REM期睡眠剥夺与药物干预对大鼠认知行为及海马突触可塑性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的通过观察不同程度快速眼动(REM)期睡眠剥夺和恢复及中枢性兴奋药莫达非尼(modafinil)干预后大鼠大鼠认知功能和海马突触可塑性变化,探讨REM期睡眠剥夺引起认知功能下降的机制及改善方法。方法成年雄性SD大鼠随机分为REM期睡眠剥夺组、空白对照组(CC)和环境对照组(TC),REM睡眠剥夺组又分非药物空白对照组(control Group,CG),助溶剂CMC组(CMC), modafinil干预组(modafinil),每组分为剥夺1天(SD1d)、SD3d、SD5d、恢复睡眠6h(RS6h)和RS12h,共5个时间点;采用改良多平台水环境REM期睡眠剥夺法(MMPM)进行REM期睡眠剥夺,利用Y迷宫测定大鼠空间学习记忆能力,运用蛋白质免疫印记(Western Blot)技术对大鼠海马synapsinⅠ蛋白作选择性半定量分析,运用免疫组织化学(IHC)的方法分析大鼠海马CA3区突触素SynapsinⅠ的表达,同时应用电镜技术观察海马CA3区辐射层突触的形态结构变化,观察突触可塑性。结果CC组与TC组的EN及TRT均无明显差别(p>0.05),与CC比较CG组大鼠EN在SD3d、SD5d时明显增加(p<0.05),TRT无变化(p>0.05),在SD1d、SD3d、SD5d时modafinil组与CG组比较EN减少(p<0.05),TRT无差别。免疫组化结果显示与CC组比较各睡眠剥夺时间点海马CA3区synapsinⅠ表达均减少(p<0.05),在SD1d、SD3d和RS6h、RS12h各时间点,modafinil组synapsinⅠ表达比CG组增加(p<0.05),Western Blot结果与之一致。电镜下观察SD1d时,未用药大鼠突触前膜囊泡数量减少,活性区长度减小,突触后致密物变薄,modafinil干预后突触前膜囊泡数量增加,活性区增长,突触后致密物增厚。结论不同程度的REM期睡眠剥夺均会造成认知功能下降,引起大鼠海马CA3区synapsinⅠ表达变化,而莫达非尼可以使睡眠剥夺后synapsinⅠ的表达减少改善,诱导大鼠海马突触可塑性变化,对REM睡眠剥夺后的认知行为下降有改善作用。
Objective To investigate the change of cognition and synaptic plasiticity in rats’hippocampus after various degrees of sleep deprivation and sleep revival and modafinil intervention. Methods All the male SD rats were divided into 3 groups randomly: cage control group (CC), tank control group (TG) and REM sleep deprivation and revival group. REM sleep deprivation group was divided into control group (CG), CMC auxiliary solvent group (CMC) and modafinil administration group (modafinil). Animals in REM sleep deprivation and revival group were sacrificed at the end of 1d, 3d, 5d sleep deprivation periods respectively and at the end of 6h, 12h sleep revival after 5d sleep deprivation. The modified multiple platform method(MMPM)was used to establish sleep deprivation model, The cognitive function was tested by Y-type maze, Western blot technique was specially used to analysis the quantitative level of synapsinⅠinvolved in the hippocampus, immunohistochemistry was used to observe the synapsinⅠexpression and distribution in the CA3 hippocampus, and electron microscope techniques was used to investigate the changes of morphosis in stratum radiatum of CA3 hippocampus. Results There were no statistically significant differences(p>0.05)in error reaction numbers (EN) and total reaction time (TRT) between CC and TC. Compared with CC, EN of CG was increased in SD3d and SD5d (p<0.05), Compared with CG, EN of modafinil group decreased in SD1d, SD3d and SD5d (p<0.05). Compared with CC, synapsinⅠexpressions in every time point was decreased (p<0.05) by immunohistochemistry, Compared with CG, synapsinⅠexpressions in modafinil group were increased in SD1d, SD3d and RS6h (p<0.05), same results were gotten in Western Blot. Under the electron microscope, numbers of synaptic vesicles, active zones in presynaptic membrane and postsynaptic density were decreased compared with control group in SD1d, but by administrating modafinil, numbers of synaptic vesicles, active zones in presynaptic membrane and postsynaptic density were all increased in SD1d. Conclusion Sleep deprivation, no matter mild or severe, both could have adverse effects on cognitive function and synapsinⅠexpression, modafinil may improve the cognitive disorder after sleep deprivation and regulate synaptic plasiticity.
引文
1.Reilly T, Piercy M. The effect of partial sleep deprivation on weight-lifting performance[J]. Ergonomics, 1994, 37(1): 107-115.
    2.赵忠新,主编.临床睡眠障碍学[M]. 上海: 第二军医大学出版社. 2003: 30-31.
    3.朱长庚,主编.神经解剖学[M]. 北京: 人民卫生出版社. 2002: 202-204.
    4.张守信,金连弘编.神经生物学[M].北京:科学出版社, 2002: 571-572.
    5.Huttner WB, Greengard P. Multiple phosphoryl-ation sites in protein I and their differential regulation by cyclic AMP and calcium[J]. Proc Natl Acad Sci, 1979, 76: 5402-5406.
    6.Sato K, Morimoto K, Suemaru S, et a1. Increased synapsin I immunoreactivity during long-term potentiation in rat hippocampus[J]. Brain Res, 2000, 872(1-2): 219-222.
    7.Manabe T. Does BDNF have pre- or postsynaptic targets[J]? Science, 2002, 295: 1651-1653.
    8.Cirelli C, Tononi G. Gene expression in the brain across the sleep-waking cycle[J]. Brain Res, 2000, 885: 303-321.
    9.Kiprianova I, Sandkuhler J, Schwab S, et al. Brain-Derived Neurotrophic Factor improves long-term potentiation and cognitive functions after transient forebrain ischemia in the rat[J]. Experimental Neurology, 1999, 159(2): 511-519.
    10.Sei H, Saitoh D, Yamamoto K, Morita K, et al. Differential effect of short-term REM sleep deprivation on NGF and BDNF protein levels in the rat brain[J]. Brain Res, 2002, 877: 387-390.
    11.Bedard MA, Montplaisir J, Malo J , et al. Persistent neuropsychological deficits and vigilance impairment in sleep apnea syndrome after treatment with continuous positive airways pressure (nCPAP)[J].J Clin Exp Neuropsychol, 1993,15(2): 330-341.
    12.Babkoff H, Caspy T, Mikulincer M. Subjective sleepiness ratings: the effects of sleep deprivation, circadian rhythmicity and cognitive performance[J]. Sleep, 1991, 14(6): 534-539.
    1. Cohen HB, Dement WC. Sleep: changes in threshold to electrocon-vulsive shock in rats after deprivation of “paradoxical” phase [J]. Science,1965,150:1318.
    2. Hennevin E, Hars B, Maho C, et al. Processing of learned information in paradoxical sleep: Relevance for memory [J]. Behavioural Brain Research, 1995, 69:125.
    3. Karni A, Tanne D, Rubenasay JJ et al. Dependence on REM sleep of overnight improvement of a perceptual skill [J]. Science, 1994, 265: 679.
    4. Reilly T, Piercy M. The effect of partial sleep deprivation on weight-lifting performance[J]. Ergonomics, 1994, 37(1): 107-115.
    5. Mallick BN, Thakka M et al.Effect of REM sleep deprivation on molecularforms of acetylcholinesterase in rats[J]. Neuroreport,1992,3(8):67.
    6. Sato K, Morimoto K, Suemaru S, et a1. Increased synapsin I immunoreactivity during long-term potentiation in rat hippocampus Brain[J]. Res, 2000, 872(1-2): 219-222.
    7. 孙刚,何平等.神经递质的释放[M].中国神经科学杂志,2001,17(2):166-170.
    8. Bìhler M, Czernik AJ, et al. Synapsin I is a highly surface-active molecule[J]. J Biol Chem, 1991,266:5600.
    9. Benfenati F, Valtorta F, et al. Interactions of synapsin I with phospho-lipids: possible role in synaptic vesicle clustering and in the maintenance of bilayer structures[J]. J Cell Biol, 1993, 123:1845-1855.
    10.Ferreira A, Han HQ, Greengard P, et al. Suppression of synapsinII inhibits the formation and maintenance of synapses in hippocampal culture[J]. Proc Natl Acad Sci USA, 1995, 92:9225-9229.
    11.Kao HT, Song HJ, Porton B, et al. A protein kinase A-dependent molecular swith in synapsins regulates neurite outgrowth[J]. Nat Neurosci, 2002, 5:431-437.
    12.Bahler M., Benfenati F., Valtorta F, et al. Characterization of synapsinI fragmentsproduced by cysteine-specific cleavage: a study of their inter-actions with F-actin[J]. J Cell Biol, 1989, 108:1841-1849.
    13.Baines AJ, Bennett V. Synapsin I is a spectrin-binding protein immunologically related to erythrocyte protein [J]. Nature, 1985.4(315):410-413.
    14.Bedard MA, Montplaisir J, Malo J, et al. Persistent neuropsychological deficits and vigilance impairment in sleep apnea syndrome after treatment with continuous positive airways pressure (nCPAP) [J]. J Clin Exp Neuropsychol, 1993,15(2):330-341.
    15.Benbadis SR, Mascha E, Perry MC, et al. Association between the Epworth Sleepiness scale and the Multiple Sleep Latency Test in a clinical population[J]. Ann Intern Med, 1999,130(4): 289-292.
    16.Babkoff H, Caspy T, Mikulincer M. Subjective sleepiness ratings: the effects of sleep deprivation, circadian rhythmicity and cognitive performance[J]. Sleep, 1991, 14(6):534-539.
    17.ENGBER TM, DENNIS SA, JONES BE, et al. Brain regional substatus for the actions of the novel wake-promoting agent modafinil in the rat: comparison with amphetamine[J]. Neuroscience, 1998, 87 (4): 905–911.
    1.陈忠, 魏尔清. 突触可塑性的机制. 中国神经科学杂志[M], 2004, 17(3):247-253.
    2.Daselaax SM, Rombouts SA, Vdtman DJ, et al. Parahippocmnpal activation during successful recognitinon of words:a self-paced event-related fMRI study[J]. Neuroimage, 2001, 13(6):lll3-l120.
    3.Segal M, Old J. Behavior of units in hippocampal circuit of the rat during learning[J]. J Neurophycal. 1972, 35:680-690.
    4.Revest P, Longstaff A. Mechanism of plasticity[M]. Molecular Neuroscience. 1998, 151-190.
    5.Frotscjer M, Kugler P, Misgeld V, et al. Neurotransmission in the hippocampus[J]. Sprirtger-Verlag, 1998, 2-17.
    6.李云, 张志文等. 神经元突触囊泡循环的分子机理[M], 生理科学进展, 1997, 28(4):317-321.
    7.Pelukhov VV. Quantitative analysis of ultrastructural change in synapses of the rat hippocampal field CA3 in vitro indiferent fuctional states[J]. Neurosciences, 1986, 18:823-836.
    [1] Kao, H.-T., Porton, B., Czernik, A. J., et al. A third member of the synapsin gene family. Proc. Natl Acad. Sci. USA 1998,95:4667-4672.
    [2] Hung TK, Barbara P, et al. A third member of the synapsin gene family. Neurobiology.1998,95(8):4667-4672,
    [3] J.cheetha, The Synapsins. Department of Biology College of Natural Sciences 2000,1:1390-1490
    [4] Cheetham, J.J., Weber T., Hilfiker-Rothenfluh, S., et al. Identification of Domain C Peptide Sequences of Synapsin I that Insert into Lipid Membranes. Biochemical J., 2001,354:57-66.
    [5] De Camilli, P., Benfenati, F., Valtorta, et al. The synapsins. A. Rev. Cell Biol. 1990,6:433-460.
    [6] Benfenati. F, Jahn, R, Greengard, P. Interactions of synapsin I with small synaptic vesicles: distinct sites in synapsin I bind to vesicle phospholipids and vesicle proteins. J. Cell Biol. 1989a,108:1863-1872.
    [7] Ho, M. F., Czernik, A. J., Schiebler, W., et al. Synapsin I is a highly surface-active molecule. J. Biol. Chem. 1991,266: 5600-5607.
    [8] Benfenati F, Valtorta F, Rossi MC,et al . Interactions of synapsin I with phospho-lipids: possible role in synaptic vesicle clustering and in the maintenance of bilayer structures. J. Cell Biol.1993,123:1845-1855.
    [9] Benfenati F, Greengard P, Brunner J.et al. Electrostatic and hydrophobic interactions of synapsin I and synapsin I fragments with phospholipid bilayers. J. Cell Biol.1989b,108:1851-1862.
    [10] Benfenati, F., Neyroz, P., Masotti, L. et al. Time-resolved £uorescence study of the neuron-speci¢c phosphoprotein synapsin. I. Evidence for phosphory- lation-dependent conformational changes. J. Biol. Chem. 1990, 265: 12584-12595.
    [11] Foster-Barber, A. Bishop, M. J. Src interacts with dynamin and synapsin in neuronal cells. Proc. Natl Acad. Sci. USA. 1998 ,95: 4673-4677.
    [12] Czernik, A. J., Pang, D. T. Greengard, P. Amino acid sequences surrounding the cAMP-dependent and calcium/calmodulin-dependent phosphorylation sites in rat and bovine synapsin I. Proc. Natl Acad. Sci. USA, 1987,84: 7518-7522.
    [13] Huttner, W. B., Schiebler, W., Greengard, P. Synapsin I (protein I), a nerve terminal-specific phos-phoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J. Cell Biol. 1983, 96: 1374-1388.
    [14] Benfenati, F., Valtorta, F., Rubenstein, J. L., et al. Synaptic vesicle-associated Ca2+/calmodulin-dependent protein kinase II is a binding protein for synapsin I. Nature 1992a ,359: 417-420.
    [15] Schiebler,W., Jahn, R., Doucet, J. P., et al. Characterization of synapsin I binding to small synaptic vesicles. J. Biol. Chem. 1986, 261: 8383-8390.
    [16] Benfenati, F.,Valtorta, F., Chieregatti, E. et al. Interaction of free and synaptic vesicle-bound synapsin I with F-actin. Neuron. 1992b, 8: 377-386.
    [17] Hirokawa, N., Sobue, K., Kanda, K, et al. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. J. Cell Biol. 1989,108: 111-126.
    [18] Nichols, R. A., Chilcote, T. J., Czernik, A. J. et al. Synapsin I regulates glutamate release from rat brain synaptosomes. J. Neurochem. 1992, 58: 783-785.
    [19] Hilfiker, S., Schweizer, F. E., Kao, H.-T., et al. Two sites of action for synapsin domain E in regulating neurotransmitter release. Nature Neurosci. 1998, 1: 29-35.
    [20] Brodin, L., Low, P., Gad, H., et al. Sustained neurotransmitter release: new molecular clues. Eur. J. Neurosci. 1997, 9:2503^2511.
    [21] Pieribone VA, Porton B, et al. Expression of synapsinIII in nerve terminals and neurogenic regions of the adult brain. J Comp Neurol, 2002, 454(2):105-114
    [22] Pieribone VA, Porton B, et al. Expression of synapsinIII in nerve terminals and neurogenic regions of the adult brain. J Comp Neurol, 2002, 454(2):105-114
    [23] Leypoldt F, Flajolet M, Methner A. Neuronal differentiation of cultured human NTERA-2cl.D1 cells leads to increased expression of synapsins. Neurosci Lett, 2002, 324(1):37-40.
    [24] Chin LS, Li L, Ferreira A, et al. Impairment of axonal develepment and of synaptogenesis in hippocampal neurons of synapsinI-deficient mice. Proc Natl Acad Sci USA, 1995, 92 :9230-9234.
    [25] Ferreira A,Han HQ,Greengard P,et al.Suppression of synapsinII inhibits the formation and maintenance of synapses in hippocampal culture.Proc Natl Acad Sci USA,1995,92:9225-9229.
    [26] Hall AC, Brennan A, Goold RG,et al. Valproate regulates GSK-3-mediated axonal remodeling and synapsinⅠclustering in developing neurons. Nat Neurosci, 2002,5(5):431-437.
    [27] Ferreria A,Kosik KS,Greengard P,et al.Aberrant neuritis and synaptic vesicle rotein deficiency in synapsinII-depleted neurons.Science,1994,264:977-979.
    [28] F .Gomez-Pinilla, V. So, J.P. Kesslak. Spatial learning induces neurotrophin receptor and synapsin I in the hippocampus Brain Research. 2001,904 :13– 19
    [29] J.P. Kesslak, V. So, J. Choi, et al. Learning upregulates brain-derived neurotrophic factor messenger ribonucleic acid: a mechanism to facilitate encoding and circuit maintenance? Behav. Neurosci. 1998,112 :1012–1019.
    [30] J. Hall, K.L. Thomas, B.J. Everitt, Rapid and selective induction of BDNF expression in the hippocampus during contextual learning [In Process Citation], Nat. Neurosci. 2000,3:533–535.
    [31] P.L. Chang, K.R. Isaacs,W.T. Greenough, Synapse formation occurs in association with the induction of long-term potentiation in two-year-old rat hippocampus in vitro, Neurobiol. Aging 1991,12:517–522.
    [32] J. DeZazzo, T. Tully, Dissection of memory formation: from behavioral pharmacology to molecular genetics, Trends Neurosci. 1995,18 :212–218.
    [33] S. Finkbeiner, Neurotrophins and the synapse, The Neuroscientist . 1996,2: 139–142.
    [34] W. Gottschalk, L.D. Pozzo-Miller, A. Figurov, et al. modulation of synaptic transmission and plasticity by brain-derived neurotrophic factor in the developing hippocampus, J. Neurosci. 1998,18: 6830–6839.
    [35] H. Kang, E.M. Schuman, Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus, Science 1995,267:1658–1662.
    [36] V. Lessmann, Neurotrophin-dependent modulation of glutamatergic synaptic transmission in the mammalian CNS, Gen. Pharmacol. 1998,31 :667–674.
    [37] C.G. Causing, A. Gloster, R. Aloyz, et al. Synaptic innervation density is regulated by neuron-derived BDNF, Neuron 1997,18:257–267.
    [38] S.L. Patterson, L.M. Grover, P.A. Schwartzkroin, et al. Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs, Neuron 1992,9:1081–1088.
    [39] M. Korte, P. Carroll, E.Wolf, et al. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor, Proc. Natl. Acad. Sci. USA 1995,92:8856–8860.
    [40] V. Baekelandt, L. Arckens, W. Annaert, et al. Alterations in GAP-43 and synapsin immunoreactivity provide evidence for synaptic reorganization in adult cat dorsal lateral geniculate nucleus following retinal lesions, Eur. J. Neurosci. 1994,6: 754–765.
    [41] R.H. Melloni Jr., P.J. Apostolides, J.E. Hamos, et al. Dynamics of synapsin I gene expression during the establishment and restoration of functional synapses in the rat hippocampus, Neuroscience. 1994,58:683–703.
    [42] T. Wang, K. Xie, B. Lu, Neurotrophins promote maturation of developing neuromuscular synapses, J. Neurosci. 1995,15:4796-4805.
    [43] Dodart JC, et al. Neuroanatomical abnormalities in behaviorally characterized APP(V717F) transgenic mice. Neurobiol Dis. 2000,7 (2): 71-85.
    [44] Gomez PF,et al. Cluster analysis of these genes revealed a striking divergence between those involved with presynaptic fuction. Brain Res. 2001, 904 (1): 13-19.
    [45] Vawter MP, et al. Reduction of synapsin in the hippocampus of patients with bipolar disorder and schizophrenia. Molecular Psychiatry. 2002, 7 (6): 57l-578.
    [1] BEDARD MA, MONTPLAISIR J, MALO J , et al. Persistent neuropsychological deficits and vigilance impairment in sleep apnea syndrome after treatment with continuous positive airways pressure (nCPAP) [J]. J Clin Exp Neuropsychol, 1993,15(2):330-341.
    [2] AKERSTEDT T. Shift work and disturbed sleep/wakefulness[J]. Sleep Med Rev, 1998, 2(2):117-128.
    [3] BENBADIS SR, MASCHA E, PERRY MC, et al. Association between the Epworth sleepiness scale and the multiple sleep latency Test in a clinical population[J]. Ann Intern Med ,1999,130(4):289-292.
    [4] BABKOFF H, CASPY T, MIKULINCER M. Subjective sleepiness ratings: the effects of sleep deprivation, circadian rhythmicity and cognitive performance[J]. Sleep ,1991;14(6):534-539.
    [5] CASSEN G, INGLIS AK, APPELBAUM PS, et al. Neuroleptics: effects on neuropsychological function in chronic schizophrenic patients[J]. Schizophr Bull, 1990,16(37): 477–499.
    [6] KEEFE RS, SILVA SG, PERKINS DO, et al. The effects of atypical antipsychotic drugs on neurocognitive impairment in schizophrenia: a review and meta-analysis[J]. Schizophr Bull, 1999, 25(2): 201–222.
    [7] TURNER DC, CLARK L, POMAROL-CLOTET E, et al. Modafinil Improves Cognition and Attentional Set Shifting in Patients with Chronic Schizophrenia[J]. Neuropsychopharmacology, 2004, 29(7):1363–1373.
    [8] ROBERTSON PJ, HELLRIEGEL ET, et al. Clinical pharmacokinelic profile of modafinil[J]. Clin Pharmacokinet, 2003, 42(2): 123-137.
    [9] SMITH BW. Modafinil for treatment of cognitive side effects of antiepileptic drugs in a patient with seizures and stroke[J]. Epilepsy Behav ,2003; 4 (3) :352–353.
    [10] ARON AR, DOWSON JH, SAHAKIAN BJ, et al. Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder[J]. Biol Psychiatry, 2003, 54 (1): 1465–1468.
    [11] TURNER DC, CLARK L, DOWSON J, et al. Modafinil improves cognition and response inhibition in adult attention deficit hyperactivity disorder[J]. Biol Psychiatry, 2004,55(10): 1031–1040.
    [12] RANDALL DC, FLECK NL, SHNEERSON JM, et al. The cognitive-enhancing properties of modafinil are limited in non-sleep-deprived middle-aged volunteers[J]. Pharmacol Biochem Behav, 2004, 77 (3) 547–555.
    [13] RANDALL DC, SHNEERSON JM, FILE SE. Cognitive effects of modafinil in student volunteers may depend on IQ[J]. Pharmacol, Biochem Behav, 2005, 82 (1) :133 – 139.
    [14] ENGBER TM, DENNIS SA, JONES BE, et al. Brain regional substatus for the actions of the novel wake-promoting agent modafinil in the rat: comparison with amphetamine[J]. Neuroscience, 1998, 87 (4): 905–911.
    [15] LIN JS, HOU Y, JOUVET M. Potential brain neuronal targets for amphetamine-, methylphenidate-, and modafinil-induced wakefulness, evidenced by c-fosimmunocytochemistry in the cat[J]. Proc Nate Acad Sci USA, 1996,93(24):14128–14133.
    [16] LIN JS, HOU Y, SAKAI K, et al. Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat[J]. J. Neurosci, 1996,16(4):1523–1537.
    [17] TAKETOSHI O , HISAO N , TERUKO U. Amygdala role in conditioned associative learning[J ]. Progress in Neurobio , 1995,46(4) :401-422.
    [18] TABERY MH , BOROD JC , TANG CY, et al . Differential amygdala activation during emotional decision and recognition memory tasks using unpleasant words : an MRI study[J ] . Neuropsychologia. 2001,39(6) :556-573.
    [19] BROWN LL, WOLFSON LI. A dopamine-sensitive striatal efferent system mapped with [14C]deoxyglucose in the rat[J]. Brain Res, 1983, 261(2):213–229.
    [20] DE SEREVILLE JE, BORE C, RAMBERT F, et al. Lack of presynaptic dopaminergic involvement in modafinil activity in anesthetized mice: in vivo voltammetry studies[J]. Neuropharmacology, 1994,33(6): 755–761.
    [21] FERRARO L, ANTONELLI T, O’CONNOR WT, et al. The antinarcoleptic drug modafinil increases glutamate release in thalamic areas and hippocampus[J]. Neuroreport, 1997, 8(13): 2883–2887.
    [22] PIERARD C, LAGARDE D, BARRERE B, et a1. Effects of a Vigilance enhancing drug, modafinil, on rat brain cortex amino acids: a microdialysis study[J]. Med Sci Res, 1997, 25(1):5l-54.
    [23] TUREK FW, CZAISLER CA. Role of melatonin in the regulation of Sleep[J]. Regulation of Sleep and Circadian Rhythms, 1999,133:181-195.
    [24] HAPPE S, PIRKER W, SAUTER C, et al. Successful treatment of excessive daytime sleepiness in Parkinsons disease with modafinil[J]. J Neurol, 2001,248(7):632–634.
    [25] SCAMMELL TE, ESTABROOKE IV, MCCARTHY MT, et al. Hypothalamic arousal regions are activated during modafinil-induced wakefulness[J]. J Neurosci, 2000, 20(22): 8620–8628.
    [26] UEKI A , ROSEN L, ANDBGER B, et al .Evideence for a preventive action of the vigilance-promoting drug modafinil against striatal ischemic injury induced by endothelin 1 in the rat[J]. Exp Brain Res, 1993, 96(1):89-99.
    [1] Leger D. Insomnia and quality of life. INSOM 2003;1:29?32.
    [2] Keklund, G., Akerstedt, T. Objective components of individual differences in subjective sleep quality. Journal of Sleep Research, 1997, 6:217–220.
    [3] Akerstedt, T., Hume, K., Minors, D., Waterhouse, J., The subjective meaning of good sleep, an intraindividual approach using the Karolinska Sleep Diary. Perceptual and Motor Skills, 1994,79:287–296.
    [4] Dalton EJ, Rotondi D, Levitan RD, et al. Use of slow-release melatonin in treatment-resistant depression. J Psychiatr Neurosci 2000;25:48?52.
    [5] Leentjens AF, Marinus J, Van Hilten JJ, et al. The contribution of somatic symptoms to the diagnosis of depressive disorder in Parkinson’s disease: a discriminant analytic approach. J Neuropsychiatr Clin Neurosci 2003;15:74?77.
    [6] Koren D, Arnon I, Lavie P, Klein E. Sleep complaints as early predictors of posttraumatic stress disorder: a 1-year prospective study of injured survivors of motor vehicle accidents. Am J Psychiatr 2002;159:855?857.
    [7] Hatoum HT, Kong SX, Kania CM, et al. Insomnia: healthrelated quality of life and healthcare resource consumption. A study of managed-care organization enrollees. Pharmacoeconomics 1998;6:629?637.
    [8] L′eger D, Scheuermaier K, Philip P, et al. SF-36: evaluation of quality of life in severe and mild insomniacs compared with good sleepers. Psychosom Med 2001;63:49?55.
    [9] Schubert CR, Cruickshanks KJ, Dalton DS, et al. Prevalence of sleep problems and quality of life in an older population. Sleep 2002;25: 889?893.
    [10] Rosenthal LD, Meixner RM. Psychological status and levels of sleepiness–alertness among patients with insomnia. CNS Spectr 2003;8:114?118.
    [11] Means MK, Lichstein KL, Epperson MT, Johnson CT. Relaxation therapy for insomnia: night time and day time effects. Behav Res Ther 2000;38:665?678.
    [12] Schwartz JR, Feldman NT, Fry JM, Harsh J. Efficacy and safety of modafinil for improving daytime wakefulness in patients treated previously with psychostimulants. Sleep Med 2003;4:43?49.
    [13] Ancoli-Israel S, Cole R, Alessi C, et al. The role of actigraphy in the study of sleep and circadian rhythms. Sleep 2003;26:342?392.
    [14] Kerkhof G, van Vianen B. Circadian phase estimation of chronic insomniacs relates to their sleep characteristics. Arch Physiol Biochem 1999;107:383?392.
    [15]. Littner M, Kushida CA, Anderson WM, et al. Practice parameters for the role of actigraphy in the study of sleep and circadian rhythms: an update for 2002. Sleep 2003;26:337?341.
    [16] Nofzinger EA, Buysse DJ, Germain A, et al. Insomnia: functional neuroimaging evidence for hyperarousal. Am J Psychiatr 2004 (6/7) in press.
    [17] Nofzinger EA, Nichols TE, Meltzer CC, et al. Changes in forebrain function from waking to REM sleep in depression: preliminary analyses of [18F]FDG PET studies. Psychiatr Res 1999 31;91:59?78.
    [18] Lamphere J, Roehrs T, Vogel G, et al. The chronic efficacy of midazolam. Int Clin Psychopharmacol 1990;5:31?39.
    [19] Drake CL, Rice MF, Roehrs TA, et al. Scoring reliability of the multiple sleep latency test in a clinical population. Sleep 2000;23: 911?913.
    [20] Chesson JA, Hartse K, Anderson WM, et al. Practice parameters for the evaluation of chronic insomnia. An American Academy of Sleep Medicine report. Standards of Practice Committee of the American Academy of Sleep Medicine. Sleep 2000;23:237–241.
    [21] Terzano MG, Parrino L. Evaluation of the EEG cyclic alternating pattern during sleep in insomniacs and controls under placebo and acute treatment with zolpidem. Sleep 1992;15:64?70.
    [22] Terzano MG, Parrino L, Spaggiari MC, et al. CAP variables and arousals as sleep electroencephalogram markers for primary insomnia. Clin Neurophysiol 2003;114:1715?23.
    [23] Terzano MG. Diagnostic tools for sleep disorders: the role of polysomnography (PSG), cyclic alternating pattern (CAP) and actimetry. INSOM 2004;2(Suppl):4?5.
    [24] Stepanski E, Koshorek G, Zorick F, et al. Characteristics of individuals who do or do not seek treatment for chronic insomnia. Psychosomatics 1989;30:421?427.
    [25] Hajak G, Rodenbeck A, Staedt J, et al. Nocturnal plasma melatonin levels in patients suffering from chronic primary insomnia. J Pineal Res 1995;19:116?122.
    [26] Savard J, Laroche L, Simard S, et al. Chronic insomnia and immune functioning.Psychosom Med 2003;65:211?221.
    [27] Merica H, Blois R, Gaillard JM. Spectral characteristics of sleep EEG in chronic insomnia. Eur J Neurosci 1998;10:1826?1834.
    [28] Nofzinger EA, Mintun MA, Price J, et al. A method for the assessment of the functional neuroanatomy of human sleep using FDG PET. Brain Research Protocols 1998;2:191?198.
    [29] Kupfer, D.J., Frank, E., McEachran, A.B., Grochocinski, V.J. Delta sleep ratio. A biological correlate of early recurrence in unipolar affective disorder. Archives of General Psychiatry .1990,47:1100–1105.
    [30] Armitage, R., Trivedi, M., Hoffmann, R., Rush, A.J. Relationship between objective and subjective sleep measures in depressed patients and healthy controls. Depression and Anxiety .1997.5:97–102.
    [31] Schneider-Helmert D. Do we need polysomnography in insomnia? Schweiz Rundsch Med Prax 2003;92:2061?2066.
    [32] Tang NK, Harvey AG. Correcting distorted perception of sleep in insomnia: a novel behavioural experiment? Behav Res Ther 2004;42: 27?39.
    [33] Roth T. Ancoli-Israel S. Daytime consequences and correlates of insomnia in the United States: results of the 1991 National Sleep Foundation Survey. II. Sleep 1999;22(Suppl 2):S354?S358.
    [34] Szelenberger W, Niemcewicz S. Severity of insomnia correlates with cognitive impairment. Acta Neurobiol Exp (Warsaw) 2000;60:373.
    [35] Stepanski E, Koshorek G, Zorick F, et al. Characteristics of individuals who do or do not seek treatment for chronic insomnia. Psychosomatics 1989;30:421?427.
    [36] Day R, Guido P, Helmus T, et al. Self-reported levels of sleepiness among subjects with insomnia. Sleep Med 2001;2:153?157.
    [37] Argyropoulos SV, Hicks JA, Nash JR, et al. Correlation of subjective and objective sleep measurements at different stages of the treatment of depression. Psychiatr Res 2003;120:179?190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700