复合加载下NiTi形状记忆合金超弹性性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NiTi形状记忆合金是智能材料中最先应用的一种驱动元件。因为具有良好的超弹性和形状记忆效应,从而得到广泛的应用。迄今为止,对NiTi合金的研究主要集中在一维状态。实际上,由于几何形状的复杂性以及载荷的复合作用,大多数零构件是处于复杂应力状态下工作的,因此很有必要从试验以及理论方面,对NiTi合金在复合加载下的力学性能进行研究。
     本论文采用理论分析、计算模型、实验考核与验证相结合的方法,研究了NiTi合金的超弹性性能。主要的工作总结如下:
     1.通过试验,研究了温度、循环加载—卸载、加载速率以及应力幅值对近等原子比NiTi合金丝材的超弹性性能以及疲劳寿命的影响。
     2.通过试验,研究了NiTi合金薄壁圆筒在单轴拉伸、纯扭转、双轴比例以及非比例加载下的疲劳行为,分析了相同应变幅值下,不同加载方式以及非比例相位差对NiTi合金双轴疲劳寿命的影响。
     3.在原有Gall等人提出的模型基础上,提出了一种新的改进的微观力学模型,并将这一模型移植到ABAQUS的用户子程序UMAT中。通过比较数值模拟结果与试验结果表明,模型基本可以描述NiTi合金的超弹性性能的主要特征。由于交互矩阵H~(mm)中的两个参数是从分析的角度估算来的,分析了H~(mm)的取值不同对多晶体应力-应变关系的影响,通过与试验结果相比较,确定了参数C和I。
     4.应用现有的本构模型,通过有限元模拟计算,研究材料织构对NiTi合金在拉伸和压缩载荷作用下力学响应不对称性的影响。同时,分析了四种不同温度下,多晶NiTi合金在双轴拉伸(压缩)加载下以及薄壁圆筒在拉伸(压缩)—扭转比例加载下的相变情况,以确定在应力平面上的马氏体相变初始曲线,同时也研究了材料织构对马氏体相变初始面的影响。
     5.应用已建立的本构模型,研究了四种不同表面粗糙度对NiTi合金超弹性性能的影响。为了比较,也对光滑模型以及单个缺口模型进行了模拟计算。
     6.通过试验,对形状记忆合金薄壁圆筒在拉伸—扭转双轴加载下的超弹性性能进行了研究,并与数值模拟计算结果进行了比较。结果表明,这一模型可以很好的模拟双轴加载下形状记忆合金的整个加载—卸载过程。并且从试验和数值模拟结果可以看出,不同的双轴加载路径下,材料的超弹性响应有很大的不同。
NiTi shape memory alloy is one of the most developed driving components in intelligent materials. They have wide applications due to their unique shape memory effect and superelastic properties. Up to now, a lot of work about NiTi has been undertaken, but most found in literatures has been performed only on wires and thus are one-dimension. In fact, because of the complexities of geometric configures and the recombination actions of loading, engineering components are often in multi-axial loading condition, therefore, it is necessary to study the mechanical properties of NiTi alloy under complex loading.
     In the thesis, theoretic analysis, numerical model, model verified by experiments were employed to carry out some researches on the superelasticity. They are as follows:
     1. Based on a series of experiments, the effects of testing temperature, cyclic loading-unloading, displacement rates and stress amplitude on the superelasticity and the fatigue life of the nearly equi-atomic NiTi alloy have been studied.
     2. The biaxial fatigue behaviors of NiTi thin-walled tubes under uniaxial tension, pure torsion, biaxial proportional loading and nonproportional loading with the different phase angles have been studied. With the same axial and shear strain level, the influences of different loading mode and phase angle on the biaxial fatigue life of NiTi alloy have been analyzed.
     3. Based on the model of Gall et al, a new modified model has been developed, and the model has been implemented into the finite-element program ABAQUS/standard. Comparing the experimental and numerical results, it can be concluded that the model can capture the essential features of our SMA. In addition, because the only parameters estimated from an analytical standpoint are the terms in interaction energy matrix, H~(mn), the effect of varying H~(mn) on the predicted polycrystalline stress-strain behaviors has been studied. Through discussion, the values C and I are chosen.
     4. Using the current model, the influence of crystallographic texture on the stress-strain asymmetric behavior of polycrystalline NiTi shape memory alloy under tension and compression has been researched. Furthermore, a series of calculations of biaxial tension (compression) and proportional tension (compression)-torsion for the NiTi polycrystalline has been performed to determine the initial surface of phase transformation in the stress space which determines the onset of stress induced martensitic phase transformation. The main purpose of this study is to numerically illustrate the effects of crystallographic texture.
     5. Based on the new developed model, the effect of surface roughness on the superelastic behaviors of NiTi alloy has been studied. Periodic surface notches with four different notch depths as surface roughness were introduced into the models. For comparison, simulations were also performed on smooth models and models with a single notch.
     6. The model has been used to predict the superelastic response of the thin-walled NiTi tubes under combined tension-torsion loading. In order to validate the model, thin-walled tube has been tested under biaxial loading. From the comparison between the simulated and experimental results, it is found that the model is quite good in predicting the overall loading-unloading process of the SMA. Both the experimental and simulated results demonstrate the significant differences in the superelastic responses under different biaxial loading paths.
引文
[1] 赵连城,蔡伟,郑玉峰,合金的形状记忆效应与超弹性[M],国防工业出版社,北京,2002.1
    [2] 陶宝祺,智能材料与结构[M],国防工业出版社,北京,1997
    [3] Lu Z.K., Weng G. J., Martensitic transformation and stress-strain relations of shape memory alloys [J], J. Mech. Phy.s. Solids, 1997, 45, 1905~1928
    [4] 熊克,陶宝祺,何存富,钛镍形状记忆合金丝的性能测试分析[J],南京航空航天大学学报,1999,31(4),464~468
    [5] Liu, Y., Xie, Z. L., Humbeeck, J. V., Cyclic deformation of NiTi shape memory alloys [J], Mat. Sci. & Eng. A, 1999, 273~275,673~678
    [6] 舟久保,熙康,形状记忆合金[M],机械工业出版社,1992.9
    [7] Patoor, E., Lagoudas, D. C., Entchev, P. B., Brinson, L. C., Gao, X. J., Shape memory alloys, Part I, General properties and modeling of single crystals [J], Mech. Ma., 2006, 38, 391~429
    [8] Bouvet, C., Calloch, S., Lexcellent, C., A phenomenological model for pseudo -elasticity of shape memory alloys under multiaxial proportional and non-proportional loadings [J], Eur. J. Mech. A/Solids, 2004, 23, 37~61
    [9] Wayman, C.M., Physical Metallurgy [M], Third, revised and enlarged edition, 1983, Elsevier
    [10] Berveiller, M., Fischer, F.D., Mechanics of Solids with Phase Changes [M], 1997, Springer-Verlag, Wien
    [11] Lim, T.J., MacDowell, D.L., Mechanical behavior of a NiTi shape memory alloy under axial-torsional proportional and nonproportional loading [J], J. Eng. Mat. Tech. 1999, 121, 9~18
    [12] Hisaaki, T., Yoshirou, S., Takashi, H., Kikuaki, T., Influence of strain rate on superelastic properties of TiNi shape memory alloy [J], Mech. Mat., 1998, 30, 141~150
    [13] Wu K, Yang F, Pu Z, The effect of strain rate on detwinning and superelastic behavior of NiTi shape memory alloy [J], Intel. Mat. Syst. and Struct., 1996,7, 138~144
    [14] Sia Nemat-Nasser, Jeom-Yong Choi, Wei, G. G., Jon B. Isaacs, Very high strain-rate response of a NiTi shape-memory alloy [J], Mech. Mat., 2005, 37, 287~298
    [15] Piedboeuf, M. C., Gauvin, R., Damping behaviour of shape memory alloys, strain amplitude, frequency and temperature effects [J], Sound & Vibration, 1998, 214(5), 885~901
    [16] Patoor, E., E1 Amrani, M., Eberhardt, A., Berveiller, M., Determination of the origin for the dissymmetry observed between tensile and compression tests on shape memory alloys [J], J. Phys. Ⅳ 2, 1995, 495~500
    [17] Gall, K., Sehitoglu, H., Maier, H.J., Asymmetric stress-strain response in shape memory alloys [J], In, Plast 97, Juneau, 1997, 153~154
    [18] Liu, Y., Xie, Z., Humbeck, J.V., Delaey, L., Asymmetry of stress-strain curves under tension and compression for NiTi shape memory alloys [J], Acta. Mat. 1998, 46 (12), 4325~4338
    [19] Tan, S., Xu, H., Observations on a CuA1Ni single crystal [J], Cont. Mech. Therm. 1990, 2, 241~244
    [20] Marketz, F., Fischer, F.D., Modelling the mechanical behavior of shape memory alloys under varaint coalescence [J], Comp. Mat. Sci. 1996, 5,210~226
    [21] Patoor, E, Eberhardt, A, Berveiller, M, Micromechanical modeling of superelaticity in shape memory alloys [J], J. Physics IV., 1996, 6, 277~292
    [22] Niclaeys, C, Zineb, T. B., Arbab-Chirani S & Patoor E, Determination of the interaction energy in the martensitic state [J], Int. J. Plast, 2002,18,1619—1647
    
    [23] Sun Q. P., Hwang K. C, Micromechanics modeling for the condtitutive behavior of polycrystalline shape memory slloys-I. Derivation of general relations [J], J. Mech. Phys. Solids, 1993, 41(1), 1~17
    
    [24] Sun Q. P., Lexcellent, C, On the unified micromechanics constitutive description of one-way and two-way shape memory effects [J], J. Physics IV, 1996, 6, 367—375
    
    [25] Sittner, P,Novak,V, Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals [J], Int, J. Plast., 2000, 16, 1243—1268
    
    [26] Hill, R., The essential structure of constitutive laws for metal composites and polycrystals [J], J. Mech. Phys. Solids, 1967, 15, 79-95
    
    [27] Kestin, J., Rice, J., A critical review of thermodynamics Paradoxes in the application of thermodynamics to strained solids [J], Mono Book Corp., Baltimore, 1970,275—298
    
    [28] Rice, J.R., Inelastic constitutive relation for solids, An internal variable theory and its application to metal plasticity [J], J. Mech. Phys. Solids, 1971, 19,433—455
    
    [29] Kestin, J., Bataille, J., Continuum Models of Discrete Systems, Irreversible thermodynamics of continua and internal variables [J], University of Waterloo Press, 1977, 39—67
    
    [30] Tanaka, K. A, Thermomechanical sketch of shape memory effect, one-dimensional tensile behavior [J], Res. Mechanical, 1986, 18, 251—263
    
    [31] Tanaka, K, Iwasaki R. A phenomenological theory of transformation superelasticity [J], Eng. Fract. Mech., 1985,21(4), 709-720
    
    [32] Sato, Y., Tanaka, K., Estimation of energy dissipation in alloys due to stress-induced martensitic transformation [J], Res. Mech. 1988, 23, 381—392
    
    [33] Tanaka, K., Hayashi, T., Itoh, Y., Tobushi, H., Analysis of thermomechanical behavior of shape memory alloys [J], Mech: Mater. 1992,13, 207—215
    
    [34] Tanaka, K., Nishimura, F., Hayashi, T., Tobushi, H., Lexcellent, C, Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads [J], Mech. Mater. 1995,19,281-292
    
    [35] Patoor, E., Eberhard, A., Berveiller, M., Thermomechanical behaviour of shape memory alloys [J], Arch. Mech. 1988,40 (5-6), 775-794
    
    [36] Patoor, E., Eberhardt, A., Berveiller, M., Potentiel pseudoe'lastique et plasticite' de transformation martensitique dans les mono et polycristaux me'talliques [J], Acta Metall. 1987, 35, 2779-2789
    
    [37] Ortin, J., Planes, A., Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations [J], Acta Metall. 1988, 36 (8), 1873—1889
    
    [38] Ortin, J., Planes, A., Thermodynamics of thermoelastic martensitic transformations [J], Acta Metall. 1989, 37 (5), 1433-1441
    
    [39] Berveiller, M., Patoor, E., Buisson, M., Thermomechanical constitutive equations for shape memory alloys [J], J. Phys. IV 1, C.4, 387, 1991, European Symposium on Martensitic Transformation and Shape Memory Properties
    
    [40] Liang, C, Rogers, C.A., One-dimensional thermomechanical constitutive relations for shape memory materials [J], J. Intell. Mater. Syst. Struct. 1990, 1, 207—234
    
    [41] Liang, C, Rogers, C.A., A multi-dimensional constitutive model for shape memory alloys [J], J. Eng. Math. 1992, 26, 429—443
    [42] Sun, Q.P., Hwang, K.C., Yu, S.W., A micromechanics constitutive model of transformation plasticity with shear and dilatation effect [J], J. Mech. Phys. Solids, 1991, 9(4), 507—524
    
    [43] Sun, Q.P., Hwang, K.C., Micromechanics modeling for the constitutive behavior of polycrystalline shape memory alloys-I. Derivation of general relations [J], J. Mech. Phys. Solids, 1993a, 41 (1), 1~17
    
    [44] Sun, Q.P., Hwang, K.C., Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys-II. Study of the individual phenomena [J], J. Mech. Phys. Solids, 1993b, 41(1), 19-33
    
    [45] Graesser, E.J., Cozzarelli, F.A., Shape memory alloys as new materials for aseismic isolation [J], J. Eng. Mech. 1991,117 (11), 2590-2608
    
    [46] Brinson, L.C., One-dimensional constitutive behavior of shape memory alloys, Thermomechanical derivation with non-constant material functions and redefined martensite internal variable [J], J. Intell. Mater. Syst. Struct. 1993,4,229-242
    
    [47] Raniecki, B., Lexcellent, C, RL-models of pseudoelasticity and their specification for some shape memory solids [J], Eur. J. Mech. A/Solids, 1994,13 (1), 21—50
    
    [48] Boyd, J.G., Lagoudas, D.C., Thermomechanical response of shape memory composites [J], J. Intell. Mater. Syst. Struct. 1994b, 5,333-346
    
    [49] Boyd, J.G., Lagoudas, D.C., A thermodynamic constitutive model for the shape memory materials. Part I. The monolithic shape memory alloys [J], Int. J. Plasticity, 1996a, 12 (6), 805~842
    
    [50] Boyd, J.G., Lagoudas, D.C., A thermodynamical constitutive model for shape memory materials. Part II. The SMA composite material [J], Int. J. Plasticity, 1996b, 12 (7), 843—873
    
    [51] Lagoudas, D.C., Bo, Z., Qidwai, M.A., A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites [J], Mech. Compos. Mater. Struct. 1996, 3, 153-179
    
    [52] Lagoudas, D.C., Boyd, J.G., Bo, Z., Micromechanics of active composites with SMA fibers [J], ASME J. Mater. Sci. Technol. 1994, 5, 337-347
    
    [53] Marketz, F., Fischer, F., A mesoscale study on the thermodynamic effect of stress on martensitic transformation [J], Metall. Mater. Trans. A, 1995,26A, 267—278
    
    [54] Marketz, F., Fischer, F., Tanaka, K., A computational micromechanics study on variant coalescence in a Cu-Al-Ni shape memory alloy [J], J. Phys. IV, Colloque C2, 1995, 5, 537—542
    
    [55] Bekker, A., Brinson, L.C., Temperature-induced phase transformation in a shape memory alloy, Phase diagram based kinetics approach [J], J. Mech. Phys. Solids, 1997,45 (6), 949—988
    
    [56] Bekker, A., Brinson, L.C., Phase diagram based description of the hysteresis behavior of shape memory alloys [J], Acta Mater. 1998,46 (10), 3649—3665
    
    [57] Leclercq, S., Lexcellent, C, A general macroscopic description of the thermomechanical behavior of shape memory alloys [J], J. Mech. Phys. Solids, 1996,44 (6), 953—980
    
    [58] Lagoudas, D.C., Shu, S., Residual deformations of active structures with SMA actuators [J], Int. J. Mech. Sci. 1999,41,595-619
    
    [60] Juhasz, L., Schnack, E., Hesebeck, O., Andra, H., Macroscopic modeling of shape memory alloys under nonproportional thermo-mechanical loadings [J], J. Intell. Mater. Syst. Struct. 2002, 13, 825— 836
    
    [61] Bo, Z., Lagoudas, D.C., Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: Theoretical derivations [J], Int. J. Eng. Sci. 1999a, 37, 1089—1140
    
    [62] Bo, Z., Lagoudas, D.C., Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part Ⅲ, Evolution of plastic strains and two-way memory effect [J], Int. J. Eng. Sci. 1999b, 37, 1141~1173
    [63] Bo, Z., Lagoudas, D.C., Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part Ⅳ: Modeling of minor hysteresis loops [J], Int. J. Eng. Sci. 1999c, 37, 1174~1204
    [64] Lagoudas, D.C., Bo, Z., Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part Ⅱ: Material characterization and experimental results for a stable transformation cycle [J], Int. J. Eng. Sci. 1999, 37, 1205~1249
    [65] Lexcellent, C., Leclerq, S., Gabry, B., Bourbon, G., The two way shape memory effect of shape memory alloys, an experimental study and a phenomenological model [J], Int. J. Plasticity, 2000, 16, 1155~1168
    [66] Lagoudas, D.C., Entchev, P.B., Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part Ⅰ: Constitutive model for fully dense SMAs [J], Mech. Mater. 2004, 36 (9), 865~892
    [67] Sittner, P., Hara, Y., Tokuda, M., Experimental study on the thermoelastic martensitic transformation in SMA polycrystal induced by combined external forces [J], Met. Mat. Trans. 1990, 26A, 2923~2935
    [68] Rogueda, C., Lexcellent, C., Bocher, L., Experimental study of pseudoelastic behavior of a Cu-Zn-A1 polycrystalline SMA under tension-torsion proportional and nonproportional loading tests [J], Arch. Mech. 1996, 48, 1025~1045
    [69] Lim, T.J., MacDowell, D.L., Mechanical behavior of an NiTi shape memory alloy under axial-torsional proportional and nonproportional loading [J], J. Eng. Mat. Tech. 1999, 121, 9~18
    [70] Raniecki, B., Tanaka, K., Ziolkowski, A., Testing and modeling of Ni Ti SMA at complex Stress state [J], Selected results of Polish-Japanese research cooperation. Mat. Sci. Res. Int. 2001, 2, 327~334
    [71] Helm, D., Haupt, P., Thermomechanical behaviour of shape memory alloys [J], In: Proc. of SPIES's Smart Structures and Materials, 2001, 302~313
    [72] Gall, K., Sehitoglu, H., Maier, H.J., et. al, Stress-induced martensitic transformations in polycrystaline CuZnA1 shape memory alloys under different stress states [J], Met. Mat. Trans., 1998, 765~773
    [73] Vivet, A., Lexcellent, C., Observations and analysis of martensitic phase transformation on CuZnA1 single crystals [J], J. Phys. Ⅳ9, 1999, 411~418
    [74] Bouvet, C., Calloch, S., Lexcellent, C., Mechanical behavior of a Cu-A1-Be shape memory alloy under multiaxial proportional and nonproportional loadings [J], J. Eng. Mat. Tech., 2002, 124, 112~124
    [75] 巩建鸣,户伏寿昭,循环加载下TiNi形状记忆合金超弹性变性行为[J],南京工业大学学报,2002,24(1),52~56
    [76] 巩建鸣,户伏寿昭,承受各种循环加载的TiNi形状记忆合金的超弹性变形行为[J],功能材料,2002,33(4),391~397
    [77] Tobushi, H., Shimeno, Y., Hachisuka, T., Tanaka, K., Influence of strain rate on superelastic properties of TiNi shape memory alloy [J], Mech. Mat.,1998, 30, 141~150
    [78] Wu K, Yang F, Pu Z, The effect of strain rate on detwinning and superelastic behavior of NiTi shape memory alloy [J], Int. J. Mat. Syst. Struct., 1996, 7, 138~144
    [79] Shaw J A, Kyriakides S, Thermomechanical aspects of NiTi [J], J. Mech. Phys. Solids, 1995, 43(8), 1243~1281
    [80] 马颖丽,胡光立,形状记忆合金记忆效应疲劳衰减行为的试验研究[J],兵器材料科学与工程,1997,20(1),31~37
    [81] 洪淑兰,严文,王瑛,时效工艺对TiNi合金相变及形状记忆效应的影响[J],兵器材料科学与工程,1996,19(4),30~34
    [82] 文先哲,张旋,冷热循环对TiNi形状记忆合金马氏体相变及形状记忆效应的影响[J],湖南有色金属,1993,15(2),29~32
    [83] 吴波,孙科学,李惠,唐卫胜,热处理对形状记忆合金超弹性滞回性能的影响[J],振动工程学报,2000,13(2),450~454
    [84] 朱珏,张明华,董新龙,王礼立,不同温度下钛镍形状记忆合金的超弹性特性[J],宁波大学学报,2003,16(2),136~139
    [85] Nasser, S. N., Choi, J. Y., Wei, G. G., Isaacs, J. B., Very high strain-rate response of a NiTi shape-memory alloy [J], Mech. Mat., 2005, 37, 287~298
    [86] Tobushi, H., Shimeno, Y., Hachisuka, T., Tanaka, K., Influence of strain rate on superelastic properties of TiNi shape memory alloy [J], Mat. Mech., 1998, 30, 141~150
    [87] Wu, K., Yang, F., Pu, Z., The effect of strain rate on detwinning and superelastic behavior of NiTi shape memory alloy [J], Intelligent Mat. Syst. Struc., 1996, 7, 138~144
    [88] Piedboeuf, M. C., Gauvin, R., Damping behaviour of shape memory alloys, strain amplitude, frequency and temperature effects [J], J. Sound & Vibration, 1998, 214(5), 885~901
    [89] Masuda, A., Noori, M., Optimization of hysteretic characteristics of damping devices based on pseudoelastic shape memory alloys [J], Int. J. Non-Linear Mech., 2002, 37, 1375~1386
    [90] Gandhi, F., Chapuis, G., Passive damping augmentation of a vibrating beam using pseudoelastic shape memory alloy wires [J], J. Sound & vibration, 2002, 250(3), 519~539
    [91] Lammering, R., Schmidt, I., Experimental investigations on the damping capacity of NiTi components [J], Smart Mater. Struct., 2001, 10, 853~859
    [92] Wagner, M., Sawaguchi, T., Kaustrater, G., Hoffken, D., Eggeler, G., Structural fatigue of pseudoelastic NiTi shape memory wires [J], Mat. Sci. Eng. A, 2004, 378, 105~109
    [93] Eggeler, G., Hombogen, E., Yawny, A., Heckmann, A., Wagner, M., Structural and functional fatigue of NiTi shape memory alloys [J], Mat. Sci. Eng. A, 2004, 378, 24~33
    [94] Siredey, N., Eberhardt, A., Fatigue behavior of Cu-A1-Be shape memory single crystals [J], Mat. Sci. Eng. A, 2000, 290, 171~179
    [95] Siredey, N., Hautcoeur, A., Eberhardt, A., Lifetime of superelastic Cu-A1-Be single crystal wires under bending fatigue [J], Mat. Sci. Eng. A, 2005, 396, 296~301
    [96] Predki, W., Kl"onne, M., Knopik, A., Cyclic torsional loading of pseudoelastic NiTi shape memory alloys: Damping and fatigue failure [J], Mat. Sci. Eng. A, 2006, 417, 182~189
    [97] Gong, J. M., Tobushi, H., study on superelastic deformation behavior of NiTi shape memory alloy under cyclic loading [J], Nanjing University of Technology, 2002, 24(1), 52~56
    [98] Gong, J. M., Tobushi, H., Superelastic deformation behavior of NiTi shape memory alloy subjected to various cyclic loading [J], Funct. Mat., 2002, 33 (4), 391~397
    [99] 肖林,白菊丽,Zr-4合金双轴疲劳行为及其微观机理I:双轴疲劳变形行为[J],金属学报,2000,36(9),913~918
    [100] 付德龙,张莉,程靳,多轴非比例加载低周疲劳寿命预测方法的研究[J],应用力学学报,2006,23(2),218~222
    [101] 王雷,王德俊,在多轴载荷下45钢的循环特性[J],材料研究学报,2002,16(4),439~442 张莉,唐立强,付德龙,多轴非比例低周疲劳寿命估算方法的研究[J],中国机械工程,2006,17(1), 95~98
    [102] 肖林,宋凯,顾海澄,Zr-4合金拉-扭复合比例加载条件下的低周疲劳特性[J],稀有金属材料与工程,1999,28(6),349~352
    [103] Xu Chen, Dan Jin, Kwang Soo Kim, Fatigue life prediction of type 304 stainless steel under sequential biaxial loading [J], Int. J. Fat., 2006, 28,289~299
    [104] Xu Chen, Gang Chen, Cyclic stress-strain relationship of 63Sn37Pb solder under biaxial proportional and non-proportional loading [J], Materials & Design, 2007, 28(1), 85~94
    [105] Wang, Y. Y. , Yao, W. X, A multiaxial fatigue criterion for various metallic materials under proportional and non-proportional loading [J], Int. J. Fatigue, 2006, 28, 401~408
    [106] Jiao, F., Osterle, W., Portella, P.D., et.al., Biaxial path-dependence of low-cycle fatigue behaviour and microstructure of alloy 800 H at room temperature [J], Mat. Sci. Eng. A, 1995, 196, 19~24
    [107] Bentachfine, S., Pluvinage, G., Biaxial low cycle fatigue under non-proportional loading of amagnesium-lithium alloy [J], Eng. Fract. Mech., 1996, 54(4), 513~522
    [108] Sonsino, C.M., Multiaxial fatigue of welded joints under in-phase and out-of-phase local strains and Stresses [J], Int. J. Fatigue, 1995, 17(1), 55~70
    [109] Patoor, E., Eberhardt, A., Berveiller, M., Micromechanical modeling of the shape memory behavior. Proceedings, Mechanics of Phase Transformations and Shape Memory Alloys, ASME AMD- Chicago, IL,1994, 189, 23~37
    [110] Patoor, E., E1 Amrani, M., Eberhardt, A., Berveiller, M., Determination of the origin for the dis-symmetry observed between tensile and compression tests on shape memory alloys. J. Phys. Ⅳ C2-, 1995, 495~500
    [111] Patoor, E., Eberhardt, A., Berveiller, M., Micromechanical modeling of Superelasticity in shape memory alloys. J. Phys. Ⅳ C1-, 1996, 277~292.
    [112] Gall, K., Lim, T.J., McDowell, D.L., Sehitoglu, H., Chumlyakov, Y.I., The role of integranular constraint on the stress-induced martensitic transformation in textured polycrystalline NiTi [J], Int. J. Plast., 2000, 16, 1189~1214
    [113] Lim, T. J., McDowell, D. L., Cyclic thermomechanical behavior of a polycrystalline pseudo-elastic shape memory alloy [J], J. Mechanics & Phisics of Solids, 2002, 50, 651~676
    [114] ABAQUS, 1998. Hibbitt, Karlsson and Scorensen Inc., Ver. 6.2
    [115] Kitajima, Y., Sato, N., Tanaka, K., et.al, Crystal-based simulations in transformation thermomechanics of shape memory alloys [J], Int. J. Plast., 2002, 18, 1527~1559
    [116] Gall, K., Lim, T. J., McDowell, D. L., ,Huseyin Sehitoglu, Yuriy I. Chumlyakov, The role of intergranular constraint on the stress-induced martensitic transformation in textured polycrystalline NiTi [J], Int. J. Plast., 2000, 16, 1189~1214
    [117] Gall, K., Sehitoglu, H., The roll of texture in tension-compression asymmetry in polycrystalline NiTi [J], Int. J. Plast., 1999, 15, 69~92
    [118] Nae, F. A., Matsuzaki, Y. J., Ikeda, T., Micromechanical modeling of polycrystalline shape-memory alloys including thermo-mechanical coupling [J], Smart Mater. Struct., 2003, 12, 6~17
    [119] Lexcellent, C., Vivet, A., Bouvet, et.al, Experimental and numerical determinations of the initial surface of phase transformation under biaxial loading in some polycrystalline shape-memory alloys [J], J. Mechanics & Solids, 2002, 50, 2717~2735
    [120] Shu, Y., Bhattacharya, K., The influence of texture on the shape memory effect in polycrystal [J], Acta Mater. 1998, 46, 5457~5473
    [121] Gall, K., Sehitoglu, H., The role of texture in tension-compression asymmetry in polycrystalline NiTi [J], Int. J. Plasticity, 1999, 15, 69~92
    [122] Huang, W., Yield surface of shape memory alloys and their applications [J], Acta Materialia, 1999, 47(9), 2769~2776
    [123] Rogueda, C., Lexcellent, C., Bocher, L., Experimental study of pseudo.elastic behaviour of a CuZnA1 polycrystalline shape memory alloy under tension-torsion proportional and non-proportional loading tests [J], Archives of Mechanics, 1996, 48 (5), 1025~1045.
    [124] Lexcellent, C., Vivet, A., Bouvet, C., et.al, Experimental and numerical determinations of the initial surface of phase transformation under biaxial loading in some polycrystalline shape memory alloys [J], J. Mechanics & Physics of Solids, 2002, 50, 2717~2735
    [125] Lexcellent, C., Blanc, P., Phase transformation yield surface determination for some shape memory alloys [J], Acta Meterialia, 2004, 52, 2317~2324
    [126] 祝菊生,王炳洲,金属理论基础[M],宇航出版社,1992.7
    [127] McNaney, J. M., Imbeni, V., Jung, Y., et.al, An experimental study of the superelastic effect in a shape memory Nitinal alloy under biaxial loading [J], J. Mat. Mech., 2003, 35,969~986
    [128] Siredey, N., Patoor, E., Berveiller, M., et.al., Constitutive equations for polycrystalline thermo-elastic shape memory alloys. Part Ⅰ. Intragranular interactions and behavior of the grain [J], Int. J. Solids Structure, 1999, 36, 4289~4315
    [129] Tokuda, M, Ye M, Takakura, M, et. al, Calculation of mechanical behaviors of shape memory alloy under mutil-axial loading conditions [J], Int. J. Mechanics Science, 1998, 40, 227~235
    [130] Lexcellent, C., Vivet, A., Bouvet, C., et. al, Experimental and numerical determinations of the initial surface of phase transformation under biaxial loading in some polycrystalline shape-memory alloys [J], J. Mech. Phys. Solids, 2002, 50, 2717~2735
    [131] 刘鸿文,材料力学[M],高等教育出版社,1992.9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700