光功能铱配合物的分子设计、合成及其光电性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铱配合物具有发光效率高、发光颜色可以通过改变配体结构进行调节及磷光寿命较短等优点而成为研究的热点。本论文合成了七个系列新型铱配合物(结构见附表)。首先从构效关系研究出发,详细探讨了配体化学结构与配合物光物理及电化学性质之间的关系。其次将合成的铱配合物应用于电致发光器件中,制备了高效的、具有饱和红光发射的聚合物电致发光器件。最后,研究了这类材料在化学传感器领域的应用,开发了新型基于铱配合物的磷光化学传感器。具体来说,本论文的研究内容包括以下六部分:
     1含有不同β-二酮配体的喹啉基铱配合物的设计、合成和光电性能研究
     设计、合成了一系列基于不同喹啉衍生物配体(C^N)和不同β-二酮配体(O^O)的红光铱配合物Ir(C^N)_2(O^O)。两种β-二酮配体分别是乙酰丙酮(acac)和1-苯基-3-甲基-4-(异丙基)-5-吡唑啉酮(PMIP)。通过改变喹啉衍生物配体(C^N配体)的化学结构,配合物的发射颜色可以从橙红光(596 nm)调节到饱和红光(630nm)。对于相同喹啉类配体的铱配合物而言,用PMIP作为β—二酮配体取代acac后可以明显提高配合物的发光效率。我们将其中三个配合物制备了聚合物电致发光器件,详细研究了这一系列配合物的电致发光性质,得到了具有饱和红光发射(色坐标x=0.66,y=0.34)的高效聚合物电致发光器件,最大外效率为9.6%。
     2含有不同辅助配体的中性铱配合物的设计、合成及聚集态引起的磷光发射(AIPE)研究
     我们合成了一系列含有不同三重态能级β-二酮配体(O^O)的铱配合物Ir(ppy)_2(O^O),其中ppy为2-苯基吡啶配体。在溶液中,当β-二酮配体具有高的三重态能级时,配合物具有强的磷光发射。而当β-二酮配体的三重态能级低于~3ML_(ppy)CT时,导致非辐射跃迁。有趣的是,在固态下,溶液中不发光的配合物表现有较强的发射。我们对这种溶液和固态下的不同的发射性质进行了详细的讨论。发现不同配合物分子的ppy配体之间的强的π-π相互作用是引起聚集态发射的根本原因。并通过实验方法和理论计算对这种有趣的聚集引起的磷光发射现象进行了详细的研究,提出了新的发光机理。我们认为,由于ppy配体间强的π-π相互作用的存在,会导致π-π堆积的ppy配体能级降低,从而使聚集态下金属铱中心向π-π堆积的ppy配体之间的电荷转移跃迁(~3ML_πCT)开始参与激发态,从而导致发射的产生。为了进一步利用这种分子聚集引起的磷光发射性质,我们将配合物Ir(ppy)_2(DBM)制备成了非掺杂电致发光器件。初步研究结果表明,这一类材料能够作为新的固态电致发光材料。3含N^N配体新型阳离子型铱配合物的设计、合成及发光性能研究
     我们选择1-苯基异喹啉(piq)作为C^N配体,设计和合成了一系列含有不同共轭长度N^N配体的离子型铱配合物[Ir(piq)_2(N^N)]~+PF_6~-。通过理论计算、光物理和电化学性质的详细研究,我们证明配合物的激发态非常复杂,同时含有~3MLCT、~3LLCT和~3LC(π_(C^N)→π_(C^N)~*)三种跃迁。重要的是,这种复杂的激发态可以通过改变N^N配体的共轭长度进行调节。另外,N^N配体的共轭长度的改变可以将这些配合物的发射波长从586nm调节到732nm。
     另外,我们在前面工作的基础上,将C^N配体piq改为2,4-二氟苯基吡啶(F_2ppy),合成了一系列新型阳离子型铱配合物[Ir(F_2ppy)_2(N^N)]~+PF_6~-。通过简单的改变N^N配体的化学结构,实现了发光颜色从蓝光(457nm)到红光(590nm)的显著调节。
     4基于铱配合物的光电多信号输出的Hg~(2+)化学传感器的研究
     利用Hg~(2+)的亲硫性,研究了一种基于铱配合物Ir(btp)_2(acac)的具有高选择性和多信号输出的汞离子磷光化学传感器。可以通过紫外吸收光谱、磷光光谱和电化学方法来实现对Hg~(2+)的多信号检测。Hg~(2+)的加入可以导致配合物Ir(btp)_2(acac)的紫外可见吸收和发射光谱发生明显蓝移,实现了肉眼识别。
     5含邻菲罗啉衍生物的阳离子型铱配合物的设计、合成及其阴离子识别性能的研究
     我们设计、合成了一系列含有不同邻菲罗啉衍生物配体的新型离子型铱配合物,详细研究了所合成的配合物的电化学、紫外-可见吸收、磷光发光性质,并结合理论计算对配合物的激发态进行了讨论。另外阴离子和质子的加入对配合物的光物理和电化学性质的影响也进行了详细的讨论。加入CF_3COOH后,配合物的发射波长发生明显的红移,发射颜色由黄色变为深红色。F~-和CH_3COO~-的加入能够引起紫外—可见吸收和磷光发射光谱明显的变化。配合物2~4的溶液的颜色从黄绿色变为棕黄色,实现了肉眼识别。同时,F~-和CH_3COO~-的加入也淬灭了配合物的发射。尤其是,配合物2对F~-具有更强的结合能力,表明配合物2是一个有潜力的F~-磷光化学传感器。
     6含有机硼单元的铱配合物的合成及其氟离子识别性能研究
     本部分利用三价有机硼化合物是本征的强Lewis酸,与典型Lewis碱氟离子发生强相互作用的特点,合成了含有米基硼的喹林衍生物配体及基于这个配体的两个铱配合物。详细研究了它们的光物理和电化学性质。并发现,所合成的配体和配合物对F~-具有强的结合能力和高的选择性。
Recently, iridium(Ⅲ) complexes have received considerable attention due to theirhigh emission efficiencies and easy tuning of emission colors by changing chemicalstructures of ligands. In this thesis, seven series of novel iridium(Ⅲ) complexes weresynthesized (Please see the table attached for the molecular structures). Firstly, theinfluences of chemical structures of ligands on the photophysical and electrochemicalproperties of complexes were investigated in detail. Secondly, efficientelectrophosphorescent polymer-based light-emitting diodes (PLEDs) were fabricatedby doping the iridium(Ⅲ) complexes into the polymer host. Finally, the application ofiridium(Ⅲ) complexes in the field of chemical sensors has been developed.
     This thesis can be divided into six parts.
     1. Design, synthesis and optoelectronic properties of a series of iridium(Ⅲ)complexes based on quinoline derivatives and differentβ-diketonate ligands.
     A series of cyclometalated iridium(Ⅲ) complexes Ir(C^N)_2(O^O) based onquinoline derivatives (C^N) and differentβ-diketonate ligands (O^O) weresynthesized, where O^O denotes acetylacetonate (acac) and1-phenyl-2-methyl-4-isobutyryl-5-pyrazolonate (PMIP). By modifying the chemicalstructures of quinoline derivative ligands, the emissive wavelengths of complexes canbe tuned from 596 to 634 nm. Interestingly, the photoluminescence quantumefficiency can be improved by the replacement of acac with PMIP. Moreover, threeiridium complexes were used as dopants to fabricated electrophosphorescentpolymer-based light-emitting.diodes (PLEDs). The PLEDs show red emission withhigh external quantum efficiencies, ranging from 7.0 to 9.6%.
     2. Design, synthesis and aggregation-induced phosphorescent emission (AIPE)of a series of iridium(Ⅲ) complexes containing different ancillary ligands.
     We have synthesized a series of iridium(Ⅲ) complexes Ir(ppy)_2(O^O) containingβ-diketonate ligands (O^O) with different triplet energy levels, where ppy denotes2-phenyl-pyridine. In solution, complexes containingβ-diketonate ligands with hightriplet energy levels exhibit strong phosphorescent emission. When the triplet energylevels ofβ-diketonate ligands were lower than the energy level of ~3ML_(ppy)CT, noemission was observed for complexes. Interestingly, in solid state moderately strongemission could be observed for those complexes without emission in solution. Weinvestigated the different emission properties of complexes between in solution and in solid state and found that the strongπ-πinteraction between the adjacent pyridyl ringsof ppy ligands is essential in the aggregation-induced phosphorescent emission. Westudied the interesting AIPE by experimental methods and theoretical calculation, andprovided new emission mechanism. We think that the strongπ-πinteraction betweenthe adjacent pyridyl rings of ppy ligands elongates the overallπ-conjugation degreeand reduces the energy levels ofπ_(ppy)~* compared with that in solution. As a result, thetriplet energy level of charge transfer state from iridium to the interacting ppy(donated as ~3ML_πCT) is reduced and the ppy ligands participate in the excited state insolid state. And emission could be observed.
     3. Design, synthesis and emission properties of novel cationic iridium(Ⅲ)complexes with different N^N ligands.
     A series of new cationic iridium(Ⅲ) complexes [Ir(piq)_2(N^N)]~+PF_6~- (1-6) (piq=1-phenyl-isoquinoline) containing N^N ligands with different conjugated lengthwere synthesized. UV-vis, photoluminescence, cyclic voltammetry and theoreticalcalculation were employed for studying the photophysical and electrochemicalproperties. And the excited state properties were investigated in detail. The excitedstate of complexes is complicated and contains triplet metal-to-ligand charge transfer(~3MLCT), triplet ligand-to-ligand charge transfer (~3LLCT) and ligand centred(cyclometalated) (~3LC) transitions simultaneously. In addition, the emissionwavelength can be tuned significantly from 586 to 732 nm by changing theconjugated length of N^N ligands.
     In addition, we replaced piq with another kind of C^N ligand2,4-difluorophenyl-pyridine (F_2ppy) and synthesized a series of new cationiciridium(Ⅲ) complexes [Ir(F_2ppy)_2(N^N)]~+PF_6~-. By changing the N^N ligands simply,the emission colors of complexes can be tuned from blue (457 nm) to red (590 nm).
     4. A highly selective and muitisignaling optical-electrochemical sensor for Hg~(2+)based on phoephorescent iridium(Ⅲ) complex.
     Because Hg~(2+) can easily combine with sulfur, a highly selective phosphorescentchemosensor for Hg~(2+) based on iridium (Ⅲ) complex Ir(btp)_2(acac) was realized.Multisignaling changes were observed through UV-vis absorption, phosphorescentemission and electrochemical measurements. Upon addition of Hg~(2+), the obviousspectral blue-shifts in absorption and phosphorescent emission bands were measuredfor Ir(btp)_2(acac), which could be observed by the naked eyes.
     5. Design and synthesis of cationic iridium(Ⅲ) complexes based on phenanthroline derivatives and their applications in chemical sensor for anions.
     A series of new cationic iridium (Ⅲ) complexes containing different phenanthrolinederivatives were synthesized. Their photophysical and electrochemical propertieswere investigated. The influences of anions and proton on the photophysical andelectrochemical properties were also studied in detail. After the addition of CF_3COOH,the emission wavelengths were red-shifted evidently and the emission colors werechanged from yellow to deep red. In addition, the addition of F~-, CH_3COO~- can alsocause significant variations of UV-Vis absorption and emission spectra. The solutioncolors of complex 2, 3 and 4 were changed from yellow-green to brown, which can beobserved by the naked eye. The emission of complexes was quenched completely bythe addition of F~- and CH_3COO~-. Especially, complex 2 prefers to bind F~- over theother anions, suggesting that complex 2 can be acted as a good phosphorescentchemosensor for F~-.
     6. Highly selective phosphorescent chemosensor for fluoride ions based onnovel iridium(Ⅲ) complexes containing aryiboranes.
     As the strong Lewis acid, boron atom exhibits the strong affinity toward fluride ionaccording to specific Lewis acid-base interaction. Herein, we synthesized quinolinederivative ligand containing arylboranes and two iridium(Ⅲ) complexes based on thisligand and studied their photophysical and electrochemical properties. In addition, thequinoline derivative ligand and iridium(Ⅲ) complexes can act as the highly selectivechemosensors for F~-.
引文
[1] Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices [J]. Nature 1998, 395(6698): 151-154.
    [2] Ma, Y G, Zhang, H Y, Shen, J C. Electroluminescence from Triplet Metal-Ligand Charge-Transfer Excited State of Transition Metal Complexes [J]. Synthetic Metals, 1998, 94(3): 245-248.
    [3] 甄宏宇,杨伟,朱卫国,曹镛。利用三线态激子提高有机/高分子发光器件的量子效率[J]。化学进展,2004,16(1):99-104.
    [4] Fukase, A.; Dao, K. L. T.; Kido J. High-Efficiency Organic Electroluminescent Devices Using Iridium Complex Emitter and Arylamine-Containing Polymer Buffer Layer[J]. Polym. Adv. Technol, 2002, 13(8): 601-604.
    [5] Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S.; Hoshino, M.; Ueno, K. Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode [J]. J Am. Chem. Soc. 2003, 125(42): 12971-12979.
    [6] Ysuboyama, A.; Takiguchi, T.; Okada, S.; Osawa, M.; Hoshino, M.; Ueno, K. A Novel Dinuclear Cyelometalated Iridium Complex Bridged with 1,4-Bis[pyridine-2-yl]benzene: Its Structure and Photophysical Properties [J]. Dalton Trans. 2004, 8:1115-1116.
    [7] Tamayo, A. B.; Alleyne, B. D.; Djurovich, P. I.; Lamansky, S.; Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M. E. Synthesis and Characterization of Facial and Meridional Tris-cyclometalated Iridium(Ⅲ) Complexes [J]. J. Am. Chem. Soc. 2003, 125(24): 7377-7387.
    [8] Yang, C.-H.; Fang, K.-H.; Chen, C.-H.; Sun, I-W. High Efficiency mer-Iridium Complexes for Organic Light-Emitting Diodes [J]. Chem. Commun. 2004: 2232-2233.
    [9] Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.-E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. Highly Phosphorescent Bis-Cyciometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes [J]. J. Am. Chem. Soc. 2001, 123(18): 4304-4312.
    [10] Thomas, K. R. J.; Velusamy, M.; Lin, J. T.; Chien, C.-H.; Tao, Y.-T.; Wen, Y. S.; Hu, Y.-H.; Chou, P.-T. Efficient Red-Emitting Cyclometalated lridium(Ⅲ) Complexes Containing Lepidine-Based Ligands [J]. Inorg. Chem. 2005, 44(16): 5677-5685.
    [11] Rayabarapu, D. K.; Paulose, B. M. J. S.; Duan, J.-P.; Cheng, C.-H. New Iridium Complexes with Cyclometalated Alkenylquinoline Ligands as Highly Efficient Saturated Red-Light Emitters for Organic Light-Emitting Diodes [J]. Adv. Mater 2005, 17(3): 349-353.
    [12] Paulose, B. M. J. S.; Rayabarapu, D. K.; Duan, J.-P.; Cheng, C.-H. First Examples of Alkenyl Pyridines as Organic Ligands for Phosphorescent Iridium Complexes [J]. Adv. Mater. 2004, 16(22): 2003-2007.
    [13] Coppo, P.; Plumme, E. A.; Cola, L. D. Tuning Iridium(Ⅲ) Phenylpyridine Complexes in the "Almost Blue" Region [J]. Chem. Commn. 2004: 1774-1775.
    [14] Laskar, I. R.; Chen, T.-M. Tuning of Wavelengths: Synthesis and Photophysical Studies of Iridium Complexes and Their Applications in Organic Light Emitting Devices [J]. Chem. Mater. 2004, 16(1): 111-117.
    [15] Coppo, P.; Duati, M.; Kozhevnikov, V. N.; Hofstraat J. W.; De Cola L. White-Light Emission from an Assembly Comprising Luminescent Iridium and Europium Complexes [J]. Angew. Chem. Int. Ed. 2005, 44(12): 1806-1810.
    [16] Glusac, K. D.; Jiang, S. J.; Schanze, K. S. Photophysics of Ir(Ⅲ) complexes with oligo(arylene ethynylene) ligands [J]. Chem. Commun. 2002: 2504-2505.
    [17] Li, J.; Djurovich, P. I.; Alleyne, B. D.; Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M. E. Synthesis and Characterization of Cyclometalated Ir(Ⅲ) Complexes with Pyrazolyl Ancillary L igands [J]. Polyhedron 2004, 23(2-3): 419-428.
    [18] Nazeeruddin, Md. K.; Humphry-Baker, R.; Berner, D.; Rivier, S.; Zuppiroli, L.; Graetzel, M. Highly Phosphorescence Iridium Complexes and Their Application in Organic Light-Emitting Devices [J]. J. Am. Chem. Soc. 2003, 125(29): 8790-8797.
    [19] Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Kwong, R.; Tsyba, I.; Bortz, M.; Mui, B.; Bau, R.; Thompson, M. E. Synthesis and Characterization of Phosphorescent Cyclometalated Iridium ComPlexes [J]. Inorg. Chem. 2001, 40(7): 1704-1711.
    [20] Huang, W.-S.; Lin, J. T.; Chien, C.-H.; Tao, Y.-T.; Sun, S.-S.; Wen, Y.-S. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes Containing Benzoimidazole-Based Ligands [J]. Chem. Mater. 2004, 16(12): 2480-2488.
    [21] Duan, J.-P.; Sun, P.-P.; Cheng, C.-H. New Iridium Complexes as Highly Efficient Orange-Red Emitters in Organic Light-Emitting Diodes[J]. Adv. Mater. 2003, 15(3): 224-228.
    [22] Zhu, W. G.; Zhu, M. X.; Ke, Y.; Su, L. J.; Yuan, M.; Cao, Y. Synthesis and Red Electrophosphorescence of a Novel Cyclometalated Iridium Complex in Polymer Light-Emitting Diodes [J]. Thin Solid Films 2004, 446(1): 128-131.
    [23] Yang, C.-H.; Tai, C.-C.; Sun, I-W. Synthesis of a High-Efficiency Red Phosphorescent Emitter for Organic Light-Emitting Diodes [J]. J. Mater. Chem. 2004, 14(6): 947-950.
    [24] Liang, B.; Jiang, C.-Y.; Chen, Z.; Zhang, X.-J; Shi H.-H.; Cao; Y. New Iridium Complex.as High-Efficiency Red Phosphorescent Emitter in Polymer Light-Emitting Devices [J]. J. Mater. Chem. 2006, 16: 1281-1286.
    [25] Su, Y.-J.; Huang, H.-L.; Li, C.-L.; Chien, C.-H.; Tao, Y.-T.; Chou, P.-T.; Datta, S.; Liu, R.-S. Highly Efficient Red Electrophosphorescent Devices Based on Iridium Isoquinoline Complexes: Remarkable External Quantum Efficiency Over a Wide Range of Current[J]. Adv. Mater. 2003, 15(11): 884-888.
    [26] Lei, G. T.; Wang, L.D.; Duan, L.; Wang, J.H.; Qiu, Y. Highly Efficient Blue Electrophosphorescent Devices with a Novel Host Material [J]. Synthetic Metals 2004, 144(3): 249-252.
    [27] Holmes, R.J.; D'Andrade, B.W.; Forrest, S.R.; Ren, X.; Li, J.; Thompson, M. E. Efficient, Deep-Blue Organic Electrophosphorescence by Guest Charge Trapping [J]. Appl. Phys. Lett. 2003, 83(18): 3818-3820.
    [28] Ren X. F., Li J., Holmes R. J., Djurovich P. I., Forrest S. R., Thompson M. E. Ultrahigh Energy Gap Hosts in Deep Blue Organic Electrophosphorescent Devices [J]. Chem. Mater. 2004, 16(23): 4743-4747.
    [29] Holmes, R. J.; Forrest, S. R.; Tung, Y. J.; Kwong, R. C.; Brown, J. J.; Garon, S.; Thompson, M. E. Blue Organic Electrophosphorescence Using Exothermic Host-Guest Energy Transfer [J]. Appl. Phys. Lett. 2003, 82(15): 2422-2424.
    [30] Tokito, S.; Iijima, T.; Suzuri, Y.; Kita, H.; Tsuzuki, T.; Sato, F. Confinement of Triplet Energy on Phosphorescent Molecules for Highly-Efficient Organic Blue-Light-Emitting Device [J]. Appl. Phys. Lett. 2003, 83(3): 569-571.
    [31] Cheng G.; Li F.; Duan Y.; Feng, J.; Liu, S. Y.; Qiu, S.; Lin D.; Ma, Y. G.; Lee, S. T. White Organic Light-Emitting Devices Using a Phosphorescent Sensitizer [J]. Appl. Phys. Lett. 2003, 82(24): 4224-4226.
    [32] King, K. A.; Watts, R. J. Dual Emission from an Ortho-Metalated Iridium(Ⅲ) Complex[J]. J. Am. Chem. Soc. 1987, 109(5): 1589-1590.
    [33] Colombo, M. G.; Hauser, A.; Gudel, H. U. Evidence for Strong Mixing Between the LC and MLCT Excited States in Bis(2-phenylpyridinato-C2,N')- (2,2'-bipyridine)iridium(Ⅲ) [J]. Inorg. Chem. 1993, 32(14): 3088-3092.
    [34] Colombo, M. G.; Gudel, H. U. Synthesis and High-Resolution Optical Spectroscopy of Bis[2-(2-thienyl)pyridinato-C3,N'](2,2'-bipyridine)iridium(Ⅲ) [J]. Inorg. Chem. 1993, 32(14): 3081-3087.
    [35] Lo, K. K.-W.; Chung, C.-K.; Lee, T. K.-M.; Lui, L.-H.; Tsang, K. H.-K.; Zhu, N. New Luminescent Cyclometalated Iridium(Ⅲ) Diimine Complexes as Biological Labeling Reagents [J]. Inorg.Chem. 2003, 42(21): 6886-6897.
    [36] Neve, F.; La Deda, M.; Crispini, A.; Bellusci, A.; Puntoriero, F.; Campagna, S. Cationic Cyclometalated Iridium Luminophores: Photophysical, Redox, and Structural Characterization [J]. Organometallics 2004, 23(24): 5856-5863.
    [37] Neve, F.; Crispini, A.; Campagna, S., Serroni, S. Synthesis, Structure, Photophysical Properties, and Redox Behavior of Cyclometalated Complexes of Iridium(Ⅲ) with Functionalized 2,2'-Bipyridines [J]. Inorg. Chem. 1999, 38(10): 2250-2258.
    [38] Lepeltier, M.; Lee, T. K.-M.; Lo, K. K.-W.; Toupet, L.; Bozec, H. L.; Guerchais, V. Synthesis, Structure, and Photophysical and Electrochemical Properties of Cyclometallated Iridium(Ⅲ) Complexes with Phenylated Bipyridine Ligands [J]. Eur. J. Inorg. Chem. 2005, (1): 110-117.
    [39] Lafolet, F.; Welter, S.; Popovic, Z.; Cola, L. D. Iridium complexes containing p-phenylene units. The influence of the conjugation on the excited state properties [J]. J Mater. Chem. 2005, 15(27-28): 2820-2828
    [40] Plummer, E. A.; Hofstraat, J. W.; Cola, L. D. Mono- and di-nuclear iridium(Ⅲ) complexes. Synthesis and photophysics [J]. Dalton Trans. 2003, 10: 2080-2084.
    [41] Slinker, J. D.; Gorodetsky, A. A.; Lowry, M. S.; Wang, J.; Parker, S.; Rohl, R.; Bernhard, S.; Malliaras, G. G. Efficient Yellow Electroluminescence from a Single Layer of a Cyclometalated Iridium Complex[J]. J Am. Chem. Soc. 2004, 126(9): 2763-2767.
    [42] Plummer, E. A.; Dijken, A. van; Hofstraat, H. W.; Cola, L. D.; Brunner, K. Electrophosphorescent Devices Based on Cationic Complexes: Control of Switch-on Voltage and Efficiency Through Modification of Charge Injection and Charge Transport [J]. Adv. Funct. Mater. 2005, 15(2): 281-289.
    [43] Slinker, J. D.; Koh, C. Y.; Malliaras, G. G.; Lowry M. S.; Bernhard S. Green Electroluminescence from an Ionic Iridium Complex [J]. Appl. Phys. Lett. 2005, 86(17): 173506-1-173506-3.
    [44] Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A.; Jr., Malliaras, G. G.; Bernhard, S. Single-Layer Electroluminescent Devices and Photoinduced Hydrogen Production from an lonic Iridium(Ⅲ) Complex [J]. Chem. Mater. 2005, 17(23): 5712-5719.
    [45] Tamayo, A. B.; Garon, S.; Sajoto, T.; Djurovich, P. I.; Tsyba, I. M.; Bau, R.; Thompson, M. E. Cationic Bis-cyclometalated Iridium(Ⅲ) Diimine Complexes and Their Use in Efficient Blue, Green, and Red Electroluminescent Devices[J]. Inorg. Chem. 2005, 44(24): 8723-8732.
    [46] Ma, Y G.; Tian, W. J.; Shen, J. C.. Control of the Molecular Interaction in the Emitting Layer of Organic Light-Emitting Device [J]. Mater. Sci. Eng. C 1999, 10(1-2): 19-24.
    [47] Lee, C.-L.; Kang, N.-G.; Cho, Y.-S.; Lee, J.-S.; Kim, J.-J. Polymer Electrophosphorescent Device: Comparison of Phosphorescent Dye Doped and Coordinated Systems [J]. Optical Mater. 2003, 21(1-3): 119-123.
    [48] Wang, X. D.; Qgino, K.; Tanaka, K.; Usui, H. Novel Iridium Complex and Its Copolymer With N-Vinyl Carbazole for Electroluminescent Devices [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2004, 10(1): 121-126.
    [49] Tokito, S.; Suzuki, M.; Sato, F. Improvement of Emission Efficiency in Polymer Light-Emitting Devices Based on Phosphorescent Polymers [J]. Thin Solid Films, 2003, 445(2): 353-357.
    [50] Nuesch, F.; Berner, D.; Tutis, E.; Michel, S.; Ma, C.; Wang, X.; Zhang B.; Zuppiroli, L. Doping-induced Charge Trapping in Organic Light-Emitting Devices [J]. Adv. Funct. Mater. 2005, 15(2), 323-330.
    [51] Suzuki, M.; Hatakeyama, T.; Tokito, S.; Sato, E High-Efficiency White Phosphorescent Polymer Light-Emitting Devices [J]. IEEE Journal of Selected Topics in Quantum Electronics 2004, 10(1): 115-120.
    [52] Chen, X.; Liao, J.-L.; Liang, Y.; Ahmed, M. O.; Tseng, H.-E.; Chen, S.-A. High-Efficiency Red-Light Emission from Polyfluorenes Grafted with Cyclometalated Iridium Complexes and Charge Transport Moiety[J]. J. Am. Chem. Soc. 2003, 125(3): 636-637.
    [53] Jiang, J. X.; Jiang, C. Y.; Yang, W.; Zhen, H. Y.; Huang, F.; Cao, Y. High-Efficiency Electrophosphorescent Fluorene-alt-Carbazole Copolymers N-Grafted with Cyclometalated Ir Complexes [J]. Macromolecules 2005, 38(10): 4072-4080.
    [54] Sandee, A. J.; Williams, C. K.; Evans, N. R.; Davies, J. E.; Boothby, C. E.; Kohler, A.; Friend, R. H.; Holmes, A. B. Solution-Processible Conjugated Electrophosphorescent Polymers [J]. J. Am. Chem. Soc. 2004, 126(22): 7041-7048.
    [55] Zhen, H. Y.; Jiang, C. Y.; Yang, W.; Jiang, J. X.; Huang, F.; Cao, Y. Synthesis and Properties of Electrophosphorescent Chelating Polymers with Iridium Complexes in the Conjugated Backbone [J]. Chem. Eur. J. 2005, 11(17): 5007-5016.
    [56] Zhen, H. Y.; Luo, C.; Yang, W.; Song, W. Y.; Du, B.; Jiang, J. X.; Jiang, C. Y.; Zhang, Y.; Cao, Y. Electrophosphorescent Chelating Copolymers Based on Linkage Isomers of Naphthylpyridine-Iridium Complexes with Fluorene [J]. Macromolecules 2006, 39(5): 1693-1700.
    [57] Lo, S.-C.; Male, N. A. H.; Markham, J. P. J.; Magermis, S. W.; Bum, P. L.; Salata, O. V.; Samuel, I. D. W. Green Phosphorescent Dendrimer for Light-Emitting Diodes [J]. Adv. Mater 2002, 14(13-14): 975-979.
    [58] Lo, S.-C.; Namdas, E. B.; Burn, P. L.; Samuel, I. D. W. Synthesis and Properties of Highly Efficient Electroluminescent Green Phosphorescent Iridium Cored Dendrimers [J]. Macromolecules 2003, 36(26): 9721-9730.
    [59] Anthopoulos T. D.; Frampton, M. J.; Namdas, E. B.; Burn, P. L.; Samuel, I. D. W. Solution-Processable Red Phosphorescent Dendrimers for Light-Emitting Devices Applications [J]. Adv. Mater 2004, 16(6): 557-560.
    [60] Frampton, M. J.; Namdas, E. B.; Lo, S.-C.; Burn, P. L.; Samuel, I. D. W. The Synthesis and Properties of Solution Processable Red-Emitting Phosphorescent Dendrimer[J]. J. Mater Chem. 2004, 14(19): 2881-2888.
    [61] Namdas, E. B.; Ruseckas, A.; Samuel, I. D. W. Lo, S.-C.; Burn, P. L. Photophysics of Fac-Tris(2-Phenylpyridine) Iridium(Ⅲ) Cored Electroluminescent Dendrimers in Solution and Films [J]. J. Phys. Chem. B. 2004, 108(5): 1570-1577.
    [62] Ding, J. Q.; Gao, J.; Cheng, Y. Q.; Xie, Z. Y.; Wang, L. X.; Ma, D. G.; Jing, X. B.; Wang, F. S. Probing the Dinucleating Behaviour of a Bis-Bidentate Ligand: Synthesis and Characterisation of Some Di- and Mononuclear Cobalt(Ⅱ), Nickei(Ⅱ), Copper(Ⅱ) and Zinc(Ⅱ) Complexes of 3,5-Di(2-pyridyl)-4-(1H-pyrrol-1-yl)-4H-1,2,4-triazole [J]. Adv. Funct. Mater. 2006, 16(3): 575-581.
    [63] Shen, L.; Chen, Z.; Zhao, Q.; Li, F. Y.; Yi, T.; Cao, Y.; Huang, C. H. High Efficient Polymer Light-emitting Diode Based on A New Iridium(Ⅲ) Complex with Pyrazolone Ligand [J]. Inorg. Chem. Commun. 2006, 9(6): 620-623.
    [64] 李襄宏.吡啶类功能配合物的合成及其光电性质研究[D]。上海:复旦大学,2006:
    [65] Huynh, L.; Wang, Z.; Yang, J.; Stoeva, V.; Lough, A.; Manners, I.; Winnik, M. A. Evaluation of Phosphorescent Rhenium and Iridium Complexes in Polythionylphosphazene Films for Oxygen Sensor Applications[J]. Chem. Mater. 2005, 17(19), 4765-4773.
    [66] Goodall, W.; Williams, J. A. G. Iridium (Ⅲ) Bis-terpyridine Complexes Incorporating Pendent N-methylpyridinium Groups: Luminescent Sensors for Chloride Ions [J]. J. Chem. Soc., Dalton Trans. 2000, 17, 2893-2896.
    [67] Ho, M. L.; Hwang, F. M.; Chen, P. N.; Hu, Y. H.; Cheng, Y. M.; Chen, K. S.; Lee, G. H.; Chi, Y.; Chou, P. T. Design and Synthesis of Iridium (Ⅲ) Azacrown Complex: Applications as A Highly Sensitive Metal Cation Phosphorescence Sensor [J]. Org. Biomol. Chem., 2006, 4(1), 98-103.
    [1] Lee, C. L.; Lee, K. B.; Kim, J. J. Polymer Phosphorescent Light-Emitting Devices Doped with Tris(2-phenylpyridine) Iridium as a Triplet Emitter [J]. Appl. Phy. Lett. 2000, 77(15), 2280-2282.
    [2] Gong, X.; Robinson, M. R.; Ostrowski, J. C.; Moses, D.; Bazan, G. C.; Heeger, A. J. High-Efficiency Polymer-Based Electrophosphorescent Devices [J]. Adv. Mater. 2002, 14(8): 581-585,
    [3] Jiang, C. Y.; Yang, W.; Peng, J. B.; Xiao, S.; Cao, Y. High-Efficiency, Saturated Red-Phosphorescent Polymer Light-Emitting Diodes Based on Conjugated and Non-Conjugated Polymers Doped with an Ir Complex[J]. Adv. Mater 2004, 16(6): 537-541.
    [4] Niu, Y. H.; Tung, Y. L.; Chi, Y.; Shu, C. F.; Kim, J. H.; Chen, B.; Luo, J.; Carty, A. J.; Jen, A. K. Y. Highly Efficient Electrophosphorescent Devices with Saturated Red Emission from a Neutral Osmium Complex[J]. Chem. Mater 2005, 17(13), 3532-3536.
    [5] Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Kwong, R.; Tsyba, I.; Bortz, M.; Mui, B.; Bau, R.; Thompson, M. E. Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes[J]. Inorg. Chem. 2001, 40(7), 1704-1711.
    [6] Shi, M.; Li, F. Y.; Yi, T.; Zhang, D. Q.; Hu, H. M.; Huang, C. H. Tuning the Triplet Energy Levels of Pyrazolone Ligands to Match the ~5D_0 Level of Europium(Ⅲ)[J]. Inorg. Chem. 2005, 44(24), 8929-8936.
    [7] Hu, Y. Z.; Zhang, G.; Thummel, R. P. Friedlander Approach for the Incorporation of 6-Bromoquinoline into Novel Chelating Ligands[J]. Org. Lett. 2003, 5(13), 2251-2253.
    [8] Zhu, W.; Mo, Y.; Yuan, M.; Yang, W.; Cao, Y. Highly Efficient Electrophosphorescent Devices Based on Conjugated Polymers Doped with Iridium Complexes[J]. Appl. Phys. Lett. 2002, 80(12), 2045-2047.
    [9] Thummel, R. P.; Lefoulon, F.; Cantu, D.; Mahadevan, R. Polyaza Cavity-shaped Molecules. Annelated Derivatives of 2-(2'-Pyridyl)-1,8-naphthyridine and 2,2'-Bi-1,8-naphthyridine[J]. J. Org. Chem. 1984, 49(12), 2208-2212.
    [10] Nonoyama, K.[J] Bull. Chem. Soc. Jpn., 1974, 47, 467.
    [11] Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H. E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes:Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes[J]. J. Am. Chem. Soc. 2001, 123(18), 4304-4312.
    [12] Wu, F. I.; Su, H. J.; Shu, C. F.; Luo, L. Y.; Diau, W. G.; Cheng, C. H.; Duan, J. P.; Lee, G. H. Tuning the Emission and Morphology of Cyclometalated Iridium Complexes and Their Applications to Organic Light-emitting Diodes[J]. J. Mater. Chem. 2005, 15(10), 1035-1042.
    [13] Thomas, K. R. J.; Velusamy, M.; Lin, J. T.; Chien, C. H.; Tao, Y. T.; Wen, Y. S.; Hu, Y. H.; Chou, P. T. Efficient Red-Emitting Cyclometalated Iridium(Ⅲ) Complexes Containing Lepidine-Based Ligands[J]. Inorg.Chem. 2005, 44(16), 5677-5685.
    [14] Gong, X.; Lim, S. H.; Ostrowski, J. C.; Moses, D.; Bardeen, C. J., Bazan, G. C. Phosphorescence from Iiridium Complexes Doped into Polymer Blends[J]. J. Appl. Phys. 2004, 95(3), 948-953.
    [15] Chen, X. W.; Liao, J. L.; Liang, Y. M.; Ahmed, M. O.; Tseng, H. E.; Chen, S. A. High-Efficiency Red-Light Emission from Polyfluorenes Grafted with Cyclometalated Iridium Complexes and Charge Transport Moiety[J]. J. Am. Chem. Soc. 2003, 125(3), 636-637.
    [16] Gong, X.; Ostrowski, J. C.; Bazan, G. C.; Moses, D.; Heeger, A. J.; Liu, M. S.; Jen, A. K. Y. Electrophosphorescence from a Conjugated Copolymer Doped with an Iridium Complex: High Brightness and Improved Operational Stability[J]. Adv. Mater. 2003, 15(1), 45-49.
    [1] Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H. E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes [J]. J. Am. Chem. Soc. 2001, 123(18): 4304-4312.
    [2] Wu, F. I.; Su, H. J., Shu, C. F.; Luo, L. Y.; Diau, W. G.; Cheng, C. H.; Duan, J. P.; Lee, G. H. Tuning the Emission and Morphology of Cyclometalhted Iridium Complexes and Their Applications to Organic Light-emitting Diodes [J]. J. Mater Chem. 2005, 15(10): 1035-1042.
    [3] Thomas, K. R. J.; Velusamy, M.; Lin, J. T.; Chien, C. H.; Tao, Y. T.; Wen, Y. S.; Hu, Y. H.; Chou, P. T. Efficient Red-Emitting Cyclometalated Iridium(Ⅲ) Complexes Containing Lepidine-Based Ligands [J]. Inorg. Chem. 2005, 44(16): 5677-5685.
    [4] Rayabarapu, D. K.; Paulose, B. M. J. S.; Duan, J.-P.; Cheng, C.-H. New Iridium Complexes with Cyclometalated Alkenytquinoline Ligands as Highly Efficient Saturated Red-Light Emitters for Organic Light-Emitting Diodes [J]. Adv. Mater 2005, 17(3): 349-353.
    [5] Paulose, B. M. J. S.; Rayabarapu, D. K.; Duan, J.-P.; Cheng, C.-H. First Examples of Alkenyl Pyridines as Organic Ligands for Phosphorescent Iridium Complexes[J]. Adv. Mater. 2004, 16(22): 2003-2007.
    [6] Coppo, P.; Plumme, E. A.; Cola, L. D. Tuning Iridium(Ⅲ) Phenylpyridine Complexes in the " Almost Blue" Region[J]. Chem. Commn. 2004, 15: 1774-1775.
    [7] Laskar, I. R.; Chen, T.-M. Tuning of Wavelengths: Synthesis and Photophysical Studies of Iridium Complexes and Their Applications in Organic Light Emitting Devices[J]. Chem. Mater. 2004, 16(1): 111-117.
    [8] Glusac, K. D.; Jiang, S. J.; Schanze, K. S. Photophysics of Ir(Ⅲ) complexes with oligo(arylene ethynylene) ligands[J]. Chem. Commun. 2002, 21: 2504-2505.
    [9] Li, J.; Djurovich, P. I.; Alleyne, B. D.; Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M. E. Synthesis and Characterization of Cyclometalated Ir(Ⅲ) Complexes with Pyrazolyl Ancillary Ligands[J]. Polyhedron 2004,. 23(2-3): 419-428.
    [10] Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.-E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes[J]. J. Am. Chem. Soc. 2001, 123(18): 4304-4312.
    [11] Shen, L.; Chen, Z.; Zhao, Q.; Li, F. Y.; Yi, T.; Cao, Y.; Huang, C. H. High Efficient Polymer Light-emitting Diode Based on A New Iridium(Ⅲ) Complex with Pyrazolone Ligand[J]. Inorg. Chem. Commun. 2006, 9(6): 620-623.
    [12] Shi, M.; Li, F. Y.; Yi, T.; Zhang, D. Q.; Hu, H. M.; Huang, C. H. Tuning the Triplet Energy Levels of Pyrazolone Ligands to Match the ~5D_0 Level of Europium(Ⅲ)[J]. Inorg. Chem. 2005, 44(24): 8929-8936.
    [13] Lamansky, S.; Djurovich, P.; Murphy, D.; AbdeI-Razzaq, F.; Kwong, R.; Tsyba, I.; Bortz, M.; Mui, B.; Bau, R.; Thompson, M. E. Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes[J]. Inorg. Chem. 2001, 40(7): 1704-1711.
    [14] Fu, H. B.; Yao, J. N. Size Effects on the Optical Properties of Organic Nanoparticles[J]. J. Am. Chem. Soc. 2001, 123(7): 1434-1439.
    [15] An, B. K.; Kwon, S. K.; Jung, S. D.; Park, S. Y. Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles[J]. J. Am. Chem. Soc. 2002, 124(48): 14410-14415.
    [16] Tong, H.; Dong, Y. Q.; Hauβler, M.; Lain, J. W. Y.; Sung, H. H. Y.; Williams, I. D.; Sun, J. Z.; Tang, B. Z. Tunable aggregation-induced emission of diphenyldibenzofulvenes[J]. Chem. Commun. 2006, 10:1133-1135
    [17] Liu Z. P.; Gong X. Q.; Kohanoff J.; Sanchez C.; Hu P. Catalytic Role of Metal Oxides in Gold-Based Catalysts: A First Principles Study of CO Oxidation on TiO_2 Supported Au[J]. Phys. Rev. Lett. 2003, 91(26): 266102.
    [1] Coppo, P.; Plummer, E. A.; De Cola, L. Tuning Iridium(Ⅲ) Phenylpyridine Complexes in the "almost Blue" Region [J]. Chem. Comm. 2004,15: 1774-1775.
    [2] Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Kwong, R.; Tsyba, I.; Bortz, M.; Mui, B.; Bau, R.; Thompson, M. E. Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes [J]. Inorg. Chem. 2001, 40(7): 1704-1711.
    [3] Wilkinson, A. J.; Goeta, A. E.; Foster, C. E.; Williams, J. A. G. Synthesis and Luminescence of a Charge-Neutral, Cyclometalated Iridium(Ⅲ) Complex Containing N^C^N- and C^N^C-Coordinating Terdentate Ligands [J]. Inorg. Chem. 2004, 43(21): 6513-6515.
    [4] Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes [J]. J. Am. Chem. Soc. 2001, 123(18): 4304-4312.
    [5] Zhu, W.; Mo, Y.; Yuan, M.; Yang, W.; Cao, Y. Highly Efficient Electrophosphorescent Devices Based on Conjugated Polymers Doped with Iridium Complexes[J]. Appl. Phys. Lett. 2002, 80(12): 2045-2047.
    [6] Gong, X.; Ostrowski, J. C.; Bazan, G. C.; Moses, D.; Heeger, A. J. Red Electrophosphorescence from Polymer Doped with Iridium Complex [J]. Appl. Phys. Lett. 2002, 81(20): 3711-3713.
    [7] Thomas, K. R. J.; Velusamy, M.; Lin, J. T.; Chien, C. H.; Tao, Y. T.; Wen, Y. S.; Hu, Y. H.; Chou, P. T. Efficient Red-Emitting Cyclometalated Iridium(Ⅲ) Complexes Containing Lepidine-Based Ligands [J]. Inorg. Chem. 2005, 44(16): 5677-5685.
    [8] Chan, S. C.; Chan, M. C. W.; Wang, Y.; Che, C. M.; Cheung, K. K.; Zhu, N. Organic Light-Emitting Materials Based on Bis(arylacetylide)platinum(Ⅱ) Complexes Bearing Substituted Bipyridine and Phenanthroline Ligands: Photo- and Electroluminescence from 3MLCT Excited States[J]. Chem. Eur. J. 2001, 7(19): 4180-4190.
    [9] Lu, W.; Mi, B. X.; Chan, M. C. W.; Hui, Z.; Che, C. M.; Zhu, N.; Lee, S. T. Light-Emitting Tridentate Cyclometalated Platinum(Ⅱ) Complexes Containing σ-Alkynyl Auxiliaries: Tuning of Photo- and Electrophosphorescence[J]. J. Am. Chem. Soc. 2004, 126(15): 4958-4971.
    [10] Garces, F.O.; King, K. A.; Watts, R. J. Synthesis, Structure, Electrochemistry, and Photophysics of Methyl-substituted Phenylpyridine Ortho-metalated iridium(Ⅲ) Complexes[J]. Inorg. Chem. 1988, 27(20): 3464-3471.
    [11] Colombo, M. G.; Hauser, A.; Gudel, H. U. Synthesis, Structure, Photophysical Properties, and Redox Behavior of Cyclometalated Complexes of Iridium(Ⅲ) with Functionalized 2,2'-Bipyridines[J]. Inorg. Chem. 1999, 38(10): 2250-2258.
    [12] Neve, F.; Crispini, A.; Serroni, S.; Loiseau, F.; Campagna, S. Novel Dinuclear Luminescent Compounds Based on Iridium(Ⅲ) Cyclometalated Chromophores and Containing Bridging Ligands with Ester-Linked Chelating Sites[J]. Inorg. Chem. 2001, 40(6): 1093-1101.
    [13] Yutaka, T.; Obara, S.; Ogawa, S.; Nozaki, K.; Ikeda, N.; Ohno, T.; Ishii, Y.; Sakai, K.; Haga, M. Syntheses and Properties of Emissive Iridium(Ⅲ) Complexes with Tridentate Benzimidazole Derivatives[J]. Inorg. Chem. 2005, 44(13): 4737-4746.
    [14] Lo, K. K. W.; Ng, D. C. M.; Chung, C. K. First Examples of Luminescent Cyclometalated Iridium(Ⅲ) Complexes as Labeling Reagents for Biological Substrates[J]. Organometallics 2001, 20(24): 4999-5001.
    [15] Lo, K. K. W.; Chan, J. S. W.; Lui, L. H.; Chung, C. K. Novel Luminescent Cyclometalated Iridium(Ⅲ) Diimine Complexes That Contain a Biotin Moiety[J]. Organometallics 2004, 23(13): 3108-3116.
    [16] Lo, K. K. W.; Chung, C. K.; Lee, T. K. M.; Lui, L. H., Tsang, K. H. K.; Zhu, N. New Luminescent Cyclometalated Iridium(Ⅲ) Diimine Complexes as Biological Labeling Reagents[J]. Inorg. Chem. 2003, 42(21): 6886-6897.
    [17] Lo, K. K. W.; Li, C. K.; Lau, J. S. Y. Luminescent Cyclometalated Iridium(Ⅲ) Aryibenzothiazole Biotin Complexes[J]. Organometallics 2005, 24(19): 4594-4601.
    [18] Di Marco, G.; Lanza, M.; Mamo, A.; Stefio, I.; Di Pietro, C.; Romeo, G.; Campagna, S. Luminescent Mononuclear and Dinuclear Iridium(Ⅲ) Cyclometalated Complexes Immobilized in a Polymeric Matrix as Solid-State Oxygen Sensors[J]. Anal Chem. 1998, 70(23): 5019-5023.
    [19] Licini, M.; Williams, J. A. G. Iridium(Ⅲ) Bis-terpyridine Complexes Displaying Long-lived pH Sensitive Luminescence[J]. Chem.Commun. 1999, 19:1943-1944.
    [20] Goodall, W.; Williams, J. A. G. Iridium(Ⅲ) Bis-terpyridine Complexes Incorporating Pendent N-methylpyridinium Groups: Luminescent Sensors for Chloride Ions[J]. J. Chem. Soc., Dalton Trans. 2000,17: 2893-2896.
    [21] Neve, F.; Deda, M. L.; Crispini, A.; Bellusci, A.; Puntoriero, F.; Campagna, S. Cationic Cyclometalated Iridium Luminophores: Photophysicai, Redox, and Structural Characterization[J]. Organometallics 2004, 23(24): 5856-5863.
    [22] Lepeltier, M.; Lee, T. K. M.; Lo, K. K. W.; Toupet, L.; Bozec, H. L.; Guerchais, V. Synthesis, Structure, and Photophysical and Electrochemical Properties of Cyclometallated Iridium(Ⅲ) Complexes with Phenylated Bipyridine Ligands[J]. Eur. J. Inorg. Chem. 2005, 1:110-117.
    [23] Hu,Y. Z.; Zhang, G.; Thummel, R. P. Friedlander Approach for the Incorporation of 6-Bromoquinoline into Novel Chelating Ligands[J]. Org. Lett. 2003, 5(13): 2251-2253.
    [24] Schwab, P. F. H.; Fleischer, F.; Michl, J. Preparation of 5-Brominated and 5,5'-Dibrominated 2,2'-Bipyridines and 2,2'-Bipyrimidines[J]. J. Org. Chem. 2002, 67(2): 443-449.
    [25] Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S.; Hoshino, M.; Ueno, K. Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode[J]. J. Am. Chem. Soc. 2003, 125(42): 12971-12979.
    [26] Serroni, S.; Juris, A.; Campagna, S.; Venturi, M.; Denti, G.; Balzani, V. Tetranuclear Bimetallic Complexes of Ruthenium, Osmium, Rhodium, and Iridium. Synthesis, Absorption Spectra, Luminescence, and Electrochemical Properties[J]. J. Am. Chem. Soc. 1994, 116(20): 9086-9091.
    [27] Calogero, G; Giuffrida, G.; Serroni, S.; Ricevuto, V.; Campagna, S. Absorption Spectra, Luminescence Properties, and Electrochemical Behavior of Cyclometalated Iridium(Ⅲ) and Rhodium(Ⅲ) Complexes with a Bis(pyridyi)triazole Ligand[J]. Inorg. Chem. 1995, 34(3): 541-545.
    [28] Mamo, A.; Stefio, I.; Parisi, M.F.; Credi, A.; Venturi, M.; Di Pietro, C.; Campagna, S. Luminescent and Redox-Active Iridium(Ⅲ)-Cyclometalated Compounds with Terdentate Ligands[J]. Inorg. Chem. 1997, 36: 5947-5950.
    [29] Didier, P.; Ortmans, I.; Kirsch-De Mesmaeker, A.; Watts, R. J. Electrochemistry and Absorption and Emission Spectroscopy of New Orthometalated Complexes of Rhodium(Ⅲ) and Iridium(Ⅲ) with the Ligands 1,4,5,8-Tetraazaphenanthrene and 1,4,5,8,9,12-Hexaazatriphenylene[J]. Inorg. Chem. 1993, 32(23): 5239-5245.
    [30] Okada, S.; Okinaka, K.; Iwawaki, H.; Furugori, M.; Hashimoto, M.; Mukaide, T.; Kamatani, J.; lgawa, S.; Tsuboyama, A.; Takiguchi, T.; Ueno, K. Substituent effects of iridium complexes for highly efficient red OLED[J]. Dalton Trans 2005, 9:1583-1590.
    [31] Colombo, M. G.; Hauser, A,; Gudel, H. U. Evidence for Strong Mixing between the LC and MLCT Excited States in Bis(2-phenylpyridinato-C2,N')(2,2'-bipyridine)iridium(Ⅲ)[J]. Inorg. Chem. 1993, 32(14): 3088-3092.
    [32] Colombo, M. G.; Gudel, H. U. Synthesis and High-resolution Optical Spectroscopy of Bis[2-(2-thienyl)pyridinato-C3,N'](2,2'-bipyridine)iridium(Ⅲ)[J]. Inorg. Chem. 1993, 32(14): 3081-3087.
    [33] You, Y.; Park, S. Y. Inter-Ligand Energy Transfer and Related Emission Change in the Cyclometalated Heteroleptic Iridium Complex: Facile and Efficient Color Tuning over the Whole Visible Range by the Ancillary Ligand Structure[J]. J. Am. Chem. Soc. 2005, 127(36): 12438-12439.
    [34] Tamayo, A. B.; Garon, S.; Sajoto, T.; Djurovich, P. I.; Tsyba, I. M.; Bau, R.; Thompson, M. E. Cationic Bis-cyclometalated Iridium(Ⅲ) Diimine Complexes and Their Use in Efficient Blue, Green, and Red Electroluminescent Devices[J]. Inorg. Chem. 2005, 44(24): 8723-8732.
    [35] Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Endothermic Energy Transfer: A Mechanism for Generating Very Efficient High-energy Phosphorescent Emission In Organic Materials[J]. Appl. Phys. Lett. 2001, 79(13): 2082-2084.
    [1] de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Signaling Recognition Events with Fluorescent Sensors and Switches [J]. Chem. Rev. 1997, 97(5): 1515-1566.
    [2] Demas, J. N.; DeGraff, B. A. Applications of Luminescent Transition Platinum Group Metal Complexes to Sensor Technology and Molecular Probes [J]. Coord. Chem. Rev. 2001, 211(1): 317-351.
    [3] Tang, W. S.; Lu, X. X.; Wong, K. M. C.; Yam, V. W. W. Synthesis, Photophysics and Binding Studies of Pt(Ⅱ) Alkynyl Terpyridine Complexes with Crown Ether Pendant. Potential Luminescent Sensors for Metal Ions[J]. J. Mater. Chem. 2005, 15(27-28): 2714-2720.
    [4] Carraway, E. R.; Demas, J. N.; DeGraff, B. A.; Bacon, J. R. Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes [J]. Anal Chem. 1991, 63(4): 337-342.
    [5] Lin, Z. H.; Zhao, Y. G.; Duan, C. Y.; Zhang, B. G.; Bai, Z. P. A Highly Selective Chromo- and Fluorogenic Dual Responding Fluoride Sensor: Naked-eye Detection of F Ion in Natural Water via A Test Paper [J]. Dalton Trans. 2006, 30: 3678-3684.
    [6] Brinas, R. P.; Troxler, T.; Hochstrasser, R. M.; Vinogradov, S. A. Phosphorescent Oxygen Sensor with Dendritic Protection and Two-Photon Absorbing Antenna [J]. J. Am. Chem. Soc. 2005, 127(33): 11851-11862.
    [7] Gao, R.; Ho, D. G.; Hernandez, B.; Selke, M.; Murphy, D.; Djurovich, E I.; Thompson, M. E. Bis-cyclometalated Ir(Ⅲ) Complexes as Efficient Singlet Oxygen Sensitizers [J]. J. Am. Chem. Soc. 2002, 124(50): 14828-14829.
    [8] Huynh, L.; Wang, Z.; Yang, J.; Stoeva, V.; Lough, A.; Manners, I.; Winnik, M. A. Evaluation of Phosphorescent Rhenium and Iridium Complexes in Polythionylphosphazene Films for Oxygen Sensor Applications[J]. Chem. Mater. 2005, 17(19): 4765-4773.
    [9] Ho, M. L.; Hwang, F. M.; Chen, P. N.; Hu, Y. H.; Cheng, Y. M.; Chen, K. S.; Lee, G. H.; Chi, Y.; Chou, P. T. Design and Synthesis of Iridium(Ⅲ) Azacrown Complex: Application as A Highly Sensitive Metal Cation Phosphorescence Sensor [J]. Org. Biomol. Chem., 2006, 4(1): 98-103.
    [10] Zheng, H.; Qian, Z. H.; Xu, L.; Yuan, F. E; Lan, L. D.; Xu, J. G. Switching the Recognition Preference of Rhodamine B Spirolactam by Replacing One Atom: Design of Rhodamine B Thiohydrazide for Recognition of Hg(Ⅱ) in Aqueous Solution [J]. Org. Lett. 2006; 8(5): 859-861.
    [11] Tatay, S.; Gavina, P.; Coronado, E.; Palomares, E. Optical Mercury Sensing Using a Benzothiazolium Hemicyanine Dye [J]. Org. Lett. 2006, 8(17): 3857-3860.
    [12] Descalzo, A. B.; Martinez-Manez, R.; Radeglia, R.; Rurack, K.; Soto, J. Coupling Selectivity with Sensitivity in an Integrated Chemosensor Framework: Design of a Hg~(2+)-Responsive Probe, Operating above 500 nm [J]. J. Am. Chem. Soc. 2003, 125(12): 3418-3419.
    [13] Ros-Lis, J. V.; Marcos, M. D.; Martinez-Manez, R.; Rurack, K.; Soto, J. A Regenerative Chemodosimeter Based on Metal-Induced Dye Formation for the Highly Selective and Sensitive Optical Determination of Hg~(2+) Ions [J]. Angew. Chem., Int. Ed. 2005, 44(28): 4405-4407.
    [14] Cheng, Y. F.; Zhao, D. T.; Zhang, M.; Liu, Z.Q.; Zhou, Y. F.; Shu, T. M.; Li, F. Y.; Yi, T.; Huang, C. H. Azo 8-Hydroxyquinoline Benzoate as Selective Chromogenic Chemosensor for Hg~(2+) and Cu~(2+)[J]. Tetrahedron Lett. 2006, 47(36): 6413-6416.
    [15] Song, K. C.; Kim, J. S.; Park, S. M.; Chung, K. C.; Ahn, S.; Chang, S. K. Fluorogenic Hg~(2+)-Selective Chemodosimeter Derived from 8-Hydroxyquinoline [J]. Org. Lett. 2006, 8(6): 3413-3416.
    [16] Yang, Y. K.; Yook, K. J.; Tae, J. A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg~(2+) Ions in Aqueous Media [J]. J. Am. Chem. Soc. 2005, 127(48): 16760-16761.
    [17] Chae, M. Y.; Czarnik, A. W. Fluorometric Chemodosimetry. Mercury(Ⅱ) and Silver(Ⅰ) Indication in Water via Enhanced Fluorescence Signaling[J]. J. Am. Chem. Soc. 1992, 114(24): 9704-9705.
    [18] Hennrich, G.; Sonnenschein, H.; Resch-Genger, U. Redox Switchable Fluorescent Probe Selective for Either Hg(Ⅱ) or Cd(Ⅱ) and Zn(Ⅱ)[J]. J. Am. Chem. Soc. 1999, 121(21): 5073-5074.
    [19] Prodi, L.; Bargossi, C.; Montalti, M.; Zaccheroni, N.; Su, N.; Bradshaw, J. S.; Izatt, R. M.; Savage, R B. An Effective Fluorescent Chemosensor for Mercury Ions[J]. J. Am. Chem. Soc. 2000, 122(28): 6769-6770.
    [20] Sakamoto, H.; Ishikawa, J.; Nakao, S.; Wada, H. Excellent Mercury(Ⅱ) Ion Selective Fluoroionophore Based on A 3,6,12,15-Tetrathia-9-azaheptadecane Derivative Bearing A Nitrobenzoxadiazolyl Moiety[J]. Chem. Commun. 2000, 23: 2395-2396.
    [21] Nolan, E. M.; Lippard, S. J. A "Turn-On" Fluorescent Sensor for the Selective Detection of Mercuric Ion in Aqueous Media[J]. J. Am. Chem. Soc. 2003, 125(47): 14270-14271.
    [22] Lloris, J. M.; Martinez-Manez, R.; Padilla-Tosta, M. E.; Pardo, T.; Soto, J.; Beer, P. D.; Cadman, J.; Smith, D. K. Cyclic and Open-chain Aza-oxa Ferrocene-functionalised Derivatives as Receptors for the Selective Electrochemical Sensing of Toxic Heavy Metal Ions in Aqueous Environments[J]. J. Chem. Soc., Dalton Trans., 1999,14: 2359-2370.
    [23] Jimenez, D.; Martinez-Maneez, R.; Sancenon, F.; Soto, J. Electro-optical triple-channel Sensing of Metal Cations via Multiple Signalling Patterns. Tetrahedron Lett. 2004, 45(6): 1257-1259.
    [24] Lamansky, S.; Djurovich, R; Murphy, D.; Abdel-Razzaq, F.; Lee, H.E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. Highly Phosphorescent Bis-Cyciometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes[J]. J. Am. Chem. Soc. 2001, 123(18): 4304-4312.
    [25] Huang, C. C.; Chang, H. T. Selective Gold-Nanoparticle-Based "Turn-On" Fluorescent Sensors for Detection of Mercury(Ⅱ) in Aqueous Solution[J]. Anal. Chem. 2006, 78(24): 8332-8338.
    [26] Yang, Y. K.; Yook, K. J.; Tae, J. A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg~(2+) Ions in Aqueous Media. J. Am. Chem. Soc. 2000, 12 7(48): 16760-16761.
    [27] Pearson, R. G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85(22): 3533-3539.
    [28] Coronado, E.; Galan-Mascaros, J. R.; Marti-Gastaldo, C.; Palomares, E.; Durrant, J. R.; Vilar, R.; Gratzel, M.; Nazeeruddin, M. K. Reversible Colorimetric Probes for Mercury Sensing. J. Am. Chem. Soc. 2004, 127(35): 12351-12356.
    [29] Hwang, F. M.; Chen, H. Y.; Chen, P. S.; Liu, C. S.; Chi, Y.; Shu, C. E; Wu, E I.; Chou, P. T.; Peng, S. M.; Lee, G. H. Iridium(Ⅲ) Complexes with Orthometalated Quinoxaline Ligands: Subtle Tuning of Emission to the Saturated Red Color. Inorg. Chem. 2005, 44(5): 1344-1353.
    [30] Li, J.; Djurovich, P. I.; Alleyne, B. D.; Yousufuddin, M.; Ho, N. N.; Thomas, J. C.; Peters, J. C.; Bau, R.; Thompson, M. E. Synthetic Control of Excited-State Properties in Cyclometalated Ir(Ⅲ) Complexes Using Ancillary Ligands. Inorg. Chem. 2005, 44(6): 1713-1727.
    [1] Beer, P. D.; Gale, P. A. Anion Recognition and Sensing: The State of the Art and Future Perspectives[J]. Angew. Chem.. Int. Ed., 2001, 40(3): 486-516.
    [2] Martinez-Manez, R.; Sancenon, F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions[J]. Chem. Rev., 2003, 103(11): 4419-4476.
    [3] Suksai, C.; Tuntulani, T. Chromogenic Anion Sensors[J]. Chem. Soc. Rev. 2003, 32(4): 192-202.
    [4] Bondy, C. R.; Gale, P. A.; Loeb, S. J. Metal-Organic Anion Receptors: Arranging Urea Hydrogen-Bond Donors to Encapsulate Sulfate Ions[J]. J. Am. Chem. Soc. 2004, 126(16): 5030-5031.
    [5] Chmielewski, M. J.; Charon, M.; Jurczak, J. 1,8-Diamino-3,6-dichlorocarbazole: A Promising Building Block for Anion Receptors[J]. Org Lett. 2004, 6(20): 3501-3504.
    [6] Nielsen, K. A.; Jeppesen, J. O.; Levillain, E.; Becher, J. Mono-Tetrathiafulvalene Calix[4]pyrrole in the Electrochemical Sensing of Anions[J]. Angew. Chem., Int. Ed. 2003, 42(2): 187-191.
    [7] Wallace, K. J.; Belcher, W. J.; Syed, K. E; Seed, J. W. Slow Anion Exchange, Conformationat Equilibria, and Fluorescent Sensing in Venus Flytrap Aminopyridinium-Based Anion Hosts[J]. J. Am. Chem. Soc. 2003, 125(32): 9699-9715.
    [8] Han, M. J.; Gao, L. H.; Wang, K. Z. Ruthenium(Ⅱ) Complex of 2-(9-Anthryl)-1H-imidazo[4,5-f][1,10]phenanthroline: Synthesis, Spectrophotometric pH Titrations and DNA Interaction[J]. New. J. Chem. 2006, 30(2): 208-214.
    [9] Neve, E; Deda, M. L.; Crispini, A.; Bellusci, A.; Puntoriero, E; Campagna, S. Cationic Cyclometalated Iridium Luminophores: Photophysical, Redox, and Structural Characterization[J]. Organometallics 2004, 23(24): 5856-5863.
    [10] Calogero, G.; Giuffrida, G.; Serroni, S.; Ricevuto, V.; Campagna, S. Absorption Spectra, Luminescence Properties, and Electrochemical Behavior of Cyclometalated Iridium(Ⅲ) and Rhodium(Ⅲ) Complexes with a Bis(pyridyl)triazole Ligand[J]. Inorg. Chem. 1995, 34(3): 541-545.
    [11] Stahl, R.; Lambert, C.; Kaiser, C.; Wortmann, R.; Jakober, R. Electrochemistry and Photophysics of Donor-Substituted Triarylboranes: Symmetry Breaking in Ground and Excited State[J]. Chem. Eur. J. 2006, 12(8): 2358-2370.
    [12] Cho, E. J.; Moon, J. W.; Ko, S. W.; Lee, J. Y.; Kim, S. K.; Yoon, J.; Nam, K. C. A New Fluoride Selective Fluorescent as Well as Chromogenic Chemosensor Containing a Naphthalene Urea Derivative[J]. J. Am. Chem. Soc. 2003, 125(41): 12376-12377.
    [13] Gunnlaugsson, T.; Kruger, P. E.; Jensen, P.; Pfeffer, F. M.; Hussey, G. M. Simple Naphthalimide Based Anion Sensors: Deprotonation Induced Colour Changes and CO_2 Fixation[J]. Tetrahedron Lett. 2003, 44(49): 8909-8913.
    [14] Lee, J. Y.; Cho, E. J.; Mukamel, S.; Nam, K. C. Efficient Fluoride-Selective Fluorescent Host: Experiment and Theory[J]. J. Org. Chem. 2004, 69(3): 943-950.
    [15] Vazquez, M.; Fabbrizzi, L.; Taglietti, A.; Pedrido, R. M.; Gonzalez-Noya, A. M.; Bermejo, M. R. A Colorimetric Approach to Anion Sensing: A Selective Chemosensor of Fluoride Ions, in which Color is Generated by Anion-Enhanced π Delocalization[J]. Angew. Chem. Int. Ed. 2004, 43(15): 1962-1965.
    [16] Boiocchi, M.; Boca, L. D.; Esteban-Gomez, D.; Fabbrizzi, L.; Licchelli, M.; Monzani, E. Nature of Urea-Fluoride Interaction: Incipient and Definitive Proton Transfer[J]. J. Am. Chem. Soc. 2004, 126(50): 16507-16514.
    [1] Lee, M. H.; Agou, T.; Kobayashi, J.; Kawashima, T.; Gabbai, F. P. Fluoride Ion Complexation by A Cationic Borane in Aqueous Solution[J]. Chem. Comm. 2007, 11: 1133-1135.
    [2] Hudnalt, T. W.; Melami, M.; Gabbai, F. P. Hybrid Lewis Acid/Hydrogen-Bond Donor Receptor for Fluoride [J]. Org. Lett. 2006, 8(13): 2747-2749.
    [3] Liu, Z. Q.; Shi, M.; Li, F. Y.; Fang, Q.; Chen, Z. H.; Yi, T.; Huang, C. H. Highly Selective Two-Photon Chemosensors for Fluoride Derived from Organic Boranes [J]. Org. Lett. 2005, 7(24): 5481-5484.
    [4] Martinez-Manez, R.; Sancenon, F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions [J]. Chem. Rev. 2003, 103(11): 4419-4476.
    [5] Valeur, B.; Leray, I. Design Principles of Fluorescent Molecular Sensors for Cation Recognition [J]. Coord. Chem. Rev. 2000, 205(1): 3-40.
    [6] Gale, P. A. Anion Receptor Chemistry: Highlights from 1999 [J]. Coord. Chem. Rev. 2001, 213(1): 79-128.
    [7] Davis, A. P.; Wareham, R. S. Carbohydrate Recognition through Noncovalent Interactions: A Challenge for Biomimetic and Supramolecular Chemistry [J]. Angew. Chem., Int. Ed. 1999, 38(20): 2978-2996.
    [8] Beer, P. D.; Gale, P. A. Anion Recognition and Sensing: The State of the Art and Future Perspectives[J]. Angew. Chem.,Int. Ed. 2001, 40(3): 486-516.
    [9] Schmidtchen, F. P.; Berger, M. Artificial Organic Host Molecules for Anions[J]. Chem. Rev. 1997, 97: 1609-1646.
    [10] Jia, W. L.; Bai, D. R.; McCormick, T.; Liu, Q. D.; Motala, M.; Wang, R. Y.; Seward, C.; Tao, Y.; Wang, S. N. Three-Coordinate Organoboron Compounds BAr2R(Ar=Mesityl, R=7-Azaindolyl-or 2,2'-Dipyridylamino-Functionalized Aryl or Thienyl) for Electroluminescent Devices and Supramolecular Assembly[J]. Chem. Eur. J. 2004, 10(4): 994-1006.
    [11] Lo, K. K. W.; Chan, J. S. W., Lui, L. H.; Chung, C. K. Novel Luminescent Cyclometalated Iridium(Ⅲ) Diimine Complexes That Contain a Biotin Moiety[J]. Organometallics 2004, 23(13): 3108-3116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700