilic bacterium from deep Atlantic sediments[J]. International Journal of Systematic and Evolutionary Microbiology,2003,53(2):527.
    [91]Xu Y, Nogi Y, Kato C, et al. Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments[J]. International Journal of Systematic and Evolutionary Microbiology,2003,53(2):533.
    [92]Wang X J, Yu R C, Luo X, et al. Toxin-screening and identification of bacteria isolated from highly toxic marine gastropod Nassarius semiplicatus[J]. Toxicon, 2008,52(1):55-61.
    [93]Marsili E, Baron D B, Shikhare I D, et al. Shewanella secretes flavins that mediate extracellular electron transfer[J]. Proceedings of the National Academy of Sciences,2008,105(10):3968.
    [94]von Canstein H, Ogawa J, Shimizu S, et al. Secretion of flavins by Shewanella species and their role in extracellular electron transfer[J]. Applied and Environmental Microbiology,2008,74(3):615.
    [95]Turick C E, Caccavo F, and Tisa L S. Pyomelanin is produced by Shewanella algae BrY and affected by exogenous iron[J]. Canadian journal of microbiology, 2008,54(4):334-339.
    [96]Kobayashi H, Nogi Y, and Horikoshi K. New violet 3,3'-bipyridyl pigment purified from deep-sea microorganism Shewanella violacea DSS12[J]. Extremophiles,2007,11(2):245-250.
    [97]De la Rosa-Garcia S C, Mu oz-Garcia A A, Barahona-Perez L F, et al. Antimicrobial properties of moderately halotolerant bacteria from cenotes of the Yucatan peninsula[J]. Letters in Applied Microbiology,2007,45(3):289-294.
    [98]Xiao X, Wang P, Zeng X, et al. Shewanella psychrophila sp. nov. and Shewanella piezotolerans sp. nov., isolated from west Pacific deep-sea sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 2007,57(1):60.
    [99]Wang F, Li Q, and Xiao X. A novel filamentous phage from a deep-sea bacterium Shewanella piezotolerans WP3 is induced at low temperature[J]. Journal of Bacteriology,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700