电力系统暂态安全防御中广域观测与控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大扰动是电力系统暂态稳定的主要威胁之一。为了观测、识别并控制大扰动,需要在广域测量系统与特别保护系统的基础之上构建广域保护体系。广域测量系统借助于相量测量装置来观测大扰动,而特别保护系统借助于紧急控制来控制大扰动。
     对于大型电力系统而言,通常可以在成百上千的地点安装上述观测与控制装置。所以需要为测量装置和紧急控制选择理想的位置,以有效观测和控制因大扰动而引起的系统暂态功角失稳。这就是本论文研究的主要问题:为大扰动的暂态安全防御配置广域观测和紧急控制的地点。本论文的主要目标是,建立大扰动观测和控制配置的理论基础,为电力系统提出完整而有效的配置方法,并将这套方法应用于一个具体的大型电力系统。
     本论文研究了严重受扰电力系统的动态特性,通过主导不稳定平衡点的性质来分析大扰动下系统失稳的特征。在该点展开模式分析,并引入模式能控性与能观性的概念,提出秩判据,为大扰动观测和控制的配置奠定理论基础。
     提出基于主导不稳定平衡点的配置方法。在结构保留模型中以输入和输出来表示紧急控制和测量信号,并对系统在主导不稳定平衡点进行线性化模式分析,最终获取模式能观性和能控性矩阵,以此来选择广域观测和紧急控制的地点。
     提出基于临界割集的配置方法。引入电压校正,在计算割集脆弱性指标时使用主导不稳定平衡点处的电压值,以准确获取临界割集。系统功角失稳主要引起临界割集支路的相角差或功率的增大,这既可以用测量装置来观测,又可以用紧急控制来抑制。在此基础上的功率灵敏度分析可以为选择紧急切机和切负荷的地点提供有价值的参考。
     建立大扰动分析的框架,将主导不稳定平衡点的不稳定模式、机组分群和临界割集三者结合起来,全面分析故障失稳模式。总结了为大扰动配置广域观测和控制的方法,并实际应用于南方电网。
Large disturbances have always been one of the main threats to transient stability of power systems. Wide area measurement system (WAMS) and special protection system (SPS) are adopted to observe, detect, and control such disturbances, forming the architecture of wide area protection (WAP). Phasor measurement units (PMUs) can be installed in WAMS to obtain wide area measurements detecting large disturbances. And emergency controls can be armed in SPS to take corrective action against large disturbances.
     There are thousands of available locations for the installation of such observers and controllers, especially in a large-scale power system. Hence it is a natural and important issue to decide where are the ideal sites for measurements to observe the system separation arising from a large disturbance and where are the ideal sites for emergency controls to act against angular instability due to a large disturbance. The issue is termed the placement of wide area observers and controllers for system protection against large disturbances, which is the main focus of the study in this dissertation.
     The purpose of the dissertation is to lay the theoretical foundation for the placement of wide area observers and controllers for system protection against large disturbances, to present integrated and effective placement approach for power systems, and to apply the placement approach to a specific large-scale power system.
     The dynamic behavior of power systems after large disturbances is studied first of all. The trajectory of severely disturbed power systems will pass by controlling unstable equilibrium point (UEP) on the verge of losing stability, which is an inference of stability region theory. Then the characteristics of controlling UEP largely reflect system separation due to large disturbances, which can be revealed via modal analysis. The concepts of modal controllability and observability are introduced into the modal analysis at the controlling UEP of a large disturbance. Rank tests are proposed to qualify the placement to ensure the unstable modes of the disturbance controllable or observable. The rank tests are the general rules imposed on the placement of observers and controllers.
     A placement approach based on controlling UEP is presented. Structure preserving model of power system is expanded with input and output to accommodate emergency controls and measurements. The model is linearized with respect to controlling UEP and then reduced to the network-reduction model. Finally diagonal canonical form can be obtained, and the mode observability and controllability matrices are utilized to select the suitable locations of wide area measurements and emergency controls.
     Another placement approach based on critical cutset is also presented. Voltage correction is proposed to obtain critical cutset more exactly. Cutset vulnerable index is corrected using bus voltages at controlling UEP instead of at SEP, which can accommodate the characteristics of system trajectory following large disturbances. Power systems losing synchronism mainly suffer from the increase of line angle differences or line flows in critical cutsets, which can be captured by measurements and be withheld by emergency controls. Then the sensitivity of line flow of the critical cutset with respect to a generator or load power can indicate whether generation tripping or load shedding is effective at the site, which can be utilized to select the suitable locations of emergency controls.
     The architecture of large disturbance analysis is constructed to reveal the mode of disturbance, in which unstable modes of controlling UEP, grouping of generators, and critical cutset can be integrated. The procedure of the placement of wide area observers and controllers for system protection against large disturbances is summarized and applied to China Southern Power Grid.
引文
[1] U.S.-Canada Power System Outage Task Force. Final report on the August 14, 2003 blackout in the United States and Canada: causes and recommendations. April 2004
    [2] Cigré Task Force 38.02.19. System protection schemes in power networks. CIGRE Technical Brochure No. 187. June, 2001
    [3] Phadke A G,Synchronized phasor measurements in power systems. IEEE Computer Applications in Power, 1993, 6(2): 10~15
    [4] Phadke A G, Thorp J S, and Adamiak M G. A new measurement technique for tracking voltage phasors, local system frequency, and rate of change of frequency. IEEE Trans. on Power Apparatus and Systems, 1983, 102(5): 1025~1038
    [5] Phadke A G, Pickett B, Adamiak M G, et al. Synchronized sampling and phasor measurements for relay and control. IEEE Trans. on Power Delivery, 1994, 9(1): 442~452
    [6] Adamiak M G, Apostolov A P, Begovic M M, et al. Wide area protection-technology and infrastructures. IEEE Transactions on Power Delivery, 2006, 21(2), 601~609
    [7] IEEE. IEEE Std C37.118-2005. IEEE standard for synchrophasors for power systems. New York: IEEE, March 2006
    [8] Vittal V, The future power engineering professor. In: IEEE Power Engineering Society General Meeting. Toronto: IEEE PES, 2003. 127~129
    [9] Working Group C-6 of IEEE PES Power System Relaying Committee. Wide area protection and emergency control. Piscataway: IEEE PES, 2002
    [10] IEEE System Dynamic Performance Subcommittee. Voltage stability of power systems: concepts, analytical tools and industry experience. Piscataway: IEEE/PES Publication 90TH0358-2-PWR, 1990.
    [11] Anderson P M, LeReverend B K. Industry experience with special protection schemes. IEEE Transactions on Power Systems, 1996, 11(3): 1166~1179
    [12] 张雪敏. 基于功率切换的电力系统紧急控制算法研究:[博士学位论文]. 北京:清华大学,2006
    [13] 张雪敏,梅生伟,卢强. 基于功率切换的紧急控制算法研究. 电网技术,2004,28(8):20~25
    [14] 王茂海. 基于广域测量信号的直流输电系统非线性调制策略研究:[博士学位论文]. 北京:清华大学,2005
    [15] Zima M, Larsson M, Korba P, et al. Design aspects for wide-area monitoring and control systems. Proceedings of the IEEE. 2005, 93(5): 980~996
    [16] Rehtenz C, Bertsch J. Wide area measurement and protection system for emergency voltage stability control. In: IEEE Power Engineering Society Winter Meeting. New York: IEEE PES, 2002. 842~847
    [17] Working Group H-7 of IEEE PES Power System Relaying Committee. Synchronized sampling and phasor measurements for relaying and control. IEEE Trans. on Power Delivery, 1994, 9(1): 442~449
    [18] Martin K E, Benmouyal G, Adamiak M G, et al. IEEE standard for synchrophasors for power systems. IEEE Transactions on Power Delivery, 1998, 13(1): 73~77
    [19] IEEE. IEEE Std 1344-1995. IEEE standard for synchrophasors for power systems. New York: IEEE, May 1996
    [20] IEEE. IEEE Std 1344-1995(R2001). IEEE standard for synchrophasors for power systems. New York: IEEE, March 2001
    [21] Trudel G, Bernard S, Scott G. Hydro-Quebec's defence plan against extreme contingencies. IEEE Transactions on Power Systems, 1999, 14(3): 958~965
    [22] Cote P, Cote S P, Lacroix M. Programmable load shedding systems Hydro-Quebec's experience. In: Power Engineering Society Summer Meeting. Canada: IEEE PES, 2001. 818~823
    [23] Qiu B, Chen L, Centeno V A, et al. Internet based frequency monitoring network (FNET). In: Proc. IEEE Power Eng. Soc. Winter Meeting. Ohio: IEEE PES, 2001. 1166~1171
    [24] Zhong Z, Xu C, Billian B J. Power system frequency monitoring network (FNET) implementation. IEEE Transactions on Power Systems, 2005, 20(4): 1914~1921
    [25] Begovic M, Novosel D, Karlsson D. Wide-area protection and emergency control. Proceedings of the IEEE, 2005, 93(5): 876~891
    [26] Kamwa I, Grondin R. PMU configuration for system dynamic performance measurement in large multi-area power systems. IEEE Trans. on Power Systems, 2002, 17(2): 385~394
    [27] Kamwa I, Grondin R, Hebert Y. Wide-area measurement based stabilizing control of large power systems-a decentralized/hierarchical approach, IEEE Trans. on Power Systems, 2001, 16(1): 136~153
    [28] Snyder A F, Ivanescu D, HadjSaid N, et al. Delayed-input wide-area stability control with synchronized phasor measurements and linear matrix inequalities. In: Power Engineering Society Summer Meeting. Seattle: IEEE PES, 2000. 1009~1014
    [29] Ivanescu D, Dion J M, Dugard L, et al. Delay effects and dynamical compensation for time-delay systems. In: Proceedings of the 38th IEEE Conference on Decision and Control. Arizona: IEEE, 1999. 1999~2004
    [30] Heydt G T, Liu C C, Phadke A G, et al. Solutions for the crisis in electric power supply. IEEE Tran. on Computer Applications in Power, 2001, 14(3): 22~30
    [31] Yu C S, Liu C W. A practical design of TCSC controllers for the inter-area transient stability control using real-time measurements. In: IEEE Power Engineering Society Winter Meeting. New York: IEEE PES, 1999. 661~666
    [32] Yu C S, Liu C W. Self-correction two-machine equivalent model for stability control of facts system using real-time phasor measurements. IEE Proc.-Gener. Tramsm. Distrib., 2002, 149(4): 389~396
    [33] Rovnyak S, Liu C W, Lu J, et al. Predicting future behavior of transient events rapidly enough to evaluate remedial control options in real-time. IEEE Transactions on Power Systems, 1994, 10(3): 1195~1203
    [34] Karady G G. Improving transient stability using generator tripping based on tracking rotor-angle, In: Proc of IEEE Power Engineering Society Winter Meeting. New York: IEEE PES, 2002. 1113~1118
    [35] Karady G G. Improving transient stability using fast valving based on tracking rotor-angle and active power. In: Proc of IEEE Power Engineering Society Winter Meeting. New York: IEEE PES, 2002. 1576-1581
    [36] Li Y Q, Teng L, Liu W S, et al. The study on real-time transient stability emergency control in power system. In: Proceedings of the IEEE Canadian Conference on Electrical & Computer Engineering. Canada: IEEE, 2002. 138~143
    [37] Stanton S E. Application of phasor measurements and partial energy analysis in stabilizing large disturbances. IEEE Trans on Power systems, 1995, 10(1): 297~306
    [38] Chen Y, Zhou K. A new energy function based power system stability control scheme using real-time data. In: PowerCon 2000. Australia: IEEE PES, 2000. 163~168
    [39] Fouad A A, Vittal V. Power system transient stability analysis using the transient energy function method. Englewood Cliffs: Prentice Hall, 1992
    [40] Cutsem T V. Voltage instability: phenomena, countermeasures, and analysis methods. IEEE Proceedings, 2000, 88(2): 208~227
    [41] Gao B, Morison G K, Kundur P. Voltage stability evaluation using modal analysis. IEEE Transactions on Power Systems, 1992, 7(4): 1529~1542
    [42] Taylor C W. Power system voltage stability. New York: McGraw-Hill, 1994. 236~240
    [43] Zhang Jianyun, Sun Yuanzhang. Variational approach in modal analysis. In: Power Engineering Society General Meeting. San Francisco: IEEE PES, 2005. 259~265
    [44] Rehtenz C, Bertsch J. Wide area measurement and protection system for emergency voltage stability control. In: IEEE Power Engineering Society Winter Meeting. New York: IEEE PES, 2002. 842~847
    [45] Milosevic B, Begovic M. Voltage-stability protection and control using a wide-area network of phasor measurements. IEEE Tran. on Power Systems, 2003, 18(1): 121~127
    [46] Milosevic B. On voltage stability monitoring and control using multiagent systems: [Doctor Dissertation]. Atlanta: Georgia Institute of Technology, 2002
    [47] Hiskens I A, Milanovic J V. Load modelling in studies of power system damping. IEEE Transactions on Power Systems, 1995, 10(4): 1781~1788
    [48] Phadke A G. State estimation with phasor measurements. IEEE Trans. on Power Systems, 1986, 1(1): 233~241
    [49] Monticelli A, Wu F F. Network observability theory. IEEE Trans. on Power Apparatus and Systems, 1985, 4(5): 1042~1048
    [50] Baldwin T L, Mili L, Boisen M B, et al. Power system observability with minimal phasor measurement placement. IEEE Tran. on Power Systems, 1993, 8(2): 707~715
    [51] Nuqui R F. State estimation and voltage security monitoring using synchronized phasor measurements: [Doctor Dissertation]. Virginia: Virginia Polytechnic Institute and State University, 2001
    [52] Cho K S, Shin J R, Hyun S H. Optimal placement of phasor measurement units with GPS receiver. In: IEEE Power Engineering Society Winter Meeting. Ohio: IEEE PES, 2001. 258~262
    [53] Bretas N G. Network observability: theory and algorithms based on triangular factorisation and path graph concepts. IEE Proceedings-Generation, Transmission and Distribution, 1996, 143(1): 123~128
    [54] Nuqui R F, Phadke A,G. Phasor measurement unit placement techniques for complete and incomplete observability. IEEE Transactions on Power Delivery, 2005, 20(4): 2381~2388
    [55] Korres G N, Katsikas P J, Clements K A, et al. Numerical observability analysis based on network graph theory. IEEE Transactions on Power Systems, 2003, 18(3): 1035~1045
    [56] Celik M K, Liu W E. An incremental measurement placement algorithm for state estimation. IEEE Transactions on Power Systems, 1995, 10(3): 1698~1703
    [57] Madtharad C, Premrudeepreechacharn S, Watson N R, et al. Measurement placement method for power system state estimation: part I. In: IEEE Power Engineering Society General Meeting. Toronto: IEEE PES, 2003. 1629~1632
    [58] Jaen A V, Exposito A G. Including ampere measurements in generalized state estimators. IEEE Transactions on Power Systems, 2005, 20(2): 603~610
    [59] Exposito A G, Abur A. Generalized observability analysis and measurement classification. IEEE Transactions on Power Systems, 1998, 13(3): 1090~1095
    [60] Bei G, Abur A. An improved measurement placement algorithm for network observability. IEEE Transactions on Power Systems, 2001, 16(4): 819~824
    [61] Milosevic B, Begovic M. Nondominated sorting genetic algorithm for optimal phasor measurement placement. IEEE Transactions on Power Systems, 2003, 18(1): 69~75
    [62] Magnago F H, Abur A. A unified approach to robust meter placement against loss of measurements and branch outages. IEEE Transactions on Power Systems, 2000, 15(3): 945~949
    [63] Lien K P, Liu C W, Yu C S, et al. Transmission network fault location observability with minimal PMU placement. IEEE Transactions on Power Delivery, 2006, 21(3): 1128~1136
    [64] 许剑冰,薛禹胜,张启平,等. 基于系统同调性的 PMU 最优布点. 电力系统自动化,2004,28(19):22~26
    [65] 刘笙,汪静. 电力系统暂态稳定的能量函数分析. 上海:上海交通大学出版社,1996
    [66] 倪以信,陈寿孙,张宝霖. 动态电力系统的理论和分析. 北京:清华大学出版社,2002
    [67] 马进. 基于能量的电力系统稳定分析和控制:[博士学位论文]. 北京:清华大学,2003
    [68] Xue Y, Van Cutsem T, Ribbens-Pavella M. A simple direct method for fast transient stability assessment of large power systems. IEEE Transactions on Power Systems, 1988, 3(2): 400~412
    [69] Pavella M, Ernst D, Ruiz-Vega D. Transient stability of power systems: a unified approach to assessment and control. Boston: Kluwer Academic Publishers, 2000.
    [70] Pai M A.Energy function analysis for power system stability.Boston: Kluwer Academic Publishers, 1989
    [71] Padiyar K R, Krishna, S. Online detection of loss of synchronism using energy function criterion, IEEE Transactions on Power Delivery, 2006, 21(1): 46~55
    [72] Arnold V I. 常微分方程. 北京:科学出版社,2001
    [73] Arnold V I. Geometrical methods in the theory of ordinary differential equations (2nd Edition). New York: Springer-Verlag, 1988
    [74] Arrowsmith D K, Place C M. An introduction to dynamical systems. New York: Cambridge University Press, 1990
    [75] Chiang H D, Wu F F, Varaiya P P. Foundations of direct methods for power system transient stability analysis. IEEE Trans. Circ. and Syst., 1987, CAS-34: 160~173
    [76] Chiang H D, Hirsch M W, Wu F F. Stability regions of nonlinear autonomous dynamical systems. IEEE Transactions on Automatic Control, 1988, 33(1): 16~27
    [77] Chiang H D, Thorp J S. The closest unstable equilibrium point method for power system dynamic security assessment. IEEE Transactions on Circuits and Systems, 1989, 36(9): 1187~1200
    [78] Sobajic D J. An introduction to normal forms of vector fields: new framework for assessing stability of highly stressed power systems. In: IEEE 8th Mediterranean Electrotechnical Conference. Italy: IEEE, 1996. 108~111
    [79] Cheng D. Matrix and polynomial approach to dynamic control systems. Beijing: Science Press, 2002
    [80] Saha S, Fouad A A, Cliemann W H, et al. Stability boundary approximation of a power system using the real normal form of vector fields. IEEE Tran. on Power Systems, 1997, 12(2): 797~802
    [81] Arnold V I, Novikov S P. Dynamical systems IV: symplectic geometry and its applications (2nd Edition). New York: Springer,2000
    [82] 刘前进. 基于能量的控制方法及其 FACTS 应用:[博士学位论文]. 北京:清华大学,2002
    [83] 彭疆南. 基于能量整形的电力系统暂态稳定控制设计研究:[博士学位论文]. 北京:清华大学,2004
    [84] Lozano R, et al. Dissipative systems analysis and control: theory and applications. New York: Springer, 2000
    [85] Schaft A. L2-gain and passivity techniques in nonlinear control. London: Springer-Verlag, 2000
    [86] Sun Y Z, Li X, Zhao M. New lyapunov function for transient stability analysis and control of power systems with excitation control. Electric Power Systems Research, 2001, 57(2): 123~131
    [87] Chiang H D, Wu F F, Varaiya P P. Foundations of the potential energy boundary surface method for power system transient stability analysis. IEEE Transactions on Circuits and Systems, 1988, 35(6): 712~728
    [88] Chiang H D, Chu C C, Cauley G. Direct stability analysis of electric power systems using energy functions: theory, applications, and perspective. Proceedings of the IEEE, 1995, 83(11): 1497~1529
    [89] Xue Y, Van Cutsem T, Ribbens-Pavella M. Extended equal area criterion justifications, generalizations, applications. IEEE Transactions on Power Systems, 1989, 4(1): 44~52
    [90] Xue Y, Wehenkel L, Belhomme R, et al. Extended equal area criterion revisited. IEEE Transactions on Power Systems, 1992, 7(3): 1012~1022
    [91] Ruiz-Vega D, Pavella M. A comprehensive approach to transient stability control: part II - open loop emergency control. IEEE Tran. on Power Systems, 2003, 18(4): 1454~1460
    [92] Vittal V, Zhou E Z, Hwang C. Derivation of stability limits using analytical sensitivity of the transient energy margin. IEEE Transactions on Power Systems, 1989, 4(4): 1363~1372
    [93] Tong J, Chiang H D, Conneen T P. A sensitivity-based BCU method for fast derivation of stability limits in electric power systems. IEEE Transactions on Power Systems, 1993, 8(4): 1418~1428
    [94] Hiskens I A, Pai M A. Trajectory sensitivity analysis of hybrid systems. IEEE Trans. on Circuit & Systems-I Fundamental and Applications, 2000, 47(2): 204~220
    [95] 杨新林. 电力系统暂态稳定性预防控制研究―模型与方法:[博士学位论文]. 北京:清华大学,2003
    [96] 张瑞琪,闵勇,侯凯元. 电力系统切机/切负荷紧急控制方案的研究. 电力系统自动化,2003,27(18):6~12
    [97] 余贻鑫,刘辉,曾沅. 基于实用动态安全域的紧急控制策略. 电力系统自动化,2004,28(6):6~10
    [98] Okamoto H, Kurita A, Sekine Y. A method for identification of effective locations of variable impedance apparatus on enhancement of steady-state stability in large-scale power systems. IEEE Trans on Power Systems, 1995, 10(3): 1401~1407
    [99] Martins N, Lima L T G. Determination of suitable locations for power system stabilizers and static VAR compensator for damping electromechanical oscillations in large scale power systems. IEEE Trans on Power Systems, 1990, 5(4): 1455~1469
    [100] Wang H F, Swift F J, Li M. Selection of installing locations and feedback signals of FACTS-based stabillzers in multi-machine power systems by reduced-order modal analysis. IEE Proc, Gener Transm Distrib, 1997, 144(3): 263~269
    [101] Wang H F, Swift F J, Li M. A unified model for the analysis of FACTS devices in damping power system oscillations, part II: multi-machine power systems. IEEE Trans on Power Delivery, 1998, 13(4): 1355~1362
    [102] Ni Y, Vittal V, and Kliemann W. A study of system separation mechanisms in the neighborhood of a relevant type-n UEP via normal form of vector fields. Proc. Inst. Elect. Eng., Gener., Transm., Distrib., 1998, 145(2): 139~144
    [103] 洪奕光,程代展. 非线性系统的分析与控制. 北京:科学出版社,2005
    [104] Jongen H T, Jonker P, Twilt F. Nonlinear optimization in finite dimensions. Dordrecht: Kluwer Academic, 2000
    [105] Sastry S. Nonlinear systems: analysis, stability, and control. New York: Springer-Verlag, 1999
    [106] 郑大钟. 线性系统理论. 北京:清华大学出版社,1990
    [107] Kailath T. Linear systems. Englewood Cliffs: Prentice-Hall, 1980
    [108] 薛安成. 电力系统动态安全域研究:[博士学位论文]. 北京:清华大学,2006
    [109] Maria G A, Tang C, Kim J. Hybrid transient stability analysis. IEEE Transactions on Power Systems, 1990, 5(2): 384~393
    [110] Khorasani K, Pai M A, Sauer P W. Modal-based stability analysis of power systems using energy functions. International Journal of Electric Power and Energy Systems, 1986, 8(1): 11~16
    [111] Treinen R, Vittal V, Fouad A A. Application of a Modal-Based Transient Energy Function to a Large-scale Stressed Power System: Assessment of Transient Stability and Transient Voltage Dip. International Journal of Electrical Power and Energy Systems, 1993, 15(2): 117~125
    [112] Kundur P. Power system stability and control. New York:McGraw-Hill,1994
    [113] Trentelman H L, Stoorvogel A A, Hautus M. Control theory for linear systems. London: Springer, 2001
    [114] Bergen A R, Hill D J. A structure preserving model for power system stability analysis. IEEE Transactions on Power Apparatus and Systems,1981,PAS-100(1): 25~35
    [115] Chandrashekhar K S, Hill D J. Cutset stability criterion for power systems using a structure-preserving model. Electrical Power and Energy System,1986,8(3): 146~157
    [116] 蔡国伟,穆钢,Chan K W,等. 基于网络信息的暂态稳定性定量分析-支路势能法. 中国电机工程学报,2004,24(5):1~6
    [117] 余贻鑫,王成山.电力系统稳定性理论与方法. 北京:科学出版社,1999
    [118] 蔡国伟,孟祥霞,刘涛. 电力系统振荡中心的暂态能量解析. 电网技术,2005,29(8):30~34
    [119] Kleinberg J, Tardos E. Algorithm design. Boston: Pearson/Addison-Wesley, 2006
    [120] 余贻鑫,樊纪超,冯飞. 暂态功角稳定不稳定平衡点类型和临界割集数量的对应关系. 中国电机工程学报,2006,26(8):1~6
    [121] 苏育才,姜翠波,张跃辉. 矩阵理论. 北京:科学出版社,2006
    [122] 张伯明,陈寿孙. 高等电力网络分析. 北京:清华大学出版社,1996
    [123] Ng W Y. Generalized generation distribution factors for power system security evaluation. IEEE Trans. on Power Apparatus and Systems, 1981, 100(3): 1001~1005
    [124] 中国电力科学研究院. 中国版 BPA 用户手册. 北京:中国电力科学研究院,2000
    [125] Liu S, Messina A R, Vittal V. Assessing placement of controllers and nonlinear behavior using normal form analysis. IEEE Transactions on Power Systems, 2005, 20(3): 1486~1495
    [126] Powertech Labs Inc. Transient security assessment tool: user manual. Canada:Powertech Labs Inc., 2006
    [127] Xue Y, Wehenkel L, Belhomme R, et al. Extended equal area criterion revisited. IEEE Transactions on Power Systems, 1992, 7(3): 1012~1022

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700