状态方程穿越-1的暗能量模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来许多超新星、宇宙微波背景辐射和宇宙大尺度结构等的天文观测结果均指出宇宙正在加速膨胀,而非原先传统理论所预测的减速膨胀。此一结论违反了我们对物质的认识(我们认为物质均受万有引力作用,而引力致使两物体永远是相互吸引的),显示宇宙中必定存在一种具有负压强并且能起斥力作用的能量存在,称为“暗能量”,研究表明暗能量大约占据了现今宇宙总能量密度的三分之二,其本质与行为决定了我们宇宙的命运。因此它可说是目前宇宙学上最热门的研究课题之一。
     暗能量究竟是什么?我们还不知道。只知道暗能量必须具备足够大的负压强,这样它所产生的斥力方能致使宇宙加速膨胀。而且现在我们在星系及星系团的范围内都无法探测到此能量的存在,所以暗能量近乎均匀的,至少在可探测尺度上是均匀的,而且与光子是没有相互作用的。
     理论家们根据以上几点性质和来源于天文观测的限制,提出了很多暗能量模型,最简单的候选者是宇宙学常数,还有动力学暗能量模型如慢速滚动的标量场Quintessence,Phantom和Quintom等。这些模型的不同也表现在其状态方程ω_(de)=p_(de)/ρ_(de)的不同上,如:宇宙学常数对应于ω_(de)=-1,Quintessence对应于-1<ω_(de)<-1/3,Phantom对应于ω_(de)<-1而Quintom的状态方程穿越-1,即暗能量状态方程从过去的ω_(de)>-1演化到现在的ω_(de)<-1。这些模型在描述宇宙方面都表现出与天文观测不同程度上的一致。给定了大量的暗能量模型,选择最适合于宇宙观测的暗能量模型与探索暗能量的神秘属性,是现代宇宙学研究的重要课题之一。
     本论文首先回顾了宇宙学的基础知识,从宇宙学原理到大爆炸宇宙学以及暴胀宇宙理论。在论文的第二章,论述了宇宙加速膨胀及暗能量存在的观测依据,主要来源于超新星和宇宙微波背景辐射的观测结果。接下来介绍了暗能量的众多候选者,重点介绍了暗能量状态方程穿越-1的观测结果及实现此结果的暗能量模型。这也是我们所做工作的主要出发点。
     第三章讨论了广义的Quintom暗能量模型。在Quintom暗能量中代表正动能的Quintessence项和代表负动能的Phantom项具有相同的权重,在决定暗能量的演化上具有同等的地位。我们加进了一个自由参数改变了Quintessence和Phantom等权重的情况,而且多了一个自由度,这样能更好地描述宇宙的演化。
     第四章提出了与具体机制无关的暗物质与暗能量的统一模型:P_(dm)+p_(de)=B(z)(ρ_(dm)+ρ_(de))。根据宇宙的演化历史我们给出了选取B(z)的约束条件。在此约束条件下我们给出B(z)的具体形式,其能很好地描述宇宙过去的演化,并且对宇宙未来的演化给出了预测。
     第五章讨论了暗能量相变,假定宇宙中只有非相对论性物质和暗能量,并且这两个成分间没有相互作用力即各自满足自己的守恒方程。这样我们可以根据它们各自的守恒方程和暗能量状态方程的可能取值,给出暗能量密度比分及其密度本身的演化。为选取暗能量模型给出一些依据。结合现在流行的暗能量状态方程穿越-1的演化行为(暗能量从Quintessence相到Phantom相的相变)我们得到了暗能量密度是先减小再增大的。延用二次函数作为暗能量密度,我们分析了相变点的情况,也证明了相变的暗能量能很好地描述宇宙的演化。
     理论源于天文观测,第六章根据新发布的超新星数据,用幂级数模拟暗能量密度给出了暗能量密度的可能演化,我们得到两种可能的演化趋势,为研究暗能量和探索暗能量神秘性提供一些线索。
     综上所述,我们主要研究了状态方程穿越-1的暗能量模型,它们均实现了宇宙从早期的减速膨胀到近期的加速膨胀。但我们的研究还是远远不够的,我们至今仍无法回答暗能量究竟是什么的问题。以及暗能量的存在对早期宇宙的结构形成有什么影响,以及对今天天体的行为有没有影响。我们期望将来的工作能对这些问题给出合理的解答。
The recent cosmological observations strongly support that the expansion of the universespeeds up rather than slows down, obtained by studying type Ia supernova, cosmic microwavebackground and large scale structure. Theoreticians think the existence of the mysteriouscomponent with negative pressure called "dark energy" is certain, which violates the basicconcept of the gravitational effect (gravitation makes any two bodies interattraction forever).The research shows that dark energy comprises about 2/3 of the total energy density of theuniverse whose nature and evolution decide the destiny of the universe. This is why darkenergy is regarded as the one of the most important research subjects of the recent cosmology.
     It is unknown that what is dark energy on earth. It is recognized that dark energyhas enough sufficient negative pressure to drive the accelerating expansion. Otherwise, darkenergy has been not detected on the scale of galaxies and galaxy clusters, so dark energyevenly distributes in the whole universe or on the observable scales at least and it has nointeraction with the photons.
     On the base of the above characters and the astronomical observations, the theoreticianspromoted many models of dark energy. The simplest model is a cosmological constant. Thereare many more complex models proposed attempting to explain dark energy either as adynamic substance: slow-rolling scalar field for example Quintessence, Phantom and Quintomand so on. The difference of these candidates for dark energy is the size of the state equationω_(de)=p_(de)/ρ_(de) and for the cosmological constantω_(de)= -1, for quintessence -1<ω_(de)<-1/3,for phantomω_(de)<-1 and for quintom the crossing -1, namely, the state equation of darkenergy being below-1 around the present epoch evolved fromω_(de)<-1 in the past. Thesemodels show various degrees of consistency with the observational data in describing theevolution of the universe. Given the plethora of models, choosing the models of the best fitto the observational data and investigating the properties of this mysterious component isone of the most exciting problems of modern cosmology.
     In this thesis, first the basic knowledge of cosmology is reviewed including cosmologicalprinciple, big-bang cosmology and inflationary cosmology. In chapter 2, the observationalevidences for the accelerating expansion of the universe and the existence of dark energy arediscussed: type Ia supernova and cosmic microwave background. Many candidates of darkenergy are introduced, but lay an emphasis on the observations for the state equation of dark energy crossing -1 and introduce several models of dark energy which can realize the stateequation of dark energy being below -1 around the present epoch evolved fromω_(de)<-1 inthe past. This is also the basic of this thesis.
     In chapter 3, a generalized Quintom dark energy is studied. In the model of Quintom darkenergy, the weights of the negative-kinetic scalar field (Phantom) and that of the normal scalarfield (Quintessence) are equal. So they influence the evolution of dark energy comparably.The model of the generalized Quintom dark energy is developed by adding a parameter g tochange the situation of their equal weight and to increase the degree of freedom, which canbetter describe the evolution of the university.
     In chapter 4, a unified equation for dark energy and dark matter is presented: P_(dm)+P_(de)=B(z)(ρ_(dm)+ρ_(de)). In terms of the evolution of the universe, some constraints for B(z) areproposed. Based on the constraints, given a concrete form of function B(z), the past evolutionof the universe can be obtained which is in consistence with what is recognized and the futureevolution of the universe can be forecasted.
     In chapter 5, the phase transition of dark energy is discussed. The change rate of thefractional density and the density of dark energy can be obtained from the conservationcondition which gives some foundations to choose the models of dark energy. Combining thestate equation of dark energyω_(de) crossing -1(which can be regarded as the phase transitionof dark energy from Quintessence phase to Phantom phase), the conclusion can be obtainedthat the density of dark energy first decreases to a minimum then increases. Taken the densityof dark energy to be a quadratic function, the cosmological parameters corresponding to thetransformation point are analyzed and the conclusions show that dark energy of the phasetransition accords with the evolution of the universe.
     In chapter 6, the possible evolution of dark energy is analyzed by using the powerseries. The parameters are constrained from the newly released Gold sample of the supernovadataset. Two kinds of evolutional trend of dark energy are obtained. Expect the study cangive some clues in probing into the nature of dark energy.
     In summary, the models of dark energy for the state equation crossing -1 are analyzedwhichrealize that the universe transited from deceleration to acceleration. But These workcan not answer what is dark energy on earth, what is the influence of dark energy on thestructure formation, etc. Expect that the future work can well answer these questions.
引文
[1] 俞允强,《广义相对论引论》,北京:北京大学出版社,1997.
    [2] 俞允强,《物理宇宙学讲义》,北京:北京大学出版社,2002.
    [3] 梁灿彬,《微分几何与广义相对论》上、下,北京:北京师范大学出版社,2000.
    [4] Wald R M, General Relativity, Chicago: The University of Chicago Press, 1984.
    [5] Penzias A A and Wilson R W, A measurement of excess antenna temperature at 4080Mc/s, Astrophys. J. 1965, 210, 419-421.
    [6] Liddle Andrew R, The Early Universe. proceedings of 'From Quantum Fluctuations to Cosmological Structures', Casablanca, Morocco, December 1996, astro-ph/9612093.
    [7] Liddle Andrew R, An introduction to cosmological inflation, proceedings of ICTP summer school in high-energy physics, 1998, astro-ph/9901124.
    [8] http://map.gsfc.nasa.gov.
    [9] Bennett C L, et al., First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Resnlts, Astrophys. J.Suppl. Ser. 2003, 148(1):1-27, astro-ph/0302207.
    [10] Spergel D N, et al., First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters, Astrophys. J.Suppl. Ser. 2003, 148(1):175-194, astroph/0302209.
    [11] Hinshaw G, et al., First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Angular Power Spectrum, Astrophys. J. Suppl. Set. 2003, 148(1):135-174, astro-ph/0302217.
    [12] Peiris H V, et al., First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Inflation, Astrophys. J. Suppl. Set. 2003, 148(1):213-232, astro-ph/0302225.
    [13] Spergel D N, et al., Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology, Astrophys. J. 2007, in press, astro-ph/0603449.
    [14] Mather J, et al., A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite, Astrophys. J. 1990, 354(2):L37-L40.
    [15] Guth A H, Inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D 1981, 23(2):347-356.
    [16] Linde A D, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 1982, 108(6):389-393.
    [17] Albrecht A and Steinhardt P J, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett. 1982, 48(17):1220-1223.
    [18] Branch D, Type Ia Supernovae and the Hubble Constant, Ann.Rev.Astron.Astrophys. 1998, 36(1): 17-55, astro-ph/9801065.
    [19] http://www-supernova.lbl.gov.
    [20] Padmanabham T. Cosmological Constant-The Weight of the Vacuum, Phys. Rept. 200a, 380(6):235-331. hep-th/0212290.
    [21] Padmanabham T. Structure Formation in the Universe, Cambridge: Cambridge University Press, 1993.
    [22] Riess A G, et al., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, Astron.J. 1998, 116(3): 1009-1038, astro-ph/9805201.
    [23] Benitez Narciso, Riess A G, et al, The magnification of SN 1997ff, the farthest known Supernova, Astrophys. J. 2002, 577(1):L1-14, astro-ph/0207097.
    [24] Riess A G et al. [Supernova Search Team Collaboration], Type Ia Supernova Discoveries at z > 1 From the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution, Astrophys. J. 2004, 607(2):665-687, astro-ph/0402512.
    
    [25] Knop R A, et al. [The Supernova Cosmology Project Collaboration], New Constraints on Ω_M,Ω_A, and w from an Independent Set of Eleven High-Redshift Supernovae Observed with HST, Astrophys. J. 2003, 598(1):102-112, astro-ph/0309368.
    
    [26] Riess A G et al, New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1 : Narrowing Constraints on the Early Behavior of Dark Energy, Astrophys. J. 2007, accepted, astro- ph/0611572.
    
    [27] Astier P, et al., The Supernova Legacy Survey: Measurement of Ω_M, Ω_A and ω from the First Year Data Set, Astron.Astrophys. 2006, 447(1):31-48, astro-ph/0510447;
    
    [28] Hu W, Fukugita M, Zaldarriaga M, Tegmark M, CMB Observables and Their Cosmological Implications, Astrophys. J. 2001, 549(2):669-680, astro-ph/0006436.
    
    [29] Skordis C, Albrecht A, Planck-scale Quintessence and the Physics of Structure Formation, Phys. Rev. D 2002, 66(8):043523(15), astro-ph/0012195.
    [30] Barreiro T, Copeland E J and Nunes N J, Quintessence Arising from Exponential Potentials, Phys. Rev. D 2000, 61(12):127301(4).
    [31] Amendola L, Coupled Quintessence, Phys. Rev. D 2000, 62(4):043511(10).
    
    [32] Perrotta F, Baccigalupi C, Matarrese S, Extended Quintessence, Phys. Rev. D 2000,61(2):023507(12).
    
    [33] Baccigalupi C, Matarrese S and Perrotta F, Tracking Extended Quintessence, Phys. Rev. D 2000, 62(12):123510(15).
    [34] Brax P, Martin J, Riazuelo A, Exhaustive Study of Cosmic Microwave Background Anisotropies in Quintessential Scenarios, Phys. Rev. D 2000, 62(10):103505(15).
    
    [35] Doran M, Lilley M, Schwindt and Wetterich C, Quintessence and the Separation of CMB Peaks, Astrophys. J. 2001, 559(5):501-506, astro-ph/0012139.
    [36] Doran M, Lilley M, The Location of CMB Peaks in a Universe with Dark Energy, Mon. Not. Roy. Astron. Soc. 2002, 330(4):965-970, astro-ph/0104486.
    [37] Doran M, Lilley M and Wetterich C, Constraining Quintessence with the New CMB Data, Phys. Lett. B 2002, 528(3-4):175-180, astro-ph/0105457.
    
    [38] Scott D, Smoot G F, et al, Review of Particle Physics. Phys. Lett. B 2004. 592(1-4):1-5.
    [39] Weinberg S, The cosmological constant problem, Rev. Mod. Phys. 1989. G1(1):1-23.
    [40] Arkani-Hamed N, Hall L J, Kolda C F and Murayama H. New Perspective on Cosmic Coincidence Problems, Phys. Rev. Lett. 2000. 85(21):4434-4437. astro-ph 0005111.
    [41] Steinhardt P J, in Critical Problems in Physics, edited by Fitch V L and Marlow D R (Princeton University Press, Princeton. NJ. 1997).
    
    [42] Zlatev I, Wang L, Steinhardt P J, Quintessence, Cosmic Coincidence, and the Cosmological Constant, Phys. Rev. Lett. 1999, 82(2):896-899, astro-ph/9807002.
    [43] Sahni V, Dark Matter and Dark Energy, The Physics of the Early Universe. Editor Papantonopoulos E, Springer 2005, 141-180, astro-ph/0403324.
    [44] Ratra B, Peebels P J E, Cosmological Consequences of a Rolling Homogeneous Scalar Field, Phys. Rev. D 1988, 37(12):3406 - 3427.
    [45] Wetterich C, Cosmology and the Fate of Dilatation Symmetry, Nuclear Physics B 1988, 302(4):668- 696.
    [46] Ferreira P G, Joyce M, Structure Formation with a Self-Tuning Scalar Field, Phys. Rev. Lett. 1997,79(24):4740 - 4743; Ferreira, P G and Joyce M, Cosmology with a primordial scaling field, Phys. Rev. D 1998, 58(2):023503(23).
    [47] Frieman J, Hill C T, Stebbins A and Waga I, Cosmology with Ultralight Pseudo Nambu-Goldstone Bosons, Phys. Rev. Lett. 1995, 75(11):2077 - 2080.
    
    [48] Brax P, Martin J, Robustness of quintessence, Phys. Rev. D 2000, 61(10):103502(14).
    [49] Sahni V, Wang L, New Cosmological Model of Quintessence and Dark Matter, Phys. Rev. D 2000, 62(10):103517(4).
    [50] Sahni V, Starobinsky A A, The Case for a Positive Cosmological Lambda-term, Int. J. Mod. Phys. D 2000, 9(4):373-444, astro-ph/9904398.
    [51] Urena-Lopez, L A, Liddle A, Supermassive Black Holes in Scalar Field Galaxy Halos, Phys. Rev. D 2002, 66(8):083005(5), astro-ph/0207493.
    [52] Barreiro T, Copeland E J, Nunes N J, Quintessence Arising from Exponential Potentials, Phys. Rev. D 2000, 61(12):127301(4).
    
    [53] Albrecht A, Burgess C P, Ravndal F and Skordis C, Natural Quintessence and Large Extra Dimensions, Phys. Rev. D 2002, 65(12):123507(10).
    [54] Melchiorri A, Mersini-Houghton L, Odmann C J and Trodden M, The State of the Dark Energy Equation of State, Phys. Rev. D 2003, 68(4):043509(7).
    [55] Caldwell R R, Kamionkowski M and Weinberg N N, Phantom Energy: Dark Energy with ω < 1 Causes a Cosmic Doomsday, Phys. Rev. Lett. 2003, 91(7):071301(4).
    [56] Stefancic H, Dark Energy Transition Between Quintessence and Phantom Regimes: An equation of State Analysis, Phys. Rev. D 2005, 71 (6):124036-124045.
    
    [57] Barrow J D, Sudden Future Singularities, Class. Quantum Grav. 2004, 21(11):L79-L82, gr-qc/0403084.
    
    [58] Barrow J D, Tsagas C G, New Isotropic and Anisotropic Sudden Singularities, Class. Quantum Grav. 2005, 22(9):1563-1571, gr-qc/0411045.
    
    [59] Nojiri S, Odintsov S D, Tsujikawa S, Properties of Singularities in the (Phantom) Dark Energy Universe, Phys. Rev. D 2005, 71(6):063004(16).
    [60] McInnes B, The dS/CFT Correspondence and the Big Smash, JHEP 2002, 0208(1):029-030.
    [61] Corasaniti P S, et al., Foundations of observing dark energy dynamics with the Wilkinson Microwave Anisotropy Probe, Phys. Rev. D 2004, 70(8):083006(15).
    [62] Upadhye A, Ishak M and Steinhardt P J, Dynamical dark energy: Current constraints and forecasts, Phys. Rev. D 2005, 72(6):063501(21).
    [63] Hu W, Crossing the phantom divide: Dark energy internal degrees of freedom, Phys. Rev. D 2005, 71(4):047301(4).
    [64] Hannestad S and Mortsell E, Cosmological constraints on the dark energy equation of state and its evolution, JCAP 2004, 0409(9):001(17).
    [65] Lazkoz R, Nesseris S and Perivolaropoulos L, Exploring cosmological expansion parametrizations with the gold SnIa data set, JCAP 2005, 0511(11):010(14).
    [66] Alam U, Sahni V and Starobinsky A A, The case for dynamical dark energy revisited, JCAP 2004, 0406(6):008(16), astro-ph/0403687.
    [67] Huterer D, Cooray A, Uncorrelated Estimates of Dark Energy Evolution, Phys. Rev. D 2005, 71(2):023506(5), astro-ph/0404062.
    [68] Feng B, Wang X L and Zhang X M, Dark Energy Constraints from the Cosmic Age and Supernova, Phys.Lett. B 2005, 607(1-2):35-41, astro-ph/0404224.
    [69] Guo Z K, Piao Y S and Zhang Y Z, Cosmological Evolution of a Quintom Model of Dark Energy, Phys. Lett. B 2005, 608(3-4):177-182, astro-ph/0410654.
    [70] Wang W, Gui Y X and Shao Y, Development of the Model of the Generalized Quintom Dark Energy, Chin. Phys. Lett. 2006, 23(3):762-764.
    [71] Wei H, Cai R G and Zeng D F, Hessence: A New View of Quintom Dark Energy, Class.Quant.Grav. 2005, 22(16):3189-3202, hep-th/0501160.
    [72] Copeland E J, Sami M and Tsujikawa S, Dynamics of dark energy, Int. J. Mod. Phys. D 2006, 15(11)1753-1936, hep-th/0603057.
    [73] Alimohammadi M and Sadjadi H M, Attractor solutions for general hessence dark energy, Phys. Rev. D 2006, 73(8):083527(7).
    [74] Zhao W, Zhang Y, Quintom models with an equation of state crossing —1, Phys. Rev. D 2006, 73(12):123509(12), astro-ph/0604460.
    
    [75] Wang W, Gui Y X and Zhang S H, et al, The Unified Equation of State for Dark Matter and Dark Energy, Mod. Phys. Lett. A 2005, 20(19):1443-1449.
    [76] Wang W, Gui Y X and Shao Y, Analyzing the Possible Evolution of Dark Energy by Using the Power Series, Chin. Phys. Lett. 2007, 24(5):in press.
    [77] Kamenshchik A Yu, Moschella U and Pasquier V, An Alternative to Quintessence, Phys. Lett. B 2001, 511(2-4):265-268, gr-qc/0103004.
    [78] Bilic Neven, et al, Unification of Dark Matter and Dark Energy: the Inhomogeneous Chaplygin Gas. Phys. Lett. B 2002, 535(1-4):17-21, astro-ph/0111325.
    [79] Zimdahl W and Fabris J C, Chaplygin gas with non-adiabatic pressure perturbations, Class.Quant.Grav. 2005, 22(20):4311-4324, gr-qc/0504088.
    [80] Bilic N, Tupper G B and Viollier R D, Born-Infeld Phantom Gravastars, JCAP 2006, 0602(02):013(12), astro-ph/0503427.
    [81] Alcaniz J S, Jain Deepak and Dev Abha, High-redshift objects and the generalized Chaplygin gas. Phys. Rev. D 2003, 67(04):043514(5), astro-ph/0210476.
    [82] Avelino P P, Beca L M G, Carvalho J.P.M de and Martins C.J.A.P, The ACDM Limit of the Generalized Chaplygin Gas Scenario, JCAP 2003, 0309(9)002, astro-ph/0307427.
    [83] Amendola L, Finelli F, Burigana C and Carturan, WMAP and the Generalized Chaplygin Gas, JCAP 2003, 0307(7):005(14), astro-ph/0304325.
    [84] Bento M C, Bertolami O and Sen A A, Generalized Chaplygin Gas, Accelerated Expansion and Dark Energy-Matter Unification, Phys. Rev. D 2002, 66(4):043507(5), gr-qc/0202064.
    [85] Bento M C, Bertolami O and Sen A A, Generalized Chaplygin Gas Model: Dark Energy - Dark Matter Unification and CMBR Constraints, Gen.Rel.Grav. 2003, 35(11):2063-2069, gr-qc/0305086.
    [86] Bento M C, Bertolami O and Sen A A, WMAP Constraints on the Generalized Chaplygin Gas Model, Phys. Lett. B 2003, 575(3-4):172-180, astro-ph/0303538.
    [87] Silva P T and Bertolami O, Expected constraints on the generalized Chaplygin equation of state from future supernova experiments and gravitational lensing statistics, Astrophys. J. 2003, 599(2)829:838, astro-ph/0303353.
    [88] Bento M C, Bertolami O and Sen A A, Generalized Chaplygin gas and CMBR constraints, Phys. Rev. D 2003, 67(6):063003(4), astro-ph/0210468.
    [89] Bertolami O, Sen A A, Sen S and Silva P T, Latest Supernova data in the framework of Generalized Chaplygin Gas model, Mon.Not.Roy.Astron.Soc. 2004, 353(1):329 - 337, astro-ph/0402387.
    [90] Bento M C, Bertolami O and Sen A A, The Revival of the Unified Dark Energy-Dark Matter Model?, Phys.Rev. D 2004, 70(8):083519(6), astro-ph/0407239.
    [91] Guo Z K and Zhang Y Z, Cosmology with a Variable Chaplygin Gas, Phys. Lett. B 2007, 626(1- 4):7-14, astro-ph/0506091.
    [92] Liu H Y, Mashhoon B, A Machian interpretation of the cosmological constant, Ann.de Physik 1995, 4:565-582.
    [93] Liu H Y, Exact Global Solutions of Brane Universe and Big Bounce, Phys. Lett. B, 2003, 560(3- 4):149-154, hep-th/0206198.
    [94] Wang B L, Liu H Y, Xu L X, Accelerating Universe in a Big Bounce Model, Mod. Phys. Lett. A 2004, 19(6):449-456, gr-qc/0304093.
    [95] Xu L X, Liu H Y and Wang B L, On the Big Bounce Singularity of a Simple 5D Cosmological Model, Chin. Phys. Lett. 2003, 20(7):995-998, gr-qc/0304049.
    [96] Xu L X, Liu H Y. Chang B R, Correspondence Between 5D Ricci-Flat Cosmological Models and Quintessence Dark Energy Models. Mod. Phys. Lett. A. 2006, 21(40):3105-3114, astro-ph/0507397.
    [97] Capozziello S. Curvature Quintessence. International Journal of Modern Physics D 2002, 11(4):483- 491, gr-qc/0201033.
    
    [98] Capozziello S. Cardone V F. Carloni S and Troisi A. Curvature Quintessence Matched with Observational Data. Int. J. Mod. Phys. D 2003. 12(10):1969-1982, astro-ph/0307018.
    [99] Carroll S M, Duvvuri V, Trodden M and Turner M S, Is Cosmic Speed-Up Due to New Gravitational Physics?. Phys. Rev. D 2004, 70(4):043528(4), astro-ph/0306438.
    [100] Allemandi G, Borowiec A and Francaviglia M, Accelerated Cosmological Models in First-Order Non-Linear Gravity, Phys. Rev. D 2004, 70(4):043524(11), hep-th/0403264.
    [101] Brookfield A W, Bruck C van de and Hall Lisa M H, Viability of f(R) Theories with Additional Powers of Curvature, Phys. Rev. D 2006, 74(6):064028(12), hep-th/0608015.
    [102] Carroll S M, Felice A D and Duvvuri V, The Cosmology of Generalized Modified Gravity Models, Phys. Rev. D 2005, 71(6):063513(11), astro-ph/0410031.
    [103] Amendola L, Polarski D and Tsujikawa S, Are f(R) Dark Energy Models Cosmologically Viable?, Phys. Rev. Lett. 2007, (accepted), astro-ph/0603703.
    [104] Nojiri S and Odintsov S D, Modified f(R) gravity consistent with realistic cosmology: from matter dominated epoch to dark energy universe, Phys. Rev. D 2006, 74(8):086005(13), hep-th/0608008.
    [105] Nojiri S and Odintsov S D, Modified gravity with negative and positive powers of the curvature: unification of the inflation and of the cosmic acceleration, Phys. Rev. D 2003, 68(12):123512(10), astro-ph/0307288.
    [106] Nojiri S and Odintsov S D, Modified gravity with lnR terms and cosmic acceleration, Gen.Rel.Grav. 2004, 36(8):1765-1780, hep-th/0308176.
    [107] Amendola L, Scaling solutions in general nonminimal coupling theories, Phys. Rev. D 1999, 60(4):043501(8).
    [108] Guo Z K, Cai R G and Zhang Y Z, Cosmological Evolution of Interacting Phantom Energy with Dark Matter, JCAP 2005, 0505(5):002(7), astro-ph/0412624.
    [109] Hannestad S, Mortsell E, Probing the dark side: Constraints on the Dark Energy Equation of State From CMB, Large Scale Structure, and Type Ia Supernovae, Phys. Rev. D 2002, 66(6):063508(5).
    [110] Cooray A R, Huterer D, Gravitational Lensing as a Probe of Quintessence, Astrophys. J. 1999, 513(1):L95-L98, astro-ph/9901097.
    [111] Chevallier M, Polarski D, Accelerating Universes with Scaling Dark Matter, Int. J. Mod. Phys. D 2001, 10(2):213-224, gr-qc/0009008.
    [112] Linder E V, Exploring the Expansion History of the Universe, Phys. Rev. Lett. 2003, 90(9):091301(4).
    
    [113] Padmanabhan T, Choudhury T R, A Theoretician's Analysis of the Supernova Data and the Limitations in Determining the Nature of Dark Energy, Mon. Not. Roy. Astron. Soc. 2003, 344(3) :823-834, astro-ph/0212573.
    [114] Gerke B F, Efstathiou G, Probing Quintessence: Reconstruction and Parameter Estimation From Supernovae, Mon. Not. Roy. Astron. Soc. 2002, 335(1):33-45. astro-ph/0201336.
    
    [115] Linder E V, On Oscillating Dark Energy, Astropart. Phys. 2006. 25(2):167-171, astro-ph/0511415.
    [116] Wetterich C, Phenomenological parameterization of quintessence. Phys. Lett. B 2004, 594(1-2):17- 22, astro-ph/0403289.
    [117] Xu L X, Liu H Y, Ping Y L, Reconstruction of Five-dimensional Bounce cosmological Models From Deceleration Factor, to be published in Int. J. Theor. Phys., astro-ph/0601471.
    [118] Saini T D, Raychaudhury S, Sahni V and Starobinsky A A, Reconstructing the Cosmic Equation of State from Supernova Distances, Phys. Rev. Lett. 2000, 85(6):1162-1165.
    [119] Sahni V, Saini T D, Starobinsky A A and Alain U. Statefinder - a new geometrical diagnostic of dark energy, JETP Lett. 2003, 77(5):201-206, astro-ph/0201498.
    [120] Gorini V, Kamenshchik A and Moschella U, Can the Chaplygin gas be a plausible model for dark energy? Phys. Rev. D 2003, 67(6):063509(5), astro-ph/0209395.
    [121] Zhang X, Statefinder diagnostic for coupled quintessence, Phys. Lett. B 2005, 611(1-2):1-7, astro- ph/0503075.
    [122] Zhang X, Statefinder Diagnostic for Holographic Dark Energy Model, Int. J. Mod. Phys. D 2005, 14(09): 1597-1606, astro-ph/0504586.
    [123] Wu P X and Yu H W, Statefinder Parameters for Quintom Dark Energy Model, Int. J. Mod. Phys. D 2005, 14(11):1873-1881, gr-qc/0509036.
    [124] Zhang X, Wu F Q, Zhang J F, New generalized Chaplygin gas as a scheme for unification of dark energy and dark matter, JCAP 2006, 06(01):003, astro-ph/0411221.
    [125] Setare M R, Zhang J F, Zhang X, Statefinder diagnosis in a non-flat universe and the holographic model of dark energy, JCAP 2007, 07(03):007, gr-qc/0611084.
    [126] http://sa.ylib.com.
    [127] Sadjadi H M and Alimohammadi M, Transition from quintessence to phantom phase in quintom model, Phys.Rev. D 2006, 74(4):043506(9), gr-qc/0605143.
    [128] Wang Y, Freese K, Probing dark energy using its density instead of its equation of state, Phys. Lett. B 2006, 632(4):449-452.
    [129] Feng B, Li M Z, Piao Y S and Zhang X M, Oscillating Quintom and the Recurrent Universe, Phys. Lett. B 2006, 634(2-3):101-105, astro-ph/0407432.
    [130] Xia J Q, Feng B and Zhang X M, CONSTRAINTS ON OSCILLATING QUINTOM FROM SUPERNOVA, MICROWAVE BACKGROUND AND GALAXY CLUSTERING, Mon. Phys. Lett A 2005, 20(31):2409-2416, astro-ph/0411501.
    [131] Simon J, Constraints on the redshift dependence of the dark energy potential ,Phys. Rev. D 2005, 71(12):123001(18).
    [132] Alam U, Sahni V, et al., Is there Supernova Evidence for Dark Energy Metamorphosis, Mon.Not.Roy.Astron.Soc. 2004, 354(1):275-291, astro-ph/0311364.
    [133] Tegmark M, Measuring the metric: a parametrized post-Friedmanian approach to the cosmic dark energy problem, Phys. Rev. D 2002, 66(10):103507(10), astro-ph/0101354. Notation: astro-ph/, hep-th/, gr-qc/ please see http://Arxiv.org/abs/xx-xx/xxxxxxx.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700