GeS_2基硫系非线性光学玻璃的形成、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性光学玻璃材料由于其在光通讯、调制、传输器件等方面的应用前景受到人们广泛重视。硫系玻璃具有比一般氧化物玻璃更高的非线性光学系数,因而成为其中研究的新热点。本文采用熔融-淬冷方法制备了GeS_2-Ga_2S_3-PbI_2和GeS_2-Sb_2S_3-CdS准三元体系玻璃;系统研究了玻璃的组成、结构、基本物理性能及其相关性;研究了玻璃的超快三阶非线性光学性能和电场/温度场诱导二阶非线性光学效应(SHG)及其与组成、结构的关系以期获得具有高性能的非线性光学材料,并为进一步提高硫系玻璃的非线性提供参考。
     确定了GeS_2-Ga_2S_3-PbI_2体系的玻璃形成区,发现其玻璃转变温度T_g在252.5~398.5℃之间,确定最佳成玻组分为0.72GES_2·0.18Ga_2S_3·0.1PbI_2;该体系玻璃具有高的折射率(n_D=1.95~2.36)和色散(v=11.15~14.50),大的密度(d=2.712~3.825g·cm~(-3))及显微硬度(H_v=172.3~266.5kg·mm~(-2)),在波长0.5~12.7μm的透过率超过70%;玻璃的基本结构单元为[GeS_4]、[GaS_4]四面体和[S_3GeI]、[S_2GeI_2]、[S_3GaI]混合阴离子四面体,它们通过桥硫或-S-S-短链以共顶、共边方式连接,形成无规则网络结构;PbI_2含量较少的玻璃中,存在部分[S_3Ge-GeS_3]、[S_3Ga-GaS_3]类乙烷结构单元,数量随PbI_2加入减少最终消失;PbI_2含量较多的玻璃中,存在少量的[PbI_n]多面体;玻璃结构缺陷源于组成上的非化学计量和PbI_2的解聚作用。
     确定了GeS_2-Sb_2S_3-CdS体系的玻璃形成区,发现其玻璃转变温度T_g在293.0~310.0℃之间,确定最佳成玻组分为0.7GeS_2·0.3Sb_2S_3;该体系玻璃具有高的折射率(n_D=1.95~2.43)和色散(v=8.2~14.50),大的密度(d=2.99~3.29g·cm~(-3))及显微硬度(H_v=158.9~250.9kg·mm~(-2)),在波长0.5~12.0μm的透过率超过60%;玻璃的基本结构单元为具有三维结构的[GeS_4]四面体和二维结构的[SbS_3]三角锥,随着Sb_2S_3的增加,玻璃逐渐从三维网络结构过渡到[GeS_4]_m和[SbS_3]_n分子结构单元以Ge-S-Sb桥硫连接和Sb-Sb、Ge-Sb、Ge-Ge金属键连接的层状或链状结构;CdS提供非桥硫,并降低玻璃网络的聚合程度;因为Sb_2S_3和CdS的作用,使玻璃中产生大量金属键和许多悬挂键,增加了玻璃中的结构缺陷。
     GeS_2-Ga_2S_3-PbI_2和GeS_2-Sb_2S_3-CdS玻璃具有较强的超快(~100fs)三阶非线性光学响应,前者的三阶非线性率X~(3)值最大为2.07×10~(-13)esu,X~(3)与线性折射率n之间不遵循Miller规则,[GeS_4]、[GaS_4]四面体单元中Ge-S或Ga-S键间的电子云畸变是其超快三阶非线性光学效应的产生主要原因;后者的X~(3)值最大为8.30×10~(-13)esu,X~(3)与线性折射率n之间遵循Miller规则,强电场诱导下Sb~(3+)电子云的变形对三阶非线性光学效应起主导作用。提高玻璃的网络连接程度,减少结构缺陷,或向玻璃网络中引入极化率大的离子可有效提高X~(3)。
     经电场腽度场极化诱导的GeS_2-Ga_2S_3-PbI_2和GeS_2-Sb_2S_3-CdS玻璃表现出较大的二阶光学非线性效应,其强弱与极化条件、玻璃的组成和结构密切相关,变化关系可以用“偶极子取向”模型进行解释。在6kV、250℃、40min的极化条件下,0.7GeS_2·0.15Ga_2S_3·0.15PbI_2玻璃的二阶非线性极化率X~(2)值达到4pm/V,0.85GeS_2·0.1Sb_2S_3·0.05CdS玻璃的X~(2)值达到9pm/V。玻璃的电致极化区域主要位于阳极表面以下十几微米处,其厚度随极化时间增加而略有增大。玻璃的二阶非线性光学效应在室温下是稳定的。
Nonlinear optical glasses have received great interests owing to their potential wide applications in the fields of optical communication, modulation, transferring, and etc.. Chalcogenide glasses have larger nonlinear optical coefficient than ordinary oxide glasses, therefore, become new attractive subject. In this thesis, two novel GeS_2-Ga_2S_3-PbI_2 and GeS_2-Sb_2S_3-CdS pseudo-ternary systems were prepared by melt-quenching technique. Utilizing the techniques such as EPMA, XRD, Raman, DSC-TG, UV-Vis-IR, FT-IR and so on, the relationships between composition, structure and properties of the glasses have been studied systematically. Utilizing the femtosecond time-resolved optical Kerr shutter (OKE) and Maker fringe methods, the third-order nonlinear optical property and second-harmonic generation (SHG) of the glasses after electrically/thermally poled have been analyzed, including their dependences on composition and structure. The aim of this work is to search new nonlinear optical material with high performance and offer reference for its further improvement.
     The glass-forming region of GeS_2-Ga_2S_3-PbI_2 system is determined. The glass transition temperatures range from 252.5~398.5℃and the composition with the best formation ability is 0.72GeS_2·0.18Ga_2S_3·0.1PbI_2. These glasses have high refractive indices (n_D=1.95~2.36) and dispersion (v=11.15~14.50), large densities (d=2.712~3.825g·cm~(-3)) and microhardness (H_v=172.3~266.5kg·mm~(-2)). In the transmission region 0.5 to 12.7μm, the transmittance is higher than 70%. The basic structure units forming the glass network are [GeS_4], [GAS_4] tetrahedra and [S_3GeI], [S_2GeI_2], [S_3GaI] mixed-anion tetrahedra, which are connected by comer-shared or edge-shared mode through bridging sulfurs and/or short S-S chains to form a three-dimensional network. In the glasses with little PbI_2, some part of [S_3Ge-GeS_3], [S_3Ga-GaS_3] ethane-liked units exist, but they will be dissolved with the addition of PbI_2. The defects of glasses derive from the non-stoichiometry of composition and the depolymerization of PbI_2.
     The glass-forming region of GeS_2-Sb_2S_3-CdS system is determined. The glass transition temperatures range from 293.0~310.0℃and the composition with the best formation ability is 0.7GeS_2·0.3Sb_2S_3. These glasses have high refractive indices (n_D=1.95~2.43) and dispersion (v=8.24~14.50), large densities (d=2.99~3.29g·cm~(-3)) and microhardness (H_v=158.9~250.9kg·mm~(-2). In the transmission region 0.5 to 12μm, the transmittance is higher than 60%. the basic structure units forming the glass network are quasi-three-dimensional (3D) [GeS_4] tetrahedra and quasi-two-dimensional (2D) [SbS_3] pyramids. With the increase of Sb_2S_3, the structure of glass transfer from the 3D structure to the [GeS_4]_m, [SbS_3]_n, formed layer or chain structure, which are inerconneeted by Ge-S-Sb bridging sulfur and Sb-Sb, Ge-Sb, Ge-Ge metallic bonds. CdS can bring some non-bridge sulfur with NBS and decrease the degree of aggregation. Because of the additionss of Sb_2S_3 and CdS, large amounts of metallic and dangling bonds are formed, therefore, the defects of glass are enhanced.
     GeS_2-Ga_2S_3-PbI_2 and GeS_2-Sb_2S_3-CdS glasses have large and ultrafast (~100fs) third-order optical nonlinearity. The largest X~((3)) of GeS_2-Ga_2S_3-PbI_2 is 2.07×10~(-13)esu, and the relationship of X~((3)) and the linear refraction index n does not obey the Miller rule. The ultrafast third-order nonlinear optical responses mainly originate from the distortion of electron cloud of Ge-S and/or Ga-S bonds. The largest X~((3)) of GeS_2-Sb_2S_3-CdS is 8.30×10~(-13)esu, and the relationship of X~((3)) and the linear refraction index n obeys the Miller rule. The distortion of electronic cloud of Sb~(3+) under large electric field has dominant effect on the third-order nonlinearity. Some approachs can effectively enhance X~((3)), such as increasing the connection of structure units, reducing the defects and introducing ions with large polarizability into glass network.
     Maker-fringes with good symmetry have been observed within the GeS_2-Ga_2S_3-PbI_2 and GeS_2-Sb_2S_3-CdSglasses after electrical/thermal poling. The second-order optical nonlinearity have tight relation with poling conditions, glass composition and structure, and the mechanism can be explained by dipole reorientation model. Under the poling condition conducted with 6kV, 250℃and 40min, the maximum of second-order nonlinear susceptibility X~((2))=4pm/V for 0.7GeS_2·0.15Ga_2S_3·0.15PbI_2 glass and X~((2))=9pm/V for 0.85GeS_2·0.1Sb_2S_3·0.05CdS glass, respectively. It was found that the effective poled region is located at several microns under surface of anode and the SHG have good durability at room temperature.
引文
[1] P.A. Franken, A. E. Hill, C. W. Peters, et al. Generation of optical harmonics. Phys. Rev. Lett., 1961, 7:118-119
    [2] N. Bloembergen. Nonlinear Optics. Benjamin, 1965
    [3] 钱世雄,王恭明.非线性光学—原理与进展.上海:复旦大学出版社,2001
    [4] [日]和田达夫,雀部博之.日本科学技术.1996
    [5] S.S. Lee, S.Y. Shin. Polymeric digital optical switch incorporating linear branch with modified coupling region. Elec. Lett., 1999, 34:1245-1246
    [6] D. Chen, H.R. Fetterman, A. Chen, et al. Demonstration of 110GHz electro-optic polymer modulators. Appl. Phy. Lett., 1999, 70:3335-3337
    [7] R. Quintero-Torres, M. Thakur. Picosecond all-optical switching in a Fabry-Perot cavity contain polydiacetylene. Appl. Phy. Lett., 1995, 66: 1310-1312
    [8] A. Nahata. Nonlinear optical generation and detection of ultrashort electrical pulses in transmission lines. Opt. Lett., 2001, 26:385-387
    [9] M.A. Bader, G. Marowshy, A. Bahtiar, et al. Poly(p-phenylene vinylene)derivatives: New promising materials for nonlinear all-optical waveguide switching. J. Opt. Soc. Am. B, 2002, 19:2250-2262
    [10] 杨遇春.无机非线性光学材料(NLO)产业化前景。新材料产业,2002,8:21-24
    [11] J.D. Bierleim, C.B. Arweiler. Electro-optic and dielectric properties of KTiOPO_4. Appl. Phys. Lett., 1986, 49:917-919
    [12] S. Takatomo, M. Yusuke, Y. Masashi. Progress in the growth of a CsLiB_6O_(10) crystal and its application to ultraviolet light generation. Opt. Mater., 2003, 23:343-351
    [13] C.T. Chen, Y.C. Wu, A. Jiang, et al. New nonlinear-optical crystal: LiB_3O_5. J. Opt. Soc. Am. B, 1989, 6:616-621
    [14] J.D. Bierleim, H. Vanherzeele, A.A. Ballman. Linear and nonlinear optical properties of flux-grown KTiOAsO_4. Appl. Phys. Lett., 1989, 54:783-785
    [15] 万群.微晶半导体材料的研究现现状.特种玻璃,1991,8:210~214
    [16] 方敬忠,谢才清,齐亚范.玻璃非线性光学材料及其应用.特种玻璃,1991,8:53~59
    [17] 高建荣,程侣柏,程侣柏.有机低分子三阶非线性光学材料.功能材料,1996,27(5): 465-471
    [18] 浦鸿汀,刘玲.有机三阶非线性光学材料的研究进展.材料导报,2007,21(2):1-4
    [19] 马世红,陆兴泽,王恭明等.半花菁氮冠(醚)交替LB多层膜的二阶光学非线性性质.光学学报,1997,17(9):1153-1158
    [20] S.H. Ma, X.Z. Lu, J.B. Zheng, et al. Structural and optical nonlinear characters of hemicya-nine derivatives in Langmuir-Blodgettmonolayers. Thin Solid Films, 1995, 254: 263-267
    [21] 奚红霞,王欢,李忠.新型有机/无机复合非线性光学材料制备及特性.华南理工大学学报,2001,29(5):45-49
    [22] G.H. Hsiue, R.H. Lee, et al. All Sol-Gel organic-inorganic nonlinear optical materials based on melamines and an alkoxysilane dye. Polymer, 1999, 40:6417-6428
    [23] 生瑜,章文贡.金属有机非线性光学材料.功能材料,1995,26(1):89-93
    [24] 钱鹰,孙岳明,刘举正.几种金属有机化合物的合成、结构和光学非线性.中国激光,1998,25(3):231-236
    [25] H. Nasu, J. Matsuoka, K. Kanichi. Second- and third-order optical non-linearity of homogeneous glasses. J Non-cryst Solids, 1994, 178:23-30
    [26] 任军江,黄文山,林健等.碲铌铅玻璃的三阶非线性光学特性.光电子·激光,2002, 13(6):590-592
    [27] H. Nasu, T. Ito, H. Hase, et al. Third-order optical non-linearity. J Non-eryst Solids, 1996, 204:78-82
    [28] H. Kimura, A. Miyazaki. Composition dependence of third-order nonlinear optical properties on BaO-B_2O_3-Al_2O_3 and BaO-B_2O_3-Ga_2O_3 glasses. Mater. Res. Bull., 2001, 36: 1847-1853
    [29] Z.H. Zhou, H. Nasu, T. Hashimoto, et al. Non-linear optical properties and structure of Na_2S-GeS_2 glasses. J. Non-Cryst. Solids, 1997, 215:61-67
    [30] S. Smolorz, I. Kang, F. Wise, et al. Studies of optical non-linearities of chalcogenlde and heavy-metal oxide glasses. J. Non-tryst. Solids, 1999, 256&257:310-317
    [31] C. Quemard, F. Smektala, V. Couderc, et al. Chaleogenide glasses with high nonlinear optical properties for telecommunications. J. Phys. Chem. Solids, 2001, 62:1435-1440
    [32] J. Troles, F. Smektala, G. Boudebs, et al. Third order nonlinear optical characterization of new chalcohalogenide glasses containing lead iodine. Opt. Mater., 2003, 22:335-343
    [33] X.F. Wang, Z.W. Wang, J.G. Yu, et al. Large and ultrafast third-order optical nonlinearity of GeS_2-Ga_2S_3-CdS chalcogenide glass. Chem. Phys. Lett., 2004, 399:230-233
    [34] Z.W. Wang, X.F. Wang, C.L. Liu, et al. Structure dependence of ultrafast third-order optical nonlinearity for Ge-Ga-Cd sulfide glasses. Chinese Phys., 2005, 14:551-555
    [35] H. Xiang, S.F. Wang, Z.W. Wang, et al. Laser irradiation induced enhancement on the ultrafast third-order optical nonlinearity of chalcogenide glass. Opt. Mater., 2006, 28: 1020-1024
    [36] Q.M. Liu, B. Lu, X.J. Zhao, et al. Non-resonant third-order non-linear optical properties of amorphous GeSe_2 film. J. Non-Cryst. Solids, 2005, 351: 3147-3151
    [37] 向卫东.掺杂CuCl钠硼硅玻璃的溶胶-凝胶方法制备及非线性光学性质.无机材料学报,2003,18(1):39-44
    [38] 干福熹.光子学玻璃—特种玻璃的重要发展.硅酸盐学报,1999,27(3):330-337
    [39] 向卫东,孙晓君.含PbS微晶掺杂Na_2O-B_2O_3-SiO_2玻璃的置备及其光谱性质.硅酸盐学报,2000,28(1):34-38
    [40] N. Pincon-Roetzinger, B. Palpant, S. Debrus. Large optical Kerr effect in matrix-embedded metal nanoparticles. Mater. Sci. Eng. C, 2002, 19:51-55
    [41] [法]J.扎齐斯基主编,干福熹 侯立松等译,材料科学与技术丛书(第九卷):玻璃与非晶态材料.北京:科学出版社,2001
    [42] R.C. Miller. Optical second harmonic generation in piezoelectric crystals. Appl. Phys. Lett., 1964, 5:17-19
    [43] G.D. Qian, M.Q. Wang. Preparation and fluorescence properties of nanocomposites of amorphous silica glasses doped with lanthanide(Ⅲ) benzoates. J. Phys. Chem. Solids, 1997, 58:375-378
    [44] U. Osterberg, W. Margulis. Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber. Opt. Lett., 1986, 11:516-518
    [45] R.A. Myers, N. Mukherjee, S.R.J. Brueck. Large second-order nonlinearity in poled fused silica. Opt. Lett., 1991, 16:1732-1734
    [46] P.G. Kazansky, A. Kamal, P.S.J. Russell. High second-order nonlinearities induced in lead silicate glass by electron-beam irradiation. Opt. Lett., 1993, 18:693-695
    [47] R.H. Stolen, H.W.K. Tom. Self-organized phase-matched harmonic generation in optical fibers. Opt. Lett., 1987, 12:585-587
    [48] J. Si, K. Kitaoka, J. Qiu, et al. Optically encoded second-harmonic generation in germanosilieate glass by a femtosecond laser. Opt. Lett., 1999, 24:911-913
    [49] J. Si, K. Kitaoka, T. Mitsuyu, et al. Optically encoded second-harmonic generation in germanosilicate glass via a band-to-band excitation. Appl. Phys. Lett., 1999, 75:307-309
    [50] M.X. Qiu, s. Egawa, K. Horimoto, et al. The thickness evolution of the second-order nonlinear layer in thermally poled fused silica. Opt. Commun., 2001, 189:161-166
    [51] V. Pruneri, F. Samoggia, G. Bonfrate, et al. Thermal poling of silica in air and under vacuum: The influence of charge transport on second harmonic generation. Appl. Phys. Lett., 1999, 74:2423-2425
    [52] N. Mukherjee, R.A. Myers, S.R.J. Brueck. Dynamics of second-harmonic generation in fused silica. J. Opt. Soc. Am. B, 1994, 11:665-669
    [53] T.G. Alley, S.R.J. Brueck, R.A. Myers. Space charge dynamics in thermally poled fused silica. J. Non-tryst. Solids, 1998, 242:165-176
    [54] K. Tanaka, A. Narazaki, K. Hirao, et al. Optical second harmonic generation in poled MgO-ZnO-TeO_2 and B_2O_3-TeO_2 glasses. J. Non-Cryst. Solids, 1996, 203:49-54
    [55] K. Tanaka, A. Narazaki, K. Hirao. Large optical second-order nonlinearity of poled WO_3-TeO_2 glass. Opt. Lett., 2000, 25:251-253
    [56] A. Narazaki, K. Tanaka, K. Hirao, et al. Effect of poling temperature on optical second harmonic intensity of sodium zinc tellurite glasses. J. Appl. Phys., 1998, 83:3986-3990
    [57] M. Miyata. H. Nasu. A. Mito, et al. Second harmonic generation from electrically poled PbO-SiO_2 glasses. J. Ceram. Soe. Jpn., 1998, 16:135-137
    [58] Y.G. Xi, Z.L. Xu, Z.J. Hou, et al. Second-order optical nonlinearity in bulk PbO/B_2O_3 glass. Opt. Commun., 2002, 210:367-373
    [59] M. Qiu, F. Pi, G. Ordols. The role of lead component in second-harmonic generation in lead silica by electron-beam irradiation. Appl. Phys. Lett., 1998, 73:3040-3042
    [60] M. Nakanishi, O. Suglhara, N. Okamoto. Electron-beam irradiation-induced nonlinearity in silicate glass films and fabrication of nonlinear optical gratings. J. Appl. Phys., 1999, 86:2393-2396
    [61] T. Fujiwara, M. Takahashi, A.T. Ikushima. Second-harmonic generation in germanosilicate glass poled with ArF laser irradiation. Appl. Phys. Lett., 1997, 71: 1032-1034
    [62] M. Ohama, T. Fujiwara, A.J. Ikushima. Induced defects and increase of second-order nonlinearity in ultraviolet-poled GeO_2-SiO_2 glass. Jpn. J. Appl. Phys., 1999, 38: 6359-6361
    [63] Y. Takahashi, Y. Benino, T. Fujiwara. New Transparent Crystaliized Glasses with Optical Nonlinear LiBGeO_4 Crystals. J. Ceram. Soc. Jpn., 2002, 110:22-26
    [64] Y. Takahashi, Y. Benino, T. Fujiwara, et al. Optical second order nonlinear of transparent Ba_2TiGe_2O_8 crystallied glasses. Appl.Phys.Lett., 2002, 81:223-225
    [65] Y. Takahashi, Y. Benino, T. Fujiwara, et al. Formation mechanism of ferroelastie Ba_2TiGe_2O_8 and second order optical non-linearity in transparent crystallized glasses. J. Non-Cryst. Solids, 2003, 316:320-330
    [66] Y. Takahashi, Y. Benino, T. Fujiwara, et al. Second harmonic generation in transparent surface crystallized glasses with stillwellite-type LaBGeO_5. J. Appl. Phys., 2001, 89: 5282-5287
    [67] Y. Takahashi, Y. Benino, V. Dimitrov, et al. Transparent surface crystallized glasses with optical non-linear LaBGeO_5 crystals. J. Non-Cryst. Solids, 1999, 260:155-159
    [68] 陈红兵,朱从善,干福熹等.半导体微晶掺杂玻璃的电致二阶非线性光学效应.中国激光,1997,24(6):525-528
    [69] H.B. Chen, H.P. Xia, C.S. Zhu, et al. Second harmonic generation from electrically polarized Cucl-microcrystallite-doped glasses. Mater. Lett., 2001, 50:333-336
    [70] Y. Yamamoto, H. Nasu, T. Hashimoto, et al. Second harmonic generation from themally poled CdS microcrystal-containing glasses. J. Non-cryst. Solids, 2001, 281:198-204
    [71] A. Narazaki, T. Hirao, J. Sasai, et al. DC-electric-field effect in indium tin oxide film and its second-order nonlinearity. Scripta Materi., 2001, 44:1219-1223
    [72] 陈玮,王恕,程继健等.若干硫卤化物系统玻璃的形成及其性能.硅酸盐学报, 1998,26(3):351-358
    [73] J. Nishii, S. Morimoto, I. Inagawa, et al. Recent trends and advances in chalcogenide glass fiber technology: Areview. J. Non-Cryst. Solids, 1992, 140:199-208
    [74] L.L. Neindre, F. Smektala, K.L. Foulgoe, et al. Tellurium halide optical fibers. J. Non-tryst. Solids, 1998, 242:99-103
    [75] S. Shunichi, K. Igarashi, M. Taniwaki, et al. Multihundred-watt CO laser power delivery through chalcogenide glass fibers. Appl. Phys. Lett., 1993, 62:669-671
    [76] L.E. Busse, J.A. Moon, J.S. Sanghera, et al. Chalcogenide fibers enable delivery of mid-infrared laser radiation. Laser Focus World, 1996, 32:143-150
    [77] F. Smektala, K.L. Foulgoc, L.L. Neindre, et al. TeX-glass infrared optical fibers delivering medium power from a CO_2 laser. Opt. Mater., 1999, 13:271-276
    [78] S. Spalter, G. Lenz, R.E. Slusher, et al. Highly nonlinear chalcogenide glass for ultrafast all optical switching in optical TDM communication systems. In: Optical Fiber Communication Conference, 2000, vol3:137-139
    [79] A. Mori, Y. Ohishi, T. Kanamori, et al. Optical amplification with neodymium-doped chalcogenide glass fiber. Appl. Phys. Lett., 1997, 7010:1230-1232
    [80] T. Schweizer, B.N. Samson, R.C. Moore, et al. Rare-earth doped chalcogenide glass fiber laser. Electron. Lett., 1997, 33:414-416
    [81] J. Wenzel, K. Wei, D.P. Machewirth, et al. Pr~(3+)-doped Ge-GA-S glasses for 1.3μm optical fiber amplifiers. J. Non-Cryst. Solids, 1995, 182:257-261
    [82] 干福熹.光学玻璃.北京:科学出版社,1982
    [83] M. Yamashita, H. Yamanaka. Formation and ionic conductivity of Li_2S-GeS_2-Ga_2S_3 glasses and thin films. Solid State Ionics, 2003, 158:151-156
    [84] S.K. Govindarajan. Synthesis and characterization of chalcogenide glasses for fiber optic light sources in the 2 to 10μm region: [PHD paper]. New Jersey: The State University of New Jersey, 2001
    [85] S.R. Elliott. Chalcogenide glasses, Materials Science and Technology, ed. by R.W. Cahn, P. Haasen, E.J. Kramer, VoLg, Glass and Amorphous Materials, ed. by J. Zarzycji, 1991
    [86] T. Usuki, F. Araki, O. Uemura, et al. Structure changes during amorphization of Ge-Se alloys by mechanical milling. Mater. Trans., 2003, 44:344-350
    [87] S.R. Elliott, K.L. Shimakawa. Model for bond-breaking mechanism in amporphous arsemic chalcogenide leading to light induced electron-spin resonance. Phys. Rev. B, 1990, 42:9766-9770
    [88] R. Winter, W.C. Pilgrim, P.A. Egelstaff, et al. Neutron Scattering Study on Amorphous Sulphur. Europhys. Lett. 1990, 11: 225-229
    [89] A. Feltz, M. Pohle, H. Steil, et al. Glass formation and properties of chalcogenide systems: studies on the structure of vitreous GeS_2 and GeSe_2. J. Non-Cryst. Solids, 1985, 69: 271-282
    [90] L. Cervinka. Atomic-scale structure of amorphous and liquid sulphur mihai popescu. J. Non-Cryst. Solids, 1987, 97&98:187-190
    [91] R. Andreichin, M. Nikiforova, E. Skorodeva, et al. Structure and physical properties of the glassy As_2S_3Gex system. J. Non-Cryst. Solids, 1976, 20:101-122
    [92] U. Eichhom, G.H. Frischat. Self-diffusion in the chalcogenide glass system Se-Ge-As. J. Non-Cryst. Solids, 1978, 30:211-220
    [93] 汪中柱,程继健.As-Ge-Se-Te系统玻璃的结构.华东化工学院学报,1992,18:18-23
    [94] P.J.S. Ewen, A.E. Owen. Resonance Raman scattering in As-S glasses. J. Non-Cryst. Solids, 1980,35&36:1191-1196
    [95] K. Tanaka, S. Gohda, A. Odajima. Interrelations between optical absorption edges and structural order in glassy As_2S_3. Solid State Commun., 1985, 56:899-903
    [96] P. Boolchand, J. Grothaus, W.J. Bresser, et al. Structural origin of broken chemical order in a GeSe_2 glass. Phys. Rev. B, 1982, 25:2975-2978
    [97] M. Kazuo, Y. Kazuyuki, F. Toshiaki. Interaction among clusters in chalcogen-rich galsses of Ge_(1-x)(S or Se)_x. J. Non-Cryst. Solids, 1983, 59&60:855-858
    [98] 毛友德.非晶态半导体.上海:上海交通大学出版社,1986
    [99] A. Zakery. Low loss waveguides in pulsed laser deposited arsenic sulfide chacogenide films. J. Phys. D, 2002, 35:2909-2913
    [100] F. Smektala, C. Quemard, L. Leneindre, et al. Chalcogenide glasses with large non-linear refractive indices. J. Non-Cryst. Solids, 1998, 239:139-142
    [I01] H. Kobayashi, H. Kanbara, M. Koga, et al. Third-order nonlinear optical properties of As_2S_3 chalcogenide glass. J. Appl. Phys., 1993, 74:3683-3687
    [102] A. Zakery, S.R. Elliott. Optical properties and applications of chalcogenide glasses: a review. J. Non-Cryst. Solids, 2003, 330:1-12
    [103] G. Lenz, J. Zimmermann, T. Katsufuji, et al. Large Kerr effect in bulk Se-based chalcogenide glasses. Opt. Lett., 2000, 25:254-256
    [104] J.M. Harbold, F.O. Ilday, F.W. Wise, et al. Highly nonlinear As-S-Se glasses for all-optical switching. Opt. Lett., 2002, 27:119-121
    [105] K.A. Cerqua-Richardson, J.M. Mckinley, B. Lawrence, et al. Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form. Opt. Mater. 10 (1998) 155
    [106] H.Z. Tao, G.P. Dong, Y.B. Zhai, et al. Femtosecond third-order optical nonlinearity of the GeS_2-Ga_2S_3-CdI_2 new chalcohalide glasses, Solid State Commun., 2006, 138:485-488
    [107] G.P.Dong, H.Z. Tao, S.S. Chu, et al. Study on the structure dependent ultrafast third-order optical nonlinearity of GeS_2-In_2S_3 chalcogenide glasses. Opt. Commun., 2007, 270: 373-378
    [108] K. Tanaka. Two-photon absorption spectroscopy of As_2S_3 glass. Appl. Phys. Lett., 2002, 80: 177-179
    [109] F.Smektala, C. Quemard, L. Leneindre, et al. chalcogenide glasses with large non-linear refractive indices. J. Non-Cryst. Solids, 1998, 239:139-142
    [110] Z.H. Zhou, T. Hashimoto, H. Nasu, et al. Two-photon absorption and nonlinear refraction of lanthanum sulfide-gallium sulfide glasses. J. Appl.Phys., 1998, 84: 2380-2384
    [111] K.S. Bindra, H.T. Bookey, A.K. Kar, et al. Nonlinear-optical properties of chalcogenide. glasses: Observation of multiphoton absorption. Appl.Phys. Lett., 2001, 79:1939-1941
    [112] M. Asobe, T Kanamod, K Kubodera. Application of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches. IEEE J. Quantum Elect., 1993, 29:2325-2333
    [113] V.K. Tikhomirov, S.A. Tikhomirova. On the mechanism of non-linear optical attenuation at 1.3-1.5μm in arsenic sulfide and tellurium oxide glasses. J. Non-Cryst. Solids, 2001, 284:193-197
    [114] 刘启明,赵修建,干福熹.电子束辐射下Ge-As-S硫系玻璃的二阶非线性光学效应.光学学报,2001,21(6):683-686
    [115] 刘启明,赵修建,干福熹.Ge-As-S体系玻璃中光学二次谐波发生及其极化机理分析.物理学报,2000,49(9):1726-1730
    [116] J.R. Qiu, J. Si, K. Hirao. Photoinduced stable second-harmonic generation in chalcogenide glasses. Opt. Lett., 2001, 26:914-917
    [117] M. Guignard, V. Nazabal, J. Troles, et al. Second-harmonic generation of thermally poled chalcogenide glass. Opt. Express, 2005, 13:789-794
    [118] M. Guignard, V. Nazabal, F. Smektala, et al. High second-order nonlinear susceptibility induced in chalcogenide glasses by thermal poling. Opt. Express, 2006, 14: 1524-1535
    [119] Y. Nakane, H. Nasu, J. Heo, et al. Second harmonic generation from thermally poled Ge-S glasses system. J. Ceram. Soc. Jpn., 2004, 113:728-732.
    [120] 顾少轩,胡海平,郭海涛等.GeS_2-Ga_2S_3-CdS硫系玻璃的电致二阶非线性光学效应.中国激光,2006,33(5):687-691
    [121] J. Ren, G. Yang, H.D. Zheng, et al. Second-harmonic generation in thermally poled chalcohalide glass. Opt. Lett., 2006, 31: 3492-3494
    [122] 姚风仪,郭德威,桂明德.物理化学手册-氧 硫 硒分族.上海:上海科学技术出版社, 1998
    [123] [法]科埃略,阿拉德尼兹著,张冶文,陈玲译.电解质材料及其介电性能.北京:科学出版社,2000
    [124] W.T. Huang, H. Xiang, Q.H. Gong, et al. Large and ultrafast third-order optical nonlinearity of heteroleptic triple-decker (phthalocyaninato) (porphyrinato) Sm(Ⅲ) complexes. Chem. Phys. Lett., 2003, 374(5-6):639-644
    [125] P.D. Maker, R.W. Terhune, C.M. Savage. Effects of dispersion and focusing on the production of optical harmonics. Phys. Rev. lett., 1962, 8(1): 21-22
    [126] J. Jerphagnon, S. K. Kurtz. Maker fringes: a detailed comparison of theory and experiment for isotropie and uniaxial crystals. J. Appl. Phys., 1970, 41:1667-1681
    [127] W.N. Herman, L. M. Hayden. Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials. J. Opt. Soc. Am. B, 1995, 12:416-427
    [128] 阿雷克.F.T,舒尔茨-杜波依斯主编.非线性光学和材料—激光手册第四分册.北京: 科学出版社,1978
    [129] 干福熹,毛锡赉,张鸣黎等.Ge-Ga-X(X=S,Se)系统玻璃的研究.硅酸盐学报,1987, 15(3):193-201
    [130] B.B. Harbison, C.I. Merzbacher, I.D. Aggarwal. Preparation and properties of BaS-Ga_2S_3-GeS_2 glasses. J. Non-tryst. Solids, 1997, 213&214:16-21
    [131] Z.H. Liang, G.H. Frischat. The formation and infrared optical properties of some chaleogenlde and chalcohalide glasses. J. Non-cryst. Solids, 1997, 163:169-176
    [132] X.F. Wang, S.X. Gu, J.G. Yu, et al. Formation and properties of chalcogenide glasses in the GeS_2-Ga_2S_3-CdS system. Mater. Chem. Phys., 2004, 83:284-288
    [133] 干福熹.玻璃的光学和光谱性质.上海:上海科学技术出版社,1992
    [134] 张联盟,黄学辉,宋晓岚.材料科学基础.武汉:武汉理工大学出版社,2004
    [135] [日]泉谷 徹郎著,杨淑清译.光学玻璃与激光玻璃开发.北京:兵器工业出版社, 1996
    [136] 金政武,程继健.PbI_2-PbBr_2-KCl系统玻璃的形成及其析晶行为.华东理工大学学报, 1996,22(5):566-571
    [137] S.A. Dembovsky, V.V. Kirilenko, Y.A. Buslaev, Neorg. Mater., 1971, 7:328
    [138] 杨南如.无机非金属材料测试方法.武汉:武汉工业大学出版社,1993
    [139] H.Z. Tao, X.J. Zhao, C.B. Jing, et al. Microstructural probing of(1-x) GeS_2-xGa_2S_3 system glasses by Raman scattering. J. Wuhan Univ. Technol. - Mater. Sci. Ed., 2005, 20:8-10
    [140] J. Heo, J. M. Yoon, S.Y. Ryou. Raman spectroscopic analysis on the solubility mechanism of La~(3+) in GeS_2-Ga_2S_3 glasses. J. Non-Cryst. Solids, 1998, 238:115-123
    [141] C. Julien, S. Barnier, M. Massot, et al. Raman and infrared spectroscopic studies of Ge-Ga-Ag sulphide glasses. Mater. Sci. Eng. B, 1994, 22:191-200
    [142] A. Tverjanovich, Yu.S. Tveryanovich, S. Loheider. Raman spectra of gallium sulfide based glasses. J. Non-Cryst. Solids, 1996, 208:49-55
    [143] V. Krasteva, D. Hensley, Jr.G. Sigel. The effect of compositional variations on the properties of rare-earth doped Ge-S-I chalcohalide glasses. J. Non-Cryst. Solids, 1997, 222:235-242
    [144] L. Koudelka, M.Pisarcik. Raman study of short-range order in Ge_xS_yI_z glasses. J. Non-Cryst. Solids, 1989, 113:239-245
    [145] J. Heo, J.D. Mackenzie. Chalcohalide glasses Ⅲ. Vibrational spectra of Ge-S-I glasses. J. Non-Cryst. Solids, 1989, 113:246-252
    [146] Y.X. Zhongben. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Chemical Industrial Press, Beijing, 1991
    [147] J.A.迪安 主编,尚久方等译.兰氏化学手册.北京:科学出版社,1991
    [148] H.Z. Tao, X.J. Zhao, C.B. Jing, et al. Raman scattering studies of the GeS_2-Ga_2S_3-CsCl glassy system. Solid State Commun., 2005, 133:327-332
    [149] 陶海征.(Ga,In)_2S_3-基硫卤玻璃的组成、结构与性能研究:[博士学位论文].武汉:武汉理工大学材料科学与工程学院,2004
    [150] C. Julien, S. Barnier, I. Ivanov, et al. Vibrational studies of copper thiogallate solid solutions. Mater. Sci. Eng. B, 1999, 57:102-109
    [151] W. Zhou. Method for expolring glass-forming regions in new system. J. Non-tryst. Solids, 1996, 201:251-261
    [152] M.G. Drexhage, O.H. El-Bayoumi, C.T. Moynihan, et al. Preparation and properties of heavy-metal fluoride glasses containing Ytterbium or Lutetium. J. Am. Ceram. Soc., 1982, 65:c168-c171
    [153] M. Seki, K. Hachiya, K. Yoshida. Photoluminescence and states in the bandgap of germanium sulfide glasses. J. Non-Cryst. Solids., 2003, 315:107-113
    [154] 大连理工大学无机化学教研室编.无机化学(第四版).北京:高等教育出版社,2001
    [155] 杨南如,岳文海.无机非金属材料图谱手册.武汉:武汉工业大学出版社,2000
    [156] J.S. Sanghera, I.D. Aggarwal. Development of chalcogenide glass fiber optics at NRL. J. Non-Cryst. Solids, 1997, 213&214:63-67
    [157] D.R. Simons, A.J. Faber. GeS_x glass for Pr~(3+)-doped fiber amplifiers at 1.3μm. J. Non-Cryst. Solids, 1995, 185:283-288
    [158] B. Frumarova, J. Oswald, P. Krecmer, et al. Synthesis and physical properties of the system (GeS_2)_(80-x)(Ga_2S_3)_(20): xPr glasses. Opt. Mater., 1996, 6:217-223
    [159] M.F. Churbanov. High-purity chalcogenide glasses as materials for fiber optics. J. Non-Cryst. Solids, 1995, 184:25-29
    [160] [德]H 舒尔兹著,黄照柏译.玻璃的本质结构和性质.北京:中国建筑工业出版社, 1984
    [161] 西北轻工业学院主编.玻璃工艺学.北京:中国轻工业出版社,1982
    [162] 金政武,程继健.PbI_2-PbBr_2-AgI系统玻璃的化学稳定性研究.华东理工大学学报, 1997,23(3):343-348
    [163] 佟威.Ge-S基硫卤玻璃红外光纤材料的组成、结构与性能研究:[硕士学位论文].武汉: 武汉理工大学材料科学与工程学院,2004
    [164] M.K. Casstevens, M. Samoc, J. Pfleger, et al. Dynamics of third-order nonlinear optical processes in Langmuir-Blodgett and evaporated films of phthalocyanines. J. Chem. Phys., 1990, 92:2019-2024
    [165] 刘萍,向红,孙诗兵等.BSTS 透明微晶玻璃及其三阶非线性光学性能.硅酸盐通报, 2003,1:35-37
    [166] S. Kinoshita, H. Ozawa, Y. Kanematsu, et al. Efficient optical Kerr shutter for femtosecond time-resolved luminescence spectroscopy. Rev. Sci. Instrum., 2000, 71: 3317-3322
    [167] E.P. Ippen, C.V. Shank. Picosecond response of a high-repetition-rate CS_2 optical Kerr gate. Appl. Phys. Lett., 1975, 26:92-93
    [168] J.E. Aber, M.C. Newstein, B.A. Garetz. Femtosecond optical Kerr effect measurements in silicate glasses. J.Opt.Soc.Am.B, 2000, 17:120-127
    [169] I. Kang, S. Smolorz, T. Krauss, et al. Time-domain observation of nuclear contributions to the optical nonlinearities of glasses. Phys.Rev.B, 1996, 54:641-644
    [170] D.W. Hall, M.A. Newhouse, N.F. Borrelli, et al. Nonlinear optical susceptibilities of high-index glasses. Appl. Phys. Lett., 1989, 54:1293-1295
    [171] 顾少轩.GeS_2-Ga_2S_3-CdS体系非线性光学玻璃的制备、结构与性能研究:[博士学位论文].武汉:武汉理工大学材料科学与工程学院,2006
    [172] 杨慧,陶海征,赵修建.As_2S_3-PbI_2二元系玻璃的形成与结构.硅酸盐学报,2004, 32(8):37-40
    [173] N.F. Borrelli, D.W. Hall. Nonlinear optical properties of glasses. In:Optical Properties of Glass, Edited by Uhlmann D R.Kreidl N. J. Am. Ceram. Soc. Inc., 1991
    [174] R. Adair, L. L. Chase, S.A. Payne. Nonlinear refractive index of optical crystals. Phys. Rev. B, 1989, 39:3337-3350
    [175] M.D. Johnson, K.R. Subbaswamy, G. Senatore. Hyperpolarizabilitiea of alkali halide crystals using the local-density approximation. Phys. Rev. B, 1987, 36:9201-9211
    [176] E.M. Vogel. Chemistry of Glass. Am. Ceram. Sot., Columbus, Ohio, 1985
    [177] 汪和睦.物理常数与单位.天津:天津科学技术出版社,1986
    [178] 李远,秦自揩.压电与铁电材料的测量.北京:科学出版社,1984
    [179] 龚跃球.GeS_2基玻璃及其薄膜的二阶非线性光学性能研究:[博士学位论文].武汉:武汉理工大学材料科学与工程学院,2006
    [180] 韩聚广,白迎新,姜中宏.石英玻璃结构调整和二阶非线性光学效应产生机制的理论研究.中国激光,1996,23(6):531-536
    [181] K. Tanaka, K. Kashima, K. Hirao, et al. Second harmonic generation in electrically poled Li_2O-Nb_2O_5-TeO_2 glasses. J. Non-Cryst. Solids, 1995, 185: 123-126
    [182] 陈红兵,徐建华,刘丽英等.电场极化条件对石英玻璃的电致二阶非线性光学效应的影响.中国激光,1998,25(1):56-60
    [183] H. Takebe, P.G. Kazansky, P.St.J Russell, et al. Effect of poling conditions on second-harmonic generation in fused silica. Opt. Lett., 1996, 21:468-470
    [184] Y.R. Shen. The Principles of Nonlinear Optics. New York: Wiley, 1984
    [185] P.h. Pretre, L.M. Wu, A. Knoesen, et al. Optical properties of nonlinear: a method for calculation. J. Opt. Soc. Am. B, 1998, 15:359-368
    [186] K.D. Singer, M.G. Kuzyk, J.E. Sohn. Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties. J. Opt. Soc. Am. B, 1987, 4:968-970
    [187] 方俊鑫,殷之文.电介质物理学.北京:科学出版社,1989
    [188] G. Thomas, S.R. Alley. Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass. Opt. Lett., 1998, 23:1170-1172
    [189] 龚跃球,赵修建,顾少轩等.Ge-Ga-Sb-S硫系玻璃的二阶非线性光学效应研究.武汉理工大学学报.2006,28(3):4-6
    [190] Y.Q. Gong, H.T. Guo, X.J. Zhao. The structure and second-order nonlinearity of the GeS_2-Ga_2S_3-X_2S_3 (X=P, As, Sb) chalcogenide glasses. Trans. Nonferrous Met. Soc. China, 2006, 16:858-860
    [191] L. Koudelka, M. Frumar, M. Pisarcik. Raman spectra of Ge-Sb-S system glasses in the S-rich region. J. Non-Cryst. Solids, 2001, 281:198-204
    [192] H. Ticha, L. Tichy, N. Rysava, et al. Some physical properties of the glassy (GeS_2)_x(Sb_2S_3)_(1-x) system. J. Non-Cryst. Solids., 1985, 74:37-46
    [193] I. Watanabe, S. Noguchi, T. Shimizu. Study on local structure in amorphous Sb-S films by Raman scattering. J. Non-tryst. Solids, 1983, 58:35-40
    [194] V. Nazabal, C. Bousquet, T. Cardinal. Fabrication and characterization of chalcogenide films. Integrated Optics: Theory and Applications, edited by Tadeusz Pustelny, Paul V. Lambeck, Christophe Gorecki, Proc. of SPIE Vol. 5956, 59560Z, 2005
    [195] L. Cervinka, A. Hruby. Structure of amorphous and glassy Sb_2S_3 and its connection with the structure of As_2S_3 arsenic chalcogenide glasses. J. Non-cryst. Solids, 1982, 48: 231-264
    [196] 傅竹西,林碧霞,何一平等.ZnO薄膜光学常数测量.发光学报,2004,25(2):59-62
    [197] T.S. Kavetskyy, A.P. Kovalskiy, V.D. Pamukchieva, et al. IR impurity absorption in Sb_2S_3-GeS_2 (Ge_2S_3) chalcogenide glasses. Infrared Phys. Techn., 2000, 41:41-45
    [198] X.F. Wang, X.J. Zhao, Z.W. Wang, et al. Thermal and optical properties of GeS_2-based chalcogenide glasses. Mater. Sci. Eng. B, 2004, 110:38-41
    [199] 徐志凌.玻璃材料二阶光学非线性研究:[博士学位论文].上海:复旦大学物理系, 2000
    [200] H.D. Jannek, D.E. Day. Sodium Motion in Phase-Seodrated Sodium Silicate Glasses. J. Am. Ceram. Soc., 1981, 64:227-233
    [201] 张辉.钾铅硅酸盐玻璃二次谐波发生特性的研究:[硕士学位论文].武汉:武汉工业大学,1997
    [202] Q.M. Liu, X.J. Zhao, K. Tanaka, et al. Second-harmonic generation in Ge-As-S glasses by electron beam irradiation and analysis of the poling mechanism. Opt. Commun., 2001, 198:187-192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700