p140Cap在结直肠癌增殖、侵袭和转移的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     p140Cap主要表达于大脑、睾丸以及富含上皮的组织如乳腺、肺、肾和大肠。关于p140Cap在人类肿瘤组织中表达的报道还比较少。近期一项乳腺癌的筛查中发现,在伴有淋巴结转移和高度增殖的肿瘤组织中,p140Cap的阴性表达率高达70%,说明p140Cap表达与肿瘤的恶性程度成负相关。另外一项研究结果显示,乳腺癌中Srcinl基因的mRNA表达水平与预后不良因素有一定的相关关系。目前对p140Cap对大肠癌的影响的研究甚少,本实验于基于临床标本,质粒过表达、RNAi干扰细胞株,裸鼠原位移植瘤,从组织水平、细胞水平以及体内水平研究pl40Cap对大肠癌增殖、凋亡、转移侵袭的影响。
     材料和方法
     1. p140Cap在癌旁和结肠癌组织中的表达:南方医院胃肠外科手术室收集23对肠癌组织和对应的癌旁组织,应用Western blot法检测p140Cap蛋白表达,GAPDH为内参。
     2. p140Cap在癌旁和结肠癌组织中的表达:南方医院消化科内镜室收集126对以上同一患者结肠癌组织及癌旁正常组织(>5cm)标本,制作组织切片,应用免疫组化染色(IHC)检测p140Cap表达,判断阳性表达,并收集年龄、性别、肿瘤大小、肿瘤淋巴结转移、浆膜浸润、组织病理学分型、TNM分期等临床病理资料,Pearson χ2检验。
     3. p140Cap在结肠癌转移淋巴结组织的表达:南方医院胃肠外科手术室收集25例结肠癌转移淋巴结组织,应用免疫组化染色(IHC)检测p140Cap表达。
     4. p140Cap在结肠息肉表达:南方医院消化科内镜室收集38例大肠增生性息肉、42例腺瘤性息肉,制作石蜡切片,免疫组织p140Cap的表达,观察p140Cap在细胞表达部位和强度的差异。进行了p140Cap在大肠组织中表达分布差异分析,并与结肠癌阳性表达进行比较。
     5. p140Cap在肠癌细胞系中的表达:收集南方医院实验室保存的8个LS174T, SW620, SW1116, LoVo, SW480, Caco-2, DLD1和HT29等肠癌细胞株,提取细胞总蛋白,应用Western blot方法检测p140Cap蛋白表达。
     6.建立p140Cap稳定过表达细胞株(p140Cap-pcDNA3.1, pcDNA3.1为其阴性对照株):化学合成全基因,酶切pcDNA3.1质粒载体,重组目的质粒p140Cap-pcDNA3.1, PCR验证并测序。lipofectamine2000稳定转染p140Cap-pcDNA3.1质粒到LoVo细胞,G418筛选,Western Blot验证。
     7.建立瞬时敲低p140Cap表达细胞株(p140Cap-siRNA, siRNA为其阴性对照株):lipofectamine2000瞬时转染p140Cap-siRNA到LoVo细胞,G418筛选,Western Blot验证。
     8. p140Cap对结肠癌细胞侵袭转移的影响:划痕实验、侵袭小室实验检测过表达或敲低p140Cap细胞对侵袭转移能力的作用。
     9.建立稳定敲低p140Cap表达细胞株(p140Cap-shRNA, shRNA为其阴性对照株):以5MOI、10MOI、20MOI不同滴度的p140Cap-shRNA漫病毒分别感染LoVo细胞,荧光显微镜下观判断察感染效率,Western blot验证。
     10. p140Cap对细胞增殖影响:WST-1实验和平板细胞克隆形成实验检测稳定过表达或敲低p140Cap细胞对细胞增长速度的作用。
     11. p140Cap对细胞凋亡影响:流式细胞技术检测敲低p140Cap细胞对细胞凋亡作用,分析凋亡细胞比例。
     12.建立裸鼠原位移植瘤模型以及评估5-Fu对原位移植瘤生长影响:分别将shRNA, p140Cap-shRNA两组细胞(5×106/0.1mL)皮下接种到5周龄雄性BALB/c-nu/nu裸鼠的右侧背部各10只,2周后原位移植瘤长至长径5mm左右时,予注射有感染p140Cap-siRNA或siRNA细胞的裸鼠腹腔注射5-Fu(20μg/g,每2天1次,共两周)或生理盐水(100μl/只,每2天1次,共3周)各五只。每两天观察生长情况,每周测量肿瘤体积,计算肿瘤生长抑制率,5周后取肿瘤组织HE染色。
     13. p140Cap与Raf-MEK-ERK信号转导通路:Western blot分别检测p140Cap-shRNA或shRNA两组细胞ERK1/2、phospho-ERK1/2、MEK1、 phospho-MEK1的表达,并进一步检测凋亡相关蛋白Capase3、8、9、Bcl2,以及增殖相关蛋白CyclinD1、p21、p27的表达。
     14.统计学分析:数据以X±s表示,采用SPSS16.0统计软件,率的比较采用Pearson x2或fisher检验,细胞增殖、凋亡、侵袭转移采用独立实验t检验,裸鼠肿瘤体积的比较采用单因素方差分析(one-way ANOVA)进行统计学处理,以P<0.05为差异具显著性。
     结果
     1. Western blot证实73.9%肠癌组织p140Cap表达高于对应癌旁组织(17/23)。
     2. p140Cap在癌旁、结肠腺瘤和结肠癌组织以及结肠癌转移淋巴结中的表达:经免疫组化SP法染色的阳性物质为黄色颗粒,主要定位于细胞浆中。结肠癌组织p140Cap阳性表达率(评分大于4分,++/+++)在为85.7%(108/126);癌旁正常组织p140Cap阳性表达率为12%(6/50),,结肠腺瘤p140Cap阳性率为38.1%(16/42),非肿瘤性息肉p140Cap阳性率为15.8%(6/38),结肠癌转移淋巴结p140Cap阳性率为100%(25/25)。经统计分析,结肠癌组织p140Cap表达阳性表达率高于癌旁组织(P<0.001)。
     3.结肠癌组织中p140Cap表达与临床病理特征的关系:结肠癌p140Cap阳性表达率与性别、年龄、肿瘤位置无显著性差异(P<0.05);与肿瘤大小、肿瘤淋巴结转移、浆膜浸润、组织病理学分型及TMN有显著性差异(P<0.05)。
     4. p140Cap在肠癌细胞系中的表达:8株结直肠癌细胞系中p140Cap蛋白均有高或较高的表达水平,而293T不表达。
     5.成功构建p140Cap-pcDNA质粒:化学合成的p140Cap基因片段重组到pcDNA3.1质粒,转化到感受态细胞,扩增后提取质粒,琼脂糖凝胶电泳验证分子量符合,基因测序测通成功。
     6.成功建立p140Cap过表达细胞株:经过Western Blot验证筛选出的第7个单克隆LoVo (Clone7) p140Cap表达最高,命名为p140Cap-PcDNA3.1细胞株,其阴性对照pcDNA3.1质粒转染LoVo命名为pcDNA3.1细胞株,选择p140Cap表达最高的p140Cap-PcDNA3.1株,进行下一步研究。
     7. siRNA干扰敲低LoVo细胞p140Cap表达:Western Blot检测发现,由3条p140Cap-siRNA瞬转的3株LoVo细胞p140Cap均被敲低,p140Cap-siRNA2感染株p140Cap最低,命名为p140Cap-siRNA株。
     8. p140Cap促进对结肠癌细胞侵袭转移:划痕实验发现,p140Cap上调的细胞划痕48h后显微镜下观察划痕宽度变窄(P<0.01,三次独立试验);侵袭小室实验发现,36h后p140Cap上调的细胞穿过小室的细胞增多(P<0.01,三次独立试验),同理p140Cap下调则相反。
     9.建立稳定敲低p140Cap表达细胞株:利用慢病毒敲低p140Cap, p140Cap-shRNA感染LoVo,48h荧光显微镜下观查20MOI滴度p140Cap-shRNA感染率达到90%以上,Western blot证实p140Cap表达下调,命名为p140Cap-shRNA株。
     10. p140Cap促进结肠癌细胞增殖:WST-1实验证实p140Cap上调促进细胞生长(第3,5,7天),平板细胞克隆形成实验显示p140Cap上调克隆数量增加P<0.01,三次独立试验)。p140Cap下调则相反。
     11. p140Cap抑制结肠癌细胞凋亡:流式细胞技术检测显示,p140Cap-shRNA组的细胞凋亡率(Q2+Q3)高于对照组shRNA组(P<0.01,三次重复试验)。
     12. p140Cap下调抑制裸鼠原位移植瘤生长,增加裸鼠对5-Fu化疗敏感性:接种细胞5周后,20只裸鼠无死亡,均有肿瘤生长,解剖后未发现其它肺、肝组织有转移结节,HE证实原位移植瘤为恶性肿瘤组织,显示敲低组较之对照组肿瘤坏死面积小。接种细胞5周后,测得各组种植瘤体积shRNA+生理盐水组(1485.2±224.7)、shRNA+5-FU组(595.5±117.3)、p140Cap-shRNA组+生理盐水组(581.4±139.7)(mm3)、p140Cap-shRNA+5-FU组(240.6±78.3)(mm3),经统计学分析,p140Cap-shRNA+生理盐水组,p140Cap-shRNA组+生理盐水组、p140Cap-shRNA+5-FU组三组肿瘤体积与shRNA+生理盐水组比差异有显著性(P<0.05, One-Way ANOVA)。
     13. p140Cap参与Raf-MEK-ERK信号转导通路影响结肠癌细胞增殖和凋亡:p140Cap-shRNA组phospho-ERK1/2、phospho-MEK1的表达shRNA组细胞ERK1/2,MEK1的表达。p140Cap-shRNA组shRNA组细胞较的活性Capase3、8、9,p21、p27表达增高,Bcl2, CyclinD1表达降低。
     结论
     1.p140Cap在大肠癌组织高表达,并且与某些预后相关的大肠癌临床病理分型存在显著差异,可能影响大肠癌不良预后。
     2. p140Cap在大部分大肠癌细胞浆高表达,少部分大肠腺瘤表达,正常组织极少表达,可能在大肠癌发展的过程中发挥促癌作用。
     3. p140Cap在结肠癌细胞高表达,p140Cap促进肠癌细胞生长、转移和侵袭,抑制凋亡。
     4. p140Cap下调表达抑制裸鼠原位移植瘤的生长,增加裸鼠对5-Fu药物敏感性。
     5. p140Cap参与Raf-MEK-ERK信号转导通路,从而影响细胞增殖与凋亡。
     6. p140Cap在在大肠癌的发生发展中表现为癌基因的特性,为预测大肠癌预后的一个新的分子标志物。
Background and Aim
     p140Cap is mainly expressed in the brain, testis, and rich in the epithelial tissue, such as breast, lung, kidney and intestine. So far, there are few report about p140Cap, a recent report found it negatively associated with malignant degree of tumor, p140Cap negatively expression as high as70%in lymph node metastasis and high proliferated tumor tissues. In another study, Srcin1(p140Cap) mRNA expression level have a positively certain correlationand to poor prognosis. As soon as noww, therr is no research about p140Cap effecting on colorectal cancer. This paper based on clinical specimens, cell lines with plasmid transfection or RNAi interfere, nude mouse transplantation tumor in situ, we try to investigate proliferation, invasion. metastasis and invasiont effection with p140Cap on colorectal cancer at the level from tissue, cell and animal.
     Methods
     1. The expressions of p140Cap in the cancer tissues and perinunor normal colon tissues:23pairs of cancer tissues and perinunor normal colon tissues were the collected from operating room, department of gastrointestinal surgery, Nanfang hospital, the total protein of tissues were extracted, the expressions of p140Cap were detected by Western blot, GAPDH as the internal control.
     2. The expressions of p140Cap in the cancer tissues and perinunor normal colon tissues:126pairs of cancer tissues and perinunor normal colon tissues (>5cm),25CRC lymph node metastasis tissues were the collected from endoscopy operating room, department of gastroenterology, Nanfang hospital. The samples were made to paraffin slices. The expressions of p140Cap were detected by immunohistochemical staining (IHC). Relationship between the expression and the clinical pathological data, such as age, gender, tumor location, tumor size, pathological grading, serosal invasion, lymph node metastasis and AJCC TNM stages were analysed by Pearson x2test (P<0.05was considered significant).
     3. The expressions of p140Cap in colorectal metastasis lymph node tissues:20colorectal carcinoma metastasis lymph node were the collected from operating room, department of gastrointestinal surgery, Nanfang hospital. IHC staining was used to detect the expression of p140Cap in these samples.
     4. The expressions of p140Cap in colon polyps:38non-adenomatous polyp and42adenomatous polyps were the collected from endoscopy operating room, department of gastroenterology, Nanfang hospital. The samples were made to paraffin slices and detected the expressions of p140Cap by IHC. cell area and the intensity d of Stained were recorded. The expressions of p140Cap distribution and variance in CRC and colon polyps were analyzed,
     5. The expressions of p140Cap in colorectal cancer cell lines:eight CRC cells preserved in our laboratory, LS174T,, SW1116, LoVo, SW480SW620, Caco-2, DLD1, HT29were collected, the total protein of cells were extracted, the expressions of p140Cap were detected by Western blot.
     6. Develop a stablyover-expression p140Cap cell lines:The aim gene synthesis was accomplished though chemical analysis. Recombinant aim plasmid was constructed by enzyme digestion of pcDNA3.1plasmid. over-expression p140Cap plasmid was identified by agarose gel electrophoresis and Gene sequencing. Restructured p140Cap-pcDNA3.1plasmid was stablely transfected into LoVo with with lipofectamine2000, and screened with G418. p140Cap was detected in transfected LoVo by Western Blot.
     7. Establish a Instantaneously low-expression of p140Cap cell lines (p140Cap-siRNA, siRNA as negativ econtrol cells):p140Cap-siRNA was instantaneously transfected into LoVo cells with with lipofectamine2000, and screened with G418. p140Cap was detected in transfected LoVo by Western Blot.
     8. p140Cap effects on cell invasion and metastasis:cell Wound Healing assay, Matrigel invasion chamber detection was applied to test cell invasion and metastasis.
     9. Construction a stablely low-expression of p140Cap cell lines:(p140Cap-shRNA, shRNA as negative control) LoVo were transfected with viral titers of5MOI,10MOI,20MOI respectively. The efficiency of p140Cap-shRNA infection was judged by fluorescence microscope observation, also verificaed by Western blot.
     10. p140Cap effects on cell proliferation:the growth of four groups of p140Cap-pcDNA3.1, pcDNA3.1, siRNA, siRNA cells was checked by WST-1experiment and flat cell clone forming test.
     11. p140Cap Effects cell apoptosis:p140Cap-siRNA and siRNA cells were ananlysed by flow cytometry. The percent of apoptotic cells were compared.
     12. Establish the nude mice orthotopic transplantation tumor model and to evaluate the effect of5-Furespectively, LoVo with shRNAor p140Cap-shRNA (5×106/0.2mL) were inoculated subcutaneously into the right neck in5week old male BALB/c-nu/nu nude mice. When the length diameter of orthotopic transplantation tumor reach to5mm in2weeks of transplantation, the nude mice was injected with5-Fu(20μg/g,1, every2days for3weeks) or saline (100μ, every2days for3weeks) by intraperitoneal injection. Weekly measurements of tumor volume, tumor growth inhibitory rate was calculated. Tunor tissues were stained HE after5weeks.
     13. P140Cap with Raf-MEK-ERK signal transduction pathways:the expression ERK1/2, phospho-ERK1/2, MEK1and phospho-MEK1were detected by western blot in p140Cap-shRNA or shRNA cells. Further, the expression of cell apoptosis related proteins Capase3,8,9, Bcl2, and CyclinD1, p21and p27protein involved in cell proliferation were also detected.
     14. Statistical assay:The data was demonstrated as x±s. SPSS16.0stastistic soft was used to analyse statistically these data. The comparison of the rate was analysed by Pearson x2or fisher test, cell proliferation, apoptosis, invasion and metastasis related independent experiment measured data was analysed by two-sample t test. Random unit group design data analysis of variance of the volume of nude mouse tumor was analysed by one-way ANOVA. There was significant difference as P<0.05.
     Results
     1. Western blot confirmed expression of p140Cap in73.9%colorectal tissue higher than the corresponding normal tissues adjacent to colorectal cancer (17/23).
     2. he expressions of p140Cap in normal tissues adjacent to colorectal cancer, non-adenomatous colon polyps, colon adenoma and colon carcinoma:positive substance in the immunohistochemical SP staining showed yellow particles, mainly located in the cytoplasm, the p140Cap positive expression rate (score>4,++/+++) in colon cancer tissue was85.7%(108/126), the p140Cap positive expression rate in normal tissues adjacent to colorectal cancer was12%(6/50), the p140Cap positive expression rate in colonic adenoma was38.1%(16/42), the p140Cap positive expression rate in non-adenomatous colon polyps was15.8%(6/38), the p140Cap positive expression rate in colon cancer metastasis lymph nodes p140Cap positive rate was100%(25/25). The expression of p140Cap in colorectal cancer tissues and normal tissues adjacent to colorectal cancer was statistically significant (p<0.05).
     3. The expression of pl40Cap relate to ccolorectal cancer linicopathological features: There is no significant difference there between p140Cap expression and age, gender, tumor location (p>0.05). There are statistical significanc between p140Cap expression and tumor size, pathological grading, serosal invasion, lymph node metastasis and AJCC TNM stages (p<0.05).
     4. The expression of p140Cap in colon cancer cell lines:8strains colorectal cancer cell had a highexpression of140cap protein, and no expression in293T.
     5. Obtain a plasmid with high-expression of p140Cap:the140cap gene fragment from chemical synthesis was linked to pcDNA3.1vector, then was transformed to competence cell. Plasmid was extracted after amplification, molecular weight was tested by the agarose gel electrophoresis, gene sequencing measured successfully.
     6. Harvest a over-expression p140Cap cell line:a LoVo monoclonal cell line (Clone7) with a highest expression p140Cap was screened from seven clones, with a name of p140Cap-pcDNA3.1cell, and negtive control with a name of pcDNAS.1cell, cells transfected with recombinant p140Cap-pcDNA3.1plasmid were named as LoVo-p140Cap-PcDNA3.1cell line.
     7. p140Cap knockdowned by siRNA interference:p140Cap was obviously knocked down instantaneously by one of three p140Cap-siRNA. Cell tranfected with siRNA2with a lowest expression of p140Cap was selected for research in the next steps.
     8. p140Cap promoted the invasion and metastasis of colon cancer cell:in p140cap-pcDNA3.1cell compare to pcDNA3.1cell, scratch width (P<0.01, three independent experimets) was decreased in48h, and also cell numbers (P<0.01, three independent experimets) increased though the well of Matrigel invasion chambe in in36h under microscope obeservation. Similarly, of p140Cap-siRNA cell lines, we obtained the opposite results.
     9. The establishment of stable p140Cap knockdown cell lines:Above90%LoVo transfected with viral titers p140Cap-shRNA of20MOI with a blue vision under fluorescence microscope. A downreglation of p140Cap was also verificaed by Western blot.
     10. p140Cap boosted the proliferation of colon cancer cells:in the p140Cap-pcDNA3.1cells, WST-1experiment showesd the cell growth speed was accelerated (Day3, Day5, Day7), cell clones increased in cell clone formation experiment (P<0.01, three independent experimets). on the contrary, in p140Cap-shRNA cells, the opposite results were gained.
     11. P140Cap inhibition of colon cancer cell apoptosis:flow cytometry technique test showed that p140Cap-shRNA group of apoptotic cells (Q2+Q3) rate is higher than the control shRNA group (P<0.01, three independent experimets).
     12. p140Cap下调抑制裸鼠原位移植瘤生长,增加裸鼠对5-Fu化疗敏感性:接种细胞5周后,20只裸鼠无死亡,均有肿瘤生长,解剖后未发现其它肺、肝组织有转移结节,HE证实原位移植瘤为恶性肿瘤组织,显示敲低组较之对照组肿瘤坏死面积小。接种细胞5周后,测得各组种植瘤体积shRNA+生理盐水组(1485.2±224.7)、shRNA+5-FU组(595.5±117.3)、p140Cap-shRNA组+生理盐水组(581.4±139.7)(mm3)、p140Cap-shRNA+5-FU组(240.6±78.3)(mm3),经统计学分析,p140Cap-shRNA+生理盐水组,p140Cap-shRNA组+生理盐水组、p140Cap-shRNA+5-FU组三组肿瘤体积与shRNA+生理盐水组比差异有显著性(P<0.05, One-Way ANOVA)。
     12. p140Cap Knockdown inhibits the growth of orthotopic transplantation tumo, increased5-Fu chemotherapy sensitivity in nude mice:All20nude mice grew with tumor. The autopsy showed no metastatic nodules in lung, liver or other. HE confirmed the orthotopic transplantation tumor was malignant tumor tissue, and showed that knockdown group had less tumor necrosis aress than in the control group. Five weeks after vaccination cells, Volume of tumor were measured, respectively, shRNA+saline(1485.2±224.7), shRNA+5-FU(595.5±117.3), p140Cap-shRNA+saline(581.4±139.7), p140Cap-shRNA+5-FU (240.6±78.3)(mm3). With the statistical analysis, there were significant difference there between shRNA+5-FU, p140Cap-shRNA+salin, p140Cap-shRNA+5-FU and shRNA+saline (as control group)(P<0.05, One-Way ANOVA).
     13. p140Cap play a role in the Raf-EK-ERK signal transduction pathway affect cell proliferation and apoptosis of colon cancer cells:downregulaition of p140Cap has a higher expression of phospho-ERK1/2, phospho-MEK1shRNA ERK1/2, MEK1. Active Capase3,8,9, p21and p27expression was increased in p140Cap-shRNA cells, Bcl2and CyclinDl were reduced.
     Discusion
     1. The high expression of p140Cap in colorectal cancer, and high expression of p140Cap a is closely related to clinical pathology classification of colorectal carcinoma, may affect the prognosis of CRC.
     2. High expression of p140Cap in most CRCs, weaker expression in fewer colorectal adenoma, rarely expressed in nomal tissues, p140Cap may be a promoted role in thr development of CRC.
     3. High expression of p140Cap in colon cancer cells, p140Cap upregulation can promote cancer cell growth, apoptosis, invasion and metastasis.
     4. Down-regulated expression of p140Cap inhibits orthotopic tumor growth in nude mice,140Cap also increases the sensitivity of5-Fu.
     5. p140Cap acs on the Raf-EK-ERK signal transduction pathway promting cell proliferation and inhabitingcell apoptosis:
     6. p140Cap palys a role of a cancer genes in the development of colorectal carcinoma, may zct as a new molecular marker for predicting the prognosis of CRC.
引文
[I]Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA Cancer J Clin 61(2),69-90
    [2]Jemal, A., Center, M. M., DeSantis, C., & Ward, E. M. (2010). Global patterns of can-cer incidence andmortality rates and trends. Cancer Epidemiol Biomarkers Prev 19(8),1893-1907.
    [3]Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008:GLOBOCAN 2008. Int J Cancer 127: 2893-2917.
    [4]Atkin WS, Cuzick J, Northover JM, Whynes DK. Prevention of colorectal cancer by once-only sigmoidoscopy. Lancet.1993;20;341(8847):736-40.
    [5]Burt RW, DiSario JA, Cannon-Albright L. Genetics of colon cancer:impact of inheritance on colon cancer risk. Annu Rev Med.1995;46:371-9.
    [6]Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics,2007. CA Cancer J Clin 2007;57:43-66
    [7]Siegel RL, Jemal A, Ward EM. Increase in incidence of colorectal cancer among young men and women in the United States. Cancer Epidemiol Biomarkers Prev. 2009;18(6):1695-8.
    [8]Subarsky P, Hill RP. The hypoxic tumour microenvironment and metastatic progression. Clin Exp Metastasis.2003;20(3):237-50
    [9]Rofstad EK. Microenvironment-induced cancer metastasis. Int J Radiat Biol 2000;76(5):589-605.
    [10]潘其英,李德春,结肠息肉及胃肠道息肉综合征.见:潘国宗、曹世植主编.现代胃肠病学.北京:科学出版社.1998.1260.1261
    I11] Jacobs ET, Jiang R, Selenuim and colorectal adenoma:result of pooled analysis, J. Natl Cancer Inst,2004 Nov 17,96(22):1645-7
    [12]Micheli A, Mugno E, Krogh V, Quinn MJ, Coleman M, Hakulinen T, Gatta G, Berrino F, Capocaccia R; EUROPREVAL Working Group. Cancer prevalence in European registry areas. Ann Oncol.2002;13(6):840-65.
    [13]Cunningham, D., Atkin, W., Lenz, H. J., Lynch, H. T., Minsky, B., Nordlinger, B., et al.0.Colorectal cancer. Lancet 2010;375(9719):1030-47
    [14]Siegel, R, DeSantis, C, Virgo, K, Stein, K, Mariotto, A, Smith, T, et al. Cancer treatment and survivorship statistics. CA Cancer J Clin 2012;62(4):220-41
    [15]Bretthauer M, Kalager M. Principles, effectiveness and caveats in screening for cancer. Br J Surg 2013;100(1):55-65
    [16]Bretthauer M. Colorectal cancer screening. J Intern Me.2011;270(2):87-9.
    [17]He J and Efron JE. Screening for colorectal cancer. Adv Surg 2011;45:31-44
    [18]Onouchi S, Matsushita H, Moriya Y, Akasu T, Fujita S, Yamamoto S, Hasegawa H, Kitagawa Y, Matsumura Y. New method for colorectal cancer diagnosis based on SSCP analysis of DNA from exfoliated colonocytes in naturally evacuated feces. Anticancer Res 2008;28(1A):145-50.
    [19]Scheele J, Stangl R, Altendorf-Hofmann A. Hepatic metastases from colorectal carcinoma:impact of surgical resection on the natural history. Br J Surg 1990; 779(11):1241-46.
    [20]Jemal A, Murray T, Ward E, et al. Cancer statistics,2005. CA Cancer J Clin 2005;55(1):10-30.
    [21]Stangl R, Altendorf-Hofmann A, Charnley RM, et al. Factors influencing the natural history of colorectal liver metastases. Lancet 1994,343(8910):1405-10.
    [22]Ruers I, Bleirodt RP. Treatment of liver metastases, an update on the possibilities and results. Fur J Cancer.2002;38(7):1023.
    [23]Subarsky P, Hill RP. The hypoxic tumour microenvironment and metastatic progression. Clin Exp Metastasis 2003;20(3):237-50.
    [24]Milosevic M, Fyles A, Hedley D, Hill R. The human tumor microenvironment: invasive (needle) measurement of oxygen and interstitial fluid pressure. Semin Radiat Oncol 2004;14(3):249-58.
    [25]Vaupel P, Mayer A, Briest S, Hockel M. Oxygenation gain factor:a novel parameter characterizing the association between hemoglobin level and the oxygenation status of breast cancers. Cancer Res 2003;63(22):7634-7
    [26]Vaupel P, Kelleher DK, Hockel M. Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy. Semin Oncol. 2001;28(2 Suppl 8):29-35
    [27]Becker A, Stadler P, Lavey RS, Hansgen G, Kuhnt T, Lautenschlager C, Feldmann HJ, Molls M, Dunst J. Severe anemia is associated with poor tumor oxygenation in head and neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys2000; 15;46(2):459-66.
    [28]Collingridge DR, Piepmeier JM, Rockwell S, Knisely JP. Polarographic measurements of oxygen tension in human glioma and surrounding peritumoural brain tissue. Radiother Oncol 1999;53(2):127-31
    [29]Karkkainen MJ, Makinen T, Alitalo K. Lymphatic endothelium:a new frontier of metastasis research. Nat Cell Biol.2002;4(1):E2-5.
    [30]Paku S, Kopper L, Nagy P. Development of the vasculature in "pushing-type" liver metastases of an experimental colorectal cancer. Int J Cancer. 200520;115(6):893-902.
    [31]Giltay JC, van Mourik JA. Structure and function of endothelial cell, integrins. Haemostasis.1988; 18(4-6):376-89
    [32]Schlaepfer DD, Broome MA, Hunter T. Fibronectin-Stimulated Signaling from a Focal Adhesion Kinase-c-Src Complex:Involvement of the Grb2, pl30Cas, and Nck Adaptor Proteins. Mol Cell Biol,1997; 17(3):1702
    [33]Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999;285(5430):1028-32.
    [34]Klemke RL, Leng J, Molander R, Brooks PC, Vuori K, Cheresh DA. CAS/Crk Coupling Serves as a "Molecular Switch"for Induction of Cell Migration. J of Cell Biol,1998; 140(4):962
    [35]Abassi YA, Rehn M, Ekman N, Alitalo K, Vuori K. pl30Cas Couples the Tyrosine Kinase Bmx/Etk with Regulation of the Actin Cytoskeleton and Cell Migration. Mol Biol Cell,2004; 15:787
    [36]Di Stefano P, Cabodi S, Boeri Erba E, Margaria V, Bergatto E, Giuffrida MG, Silengo L, Tarone G, Turco E, Defilippi P. P130Cas-associated protein (p140Cap) as a new tyrosine-phosphorylated protein involved in cell spreading. Mol Biol Cell.2004; 15(2):787-800
    [37]Di Stefano P, Damiano L, Cabodi S, Aramu S, Tordella L, Praduroux A, Piva R, Cavallo F, Forni G, Silengo L, Tarone G, Turco E, Defilippi P. pl40Cap protein suppresses tumour cell properties, regulating Csk and Src kinase activity. EMBO J.2007; 26(12):2843-55
    [38]Kennedy S, Clynes M, Doolan P, Mehta JP, Rani S, Crown J, O'Driscoll L. SNIP/p140Cap mRNA expression is an unfavourable prognostic factor in breast cancer and is not expressed in normal breast tissue. Br J Cancer.2008; 98(10):1641-5.
    [39]Damiano L, Di Stefano P, Camacho Leal MP, Barba M, Mainiero F, Cabodi S, Tordella L, Sapino A, Castellano I, Canel M, Frame M, Turco E, Defilippi P. p140Cap dual regulation of E-cadherin/EGFR cross-talk and Ras signalling in tumour cell scatter and proliferation. Oncogene.2010; 29(25):3677-90
    [40]Maratka Z. Terminology definitions and diagnostic criteria in digestive endoscopy,2nd edn. (English version). In:ColinJones DG (ed) Normed Verlag, Bad Hamburg,1989,p 27
    [41]Jass JR, Sobin LH. Histologic typing of intestinal tumours.2nd edn. Springer-Verlag, Berlin,1989, p 30
    [42]Morson BC. The President's address. The polyp-cancer sequence in the large bowel. Proc R Soc Med 1974;67:451-7
    [43]Cooper HS. Surgical pathology of endoscopically removed malignant polyps of the colon and rectum. Am J Surg Path 1983;7:613-23
    [44]Coverlizza S, Risio M, Ferrari A, Fenoglio-Preiser CM, Rossini FP. Colorectal adenomas containing invasive carcinoma,pathological assessment of lymph node metastasis. Cancer 1989;64:1937-47
    [45]Hassan C, Zullo A, Risio M, Rossini FP, Morini. SHistologic risk factors and clinical outcome in colorectal malignant polyp:a pooled-data analysis. Dis Colon Rectum 2005; 48:1588-96
    [46]Kyzer S, Begin LR, Gordon PH, Mitmaker B. The care of patients with colorectal polyps that contain invasive adenocarcinoma. Endoscopic polypectomy or colectomy? Cancer 1992;70:2044-50
    47] Apel D, Jakobs R, Weickert U, Riemann JF. High frequency of colorectal adenoma in patients with duodenal adenoma but without familial adenomatous polyposis. Gastrointest Endosc 2004;60(3):397-9
    [48]Morson B, Dawson IMalignant epithelial tumours and polyps. In:Morson B, Dawson I, Day D, Jass J, Price A, Williams G (eds) Gastrointestinal pathology, 3rd edn. Blackwell Scientific, Oxford,,1990, pp 597-629
    [49]Nusko G, Mansmann U, Altendorf-Hoimann A, Grotil H, Wittekind C, Hahn EG. Risk of invasive carcinoma in rectal adenoma assessed by size and site. Int J Colorec Dis 1997;12:267-271
    [50]Muto T, Bussey H, Morson B. The evolution of cancer of the colon and rectum. Cancer 1975;36:2251-270
    [51]Fenoglio-Preiser CM, Noffsinger AE, Stemmermann GN, Lantz PE, Listrom MB, Rilke FO. Gastrointestinal pathology. An atlas and text. Lippincott-Raven, Philadelphia New York,1998,p.961
    [52]Seitz U, Bohnacker S, Seewald S, Thonke F, Brand B, Brautigam T, Soehendra N. Is Endoscopic polypectomy an adequate therapy for malignant colorectal adenomas? Presentation of 114 patients and review of the literature. Dis Colon Rectum 2004;47:1789-97
    [53]Geraghty JM, Williams CB, Talbot IC. Malignant colorectal polyps:venous invasion and successful treatment by endoscopic polypectomy. Gut 1991;32:774-778
    [54]Winawer SJ, Zauber AG, Ho MN, O'Brien MJ, Gottlieb LS, Sternberg SS, Waye JD, Schapiro M, Bond JH, Panish JF, et al. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. N Engl J Med 1993 30;329(27):1977-81
    [55]Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell 1996; 18;87(2):159-70
    [56].许良中,杨文涛.免疫组织化学反应结果的判断标准.中国癌症杂志,1996,6(4):229—231.
    [57]Watson JD and Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature.1953; 171(4356):737-8
    [58]Waston JD and Crick FH. The structure of DNA. Cold Spring Harb Symp Quant Biol 1953;18:123-31
    [59]Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57-70
    [60]Bohle AS, Kalthoff H. Molecular mechanisms of tumor metastasis and angiogenesis. Langenbecks Arch Surg 1999;384:133-140
    [61]Liotta LA, Steeg PS, Stetler WG. Cancer metastasis and angiogenesis:an imbalance of positive and negative regulation. Cell 1991;64:327-336
    [62]Carthew RW. Gene silencing by double-stranded RNA. Curr Opin Cell Biol 2001;13(2):244-8
    [63]Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411 (6836):494-8
    [64]McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 2002;3(10):737-47
    [65]Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB, Boucher Y, Choi NC, Mathisen D, Wain J, Mark EJ, Munn LL, Jain RK. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 2002;296(5574):1883-6
    [66]Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DQ, Orci L, Alitalo K, Christofori G, Pepper MS. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 2001;20(4):672-82
    [67]Rocchi P, Jugpal P, So A, Sinneman S, Ettinger S, Fazli L, Nelson C, Gleave M. Small interference RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and induces apoptosis via caspase-3 activation in vitro. BJU Int 2006;98(5):1082-9.
    [68]Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001;410(6824):37-40
    [69]Schuringa JJ, Jonk LJ, Dokter WH, et al. Interleukin-6-induced STAT3 transactivation and Ser727 phosphorylation involves Vav, Rac-1 and the kinase SEK-1/MKK-4 as signal transduction components. Biochem J 2000;347(Pt 1): 89-963
    [70]Lee SH, Lee JW, Soung YH, et al. Colorectal tumors frequently express phosphorylated mitogen-activated protein kinase. APMIS.2004;112(4-5):233-8
    [71]陈万青,张思维,郑荣寿等.中国肿瘤登记地区2007年肿瘤发病和死亡分析.中国肿瘤,2011,20(3);162-169
    [72]Boring CC, Squires TS, Tong T. Cancer statistics,1992. CA Cancer J Clin 1992;42:19-38
    [73]Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics,2007. CA Cancer J Clin 2007;57:43-66
    [74]Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, D'Haens G, Pinter T, Lim R, Bodoky G, Roh JK, Folprecht G, Ruff P, Stroh C, Tejpar S, Schlichting M, Nippgen J, Rougier P. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 2009;360(14): 1408-17
    [75]Saltz LB, Clarke S, Diaz-Rubio E, Scheithauer W, Figer A, Wong R, Koski S, Lichinitser M, Yang TS, Rivera F, Couture F, Sirzen F, Cassidy J. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer:a randomized phase III study. J Clin Oncol 2008;26(12):2013-9
    [76]Compton CC, Fielding LP, Burgart LJ, Conley B, Cooper HS, Hamilton SR, Hammond ME, Henson DE, Hutter RV, Nagle RB, Nielsen ML, Sargent DJ, Taylor CR, Welton M, Willett C. Prognostic factors in colorectal cancer. College of AmericanPathologists Consensus Statement 1999. Arch Pathol Lab Med 2000;124(7):979-94
    [77]Steinberg SM, Barkin JS, Kaplan RS, Stablein DM. Prognostic indicators of colon tumors. The Gastrointestinal Tumor Study Group experience. Cancer 1986;57(9):1866-70
    [78]Kemeny N, Braun DW Jr. Prognostic factors in advanced colorectal carcinoma. Importance of lactic dehydrogenase level, performance status, and white blood cell count. Am J Med 1983y;74(5):786-948.
    [79]Wanebo HJ, Rao B, Pinsky CM, Hoffman RG, Stearns M, Schwartz MK, Oettgen HF. Preoperative carcinoembryonic antigen level as a prognostic indicator in colorectal cancer. N Engl J Med 1978;299(9):448-51.
    [80]Sobrero A, Guglielmi A, Grossi F, Puglisi F, Aschele C. Mechanism of action of fluoropyrimidines:relevance to the new developments in colorectal cancer chemotherapy. Semin Oncol 2000;27:72-7
    [81]Zhang ZG, Harstrick A, Rustum YM. Modulation of fluoropyrimidines:role of dose and schedule of leucovorin administration. Semin Oncol 1992; 19:10-5.
    [82]de Gramont A, Bosset JF, Milan C, Rougier P, Bouche O, Etienne PL, Morvan F, Louvet C, Guillot T, Francois E, Bedenne L. Randomized trial comparing monthly low-dose leucovorin and fluorouracil bolus with bimonthly high-dose leucovorin and fluorouracil bolus plus continuous infusion for advanced colorectal cancer:a French intergroup study. J Clin Oncol 1997;15:808-15.
    [83]Petrelli N, Douglass HO Jr, Herrera L, Russell D, Stablein DM, Bruckner HW, Mayer RJ, Schinella R, Green MD, Muggia FM, et al. The modulation of fluorouracil with leucovorin in metastatic colorectal carcinoma:a prospective randomized phase III trial. Gastrointestinal Tumor Study Group. J Clin Oncol 1989;7:1419-26
    [84]Poon MA, O'Connell MJ, Moertel CG, Wieand HS, Cullinan SA, Everson LK, Krook JE, Mailliard JA, Laurie JA, Tschetter LK, et al. Biochemical modulation of fluorouracil:evidence of significant improvement of survival and quality of life in patients with advanced colorectal carcinoma. J Clin Oncol 1989;7:1407-18
    [85]Thirion P, Michiels S, Pignon JP, Buyse M, Braud AC, Carlson RW, O'Connell M, Sargent P, Piedbois P. Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer:an updated meta-analysis. J Clin Oncol 2004;22:3766-75
    [86]Efficacy of intravenous continuous infusion of fluorouracil compared with bolus administration in advanced colorectal cancer. Meta-analysis Group In Cancer. J Clin Oncol 1998; 16:301-8
    [87]Di Stefano, P. et al. P130Cas-associated protein (p140Cap) as a new tyrosine-phosphorylated protein involved in cell spreading. Mol. Biol. Cell 15, 787-800 (2004).
    [88]Ito, H. et al. Characterization of a multidomain adaptor protein, p140Cap, as part of a pre-synaptic complex. J. Neurochem.107,161-172 (2008).
    [89]DeGiorgis, J. A. et al. Phosphoproteomic analysis of synaptosomes from human cerebral cortex. J. Proteome Res.4,306-315 (2005).
    [90]Collins, M. O. et al. Proteomic analysis of in vivo phosphorylated synaptic proteins. J. Biol. Chem.280,5972-5982 (2005).
    [91]Brakebusch, C. & Fassler, R. β1 integrin function in vivo:adhesion, migration and more. Cancer Metastasis Rev.24,403-411 (2005).
    [92]Christofori, G. New signals from the invasive front. Nature 441,444-450 (2006).
    [93]Nam, J. M., Chung, Y., Hsu, H. C. & Park, C. C. β1 integrin targeting to enhance radiation therapy. Int. J. Radiat. Biol.85,923-928 (2009).41. Di Stefano, P. et al. P130Cas-associated protein (p140Cap) as a new tyrosine-phosphorylated protein involved in cell spreading. Mol. Biol. Cell 15,787-800 (2004).
    [94]Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT and Horwitz AR. Cell migration:integrating signals from front to back. Science 2003; 302:1704-1709.
    [95]Mitra SK, Hanson DA and Schlaepfer DD. Focal adhesion kinase:in command and control of cell motility. Nat Rev Mol Cell Biol 2005; 6:56-68.
    [96]Eliceiri BP, Puente XS, Hood JD, Stupack DG, Schlaepfer DD, Huang XZ, Sheppard D and Cheresh DA. Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling. J Cell Biol 2002;157:149-160.
    [97]Berx G, Raspe E, Christofori G, Thiery JP and Sleeman JP. Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer. Clin Exp Metastasis 2007; 24:587-597.
    [98]Giancotti FG. A structural view of integrin activation and signaling. Dev Cell 2003; 4:149-151.
    [99]Guo W and Giancotti FG Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 2004; 5:816-826.
    [100]Cavallaro U and Christofori G Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 2004; 4:118-132.
    [101]i Stefano, P. et al. P130Cas-associated protein (p140Cap) as a new tyrosine-phosphorylated protein involved in cell spreading. Mol. Biol. Cell 15, 787-800 (2004).
    [102]Damiano, L. et al. p140Cap dual regulation of E-cadherin/EGFR cross-talk and Ras signalling in tumour cell scatter and proliferation. Oncogene 29,3677-3690 (2010).
    [103]Di Stefano P, Damiano L, Cabodi S, Aramu S, Tordella L, Praduroux A, Piva R, Cavallo F, Forni G, Silengo L, Tarone G, Turco E, Defilippi P. p140Cap protein suppresses tumour cell properties, regulating Csk and Src kinase activity. EMBO J.2007 Jun 20;26(12):2843-55.
    [104]Perrais, M., Chen, X., Perez-Moreno, M. & Gumbiner, B. M. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions. Mol. Biol. Cell 18,2013-2025 (2007).
    [102]Qian, X., Karpova, T., Sheppard, A. M., McNally, J. & Lowy, D. R. E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J.23,1739-1748 (2004).
    [105]Takahashi, K. & Suzuki, K. Density-dependent inhibition of growth involves prevention of EGF receptor activation by E-cadherin-mediated cell-cell adhesion. Exp. Cell Res.226,214-222(1996).
    [106]Chin, L. S., Nugent, R. D., Raynor, M. C., Vavalle, J. P. & Li, L. SNIP, a novel SNAP-25-interacting protein implicated in regulated exocytosis. J. Biol. Chem. 275,1191-1200(2000).
    [108]Jaworski, J. et al. Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron 61,85-100 (2009).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700