OFDM与信息熵技术在低压电力线载波通信中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,通过配电网实现通信,又称低压电力线载波通信(PLC)越来越引起人
    们的广泛关注。电力线载波通信的许多优点为电力市场以及相关业务的发展提供了
    广阔的应用前景。特别是, 这种通信方式可以利用现有深入到千家万户的供电网
    络,而成为一种易于接入、方便使用且成本低廉的理想选择。
    但是,电力线载波通信网络和传统的通信网络之间毕竟存在显著的差别,因此
    想建立一个可以对电力线载波信道特性进行完整描述的模型很困难。首先,电力线
    网络总是处在强噪声环境下工作,电力线的低通特性、频率选择性衰落、网络阻抗
    的不匹配、信号的反射和折射以及由于严重的噪声干扰导致的小信噪比(SNR)等
    都会给电力线载波通信带来困难。此外,信道的多径时延、时变的幅值响应以及非
    线性相位特性而产生的符号间干扰(ISI)还会严重影响接收机的性能。更为严重的
    是,电力线网络自身拓扑结构的不确定会使传输信号受到时变因素的影响,最终导
    致通信质量的降低。
    针对这些不利因素,本论文从技术角度探讨了 OFDM 系统硬件设计、软件实现
    和基于 Rényi 信息论的信息熵均衡方法等问题。
    本文研究了将 PLC 作为通信接入网的可行性。概要介绍了电力线 OFDM 通信的
    理论研究与实践的现状。给出了完整的电力线信道特性描述和带有多径传播效应的
    传递函数。描述了一个性能可靠而适应性强的 OFDM 信号传输系统方案,该方案能
    够有效地遏制电力线信道的各种不利影响。本文提出了一个具有增益平衡能力的宽
    带耦合电路的设计方法。该耦合器能够适应电力线网络在 0.1 到 30MHz 的频带内阻
    抗特别低的工况。通过在这个耦合电路的输入级插入一个特殊的阻抗匹配电路,和
    使用一种基于微波传输带的宽带匹配技术,可以使发射到电力线网络上的信号具有
    足够高的功率,同时减小信号畸变和谐波,并能满足电磁兼容标准的要求。
    本文给出了电力线 OFDM 系统的软件算法和物理实现技术。软件设计使用了于
    VC++的图形用户接口。它能够提供对数据传输系统详细而完整的控制与监视,包
    含了一些具有显示与存储通信信号功能的函数。其他功能还有显示或输入信息,
     iii
    
    
    显示系统参数,包括通信速率、信号带宽和子载波间隔等。为了将信号以一定的中
    心频率发送出去,发送系统将一块名为 PCI 的 ISA 板卡和耦合电路作为其与电力线
    网络的接口。软件的 IFFT plan模块可以加快系统中 IFFT 的计算速度。
    此外,本论文还研究了将误差的熵最小化算法引入均衡器以抵消电力线信道的
    影响的方法。通过 Parzen 窗估计均衡器误差序列的概率密度函数,并利用梯度下降
    法使其二次 Rényi 熵达到最小化。
    在实际的电力线网络中进行了在线实验测量,以评估电力线网络传输的下行速
    度和抗通道干扰的鲁棒性。测量的结果与误差滑动窗口和算法步长选择的合适与否
    息息相关。算法最终获得了系统可靠性、算法收敛性和计算复杂度之间的一个折
    衷。实验结果表明,本文的算法具有比传统的均方误差准则法更好的效果。
The usage of electrical power distribution networks for accessed areas in
    telecommunications, called Powerline Communication (PLC) has become more and more
    attractive in recent years. It has a number of advantages that attract great interest for the
    development of electrical market and business opportunities. In particular, the powerline
    networking uses the existing power distribution lines. Nodes are already available
    throughout the household, making the PLC easy-to-use, low cost solution and compelling
    choice.
     Unfortunately, due to the considerable differences between power distribution
    networks and conventional communication mediums, it remains difficult to implement a
    scheme that models the Powerline channel behavior adequately. The PLC is a noise
    oriented environment for data communications and several factors present technical
    challenges to using power distribution lines for data communication. Besides the low pass
    characteristic of cables and the frequency selective fading, the impedance mismatching, the
    signal reflection and the impulse noises crucially affect the Signal to Noise Ratio (SNR).
    The performance of the powerline receiver is significantly degraded by the Inter Symbol
    Interferences (ISI) caused by different propagation delays of the multi-paths, the non-
    constant amplitude and the non-linear phase response of the channel. Due to the topology of
    the PLC itself, the signal will often experience attenuation and time varying effects that
    degrade the quality of the transmission.
     From a technical approach, this thesis addresses these challenges through the unique
    combination of OFDM hardware design, software implementation and the entropy concept
    manipulation based on the Renyi information theory.
     In this thesis, we present possibilities of applying PLC in the communication access
    networks. A concise summary of the present state of the theory and practice of OFDM for
    powerline is presented. The complete powerline channel characterization and transfer
    function with multi-path propagation effects is described. A robust and adaptive
    transmission OFDM scheme able to mitigate the powerline channel drastic effects is
    illustrated. We proposed a coupling unit topology and design methodology which could
    provide gain equalization and wideband mitigation of the effects of low impedance loads on
     i
    
    
    PLC at frequency ranging from 0.1 to 30 MHz. By inserting a special impedance matching
    circuit at the input of this coupling unit and by using alternative broadband matching
    technique based on the combined micro-strip transmission-line, we maximized the
    powerline network signaling. This technique reduces the signal distortion and harmonics
    generation to meet certain safety standards for electromagnetic interference.
     The OFDM software algorithm and physical implementation technique for powerline is
    developed. This software is visual C++ based graphical human-machine interface
    application. It provides a comprehensive and integrated data control, monitoring and
    transmission system. This includes functions such as displaying and storage of incoming
    and outgoing communication signals. Other features include facilities to display or input
    messages, to visualize the system parameters such as the communication speed, the signal
    bandwidth and sub-carriers spacing. The interface between the transmission system and
    PLC network at the required intermediate frequency is obtained by adding appropriate ISA
    card PCI and PLC coupling unit to the basic configuration. The IFFT plan module
    retrofitted in this application presents the advantage to speed up the IFFT computation
    according to the hardware system structure.
     Furthermore, we investigate the application of error entropy minimization
    algorithms for equalizer to mitigate the powerline channel drastic effects. The probability
    density function of the equalizer error sequence is estimated using Parzen windowing
    method and the Renyi’s quadratic entropy is minimized
引文
Academic Publications
    [1] J. Nguimbis, Shijie Cheng (Member IEEE), Youbing Zhang and Lan Xiong, “Coupling Unit
     Topology for Optimal Signaling Through the Low Voltage Powerline Communication Network”,
     Paper TPWRD-00472-2002 accepted for publication in IEEE Transactions on power delivery,
     (2003.11).
    [2] Xiong Lan, Cheng Shijie and J. Nguimbis, “Transmission of the OFDM signal over the
     powerline and its time-frequency analysis” accepted for publication in RELAY JIDIANQI, Journal
     of the National Bureau of Machine Building Industry, P.R.C, (2004.1).
    [3] Haibo He, Shijie Cheng, Youbing Zhang, and J. Nguimbis, “Analysis of reflection of signal
     transmitted in low-voltage powerline with complex wavelet”, IEEE Transactions on power delivery.
     2004, 19 (1): 86~91.
    [4] J. Nguimbis, Xiong Lan, Cheng Shijie and Zhang Youbing, “A coupling unit specially designed
     for powerline OFDM communication and its implementation” Automation of Electric Power
     System, 2003, 27 (21): 58~62.
    [5] X. Jiang, J. Nguimbis, S. Cheng, H. He and X. Xu, “A Novel Scheme for Low Voltage Powerline
     Communication Signal Processing.” ELSEVIER Electrical Power and Energy Systems 2003, 25():
     269~274.
    [6] J. Nguimbis, Shijie Cheng, Youbing Zhang, Haibo He and Lan Xiong, On The Design of a
     Broadband Low Impedance Load mitigating Coupling Unit For Efficiency OFDM Signal Power
     Transfer Maximization Through the PLC Network. IEEE-PES/CSEE International conference on
     power system technology. Kunming, China. October 13-17 (2002.3): 1316~1321.
    [7] Youbing Zhang, Cheng Shijie, He Haibo, Xiong Lan and J. Nguimbis,”Modeling of low voltage
     power network used as high frequency communication channel based on experimental results in
     China.” IEEE-PES/CSEE International conference on power system technology. Kunming, China.
     October 13-17, (2002. 2): 1280~1284.
    [8] J. Nguimbis, Shijie Cheng, Youbing Zhang, Haibo He and Lan Xiong,”Power matching
     method for optimal OFDM signaling through the powerline communication network”, Proceeding
     of 2002 18th CUS-EPSA, Wuhan, P.R. China , 2002: 1068~1077.
    [9] He Hai bo, Zhou Yong hua, Wu Xin, Zhang Youbin, J. Nguimbis and Shijie Cheng, “ The
     state of research and application of low voltage powerline communication” RELAY JIDIANQI,
     Journal of the National Bureau of Machine Building Industry, P.R.C, 2001, 29 (7): 12~16.
    [10] J. Nguimbis, Xia Jiang and Shijie Cheng Senior member IEEE, “Noise Characteristics
     Investigation and Utilization in Low Voltage Powerline Communication,” IEEE Power Engineering
     Society Winter Meeting, Singapore (2000.1), 0-7803-5938-0/00$ 10.00@.
     96
    
    
    [11] Jiang Xia, J. Nguimbis and Cheng Shijie, “ Development of the electricity market and
     communications based on powerline networks”, RELAY JIDIANQI, Journal of the National
     Bureau of Machine Building Industry, 1999, 27 (6): 14~17.
    [12] Youbing Zhang, Cheng Shijie and J. Nguimbis, “Analysis and simulation of a low-voltage
     powerline channel using Orthogonal Frequency Division multiplexing”, Istanbul University-Journal
     of Electrical & Electronics Engineering. 2003, 3 (1): 827~833.
    [13] J.Nguimbis, Shijie Cheng, Lan Xiong, Chunfeng Luo, Hui Shu, “Application of Entropy
     Minimization to Mitigate the Time Varying and Dispersive Powerline Channel Effects” Accepted
     paper as a manuscript (A03-151) in International Journal of Electronics and Communications
     (AEUE), February 29th, 2004.
     97
    
    
    Bibliographies
    [1] K. M. Dostert, “Telecommunication over the power distribution grid, possibilities and limitations",
     Proceedings of the 1997 International Symposium on Powerline Communications and its
     Applications. Essen, Germany 1997: 1~9.
    [2] J. B. O'Neal, "The Residential Power Circuit as a Communication Medium", IEEE, Trans.
     Consumer Electronics, 1986, 32 (3): 567~577.
    [3] J. Newbury and W. Miller, “Potential communication services using Powerline carriers and
     broadband integrated services digital network”. IEEE Transactions on Power Delivery, 1999, 14
     (4): 1197~1201.
    [4] P. K. Vander Gratch, R. W. Donaldson, “Communication Using Pseudonoise Modulation on
     Electric Power Distribution Circuits", IEEE, Transactions on Communications, 1985, 33 (9):
     964~974.
    [5] T. Zahariadis, K. Pramataris, N. Zervos, “A comparison of competing broadband in-home
     technologies” IEEE Electronics & Communication Engineering Journal, 2002, 14 (4): 133~142.
    [6] B. Sobia, N. D. Gohar, “A Discrete Multitone Transceiver at the Hear of the PHY Layer of an In-
     Home Power Line Communication Local Area Network” IEEE Communications Magazine, 2003,
     41 (4) 48~53.
    [7] Y. L. Lin, H. A. Latchman, E. Richard “A Comparative Performance Study of Wireless and
     Power Line Networks” IEEE Communications Magazine, 2003, 41 (4) 54~63.
    [8] N. Masao, Z. Honggang and S. Hideaki, “ Ubiquitous Home links, Based on IEEE 1394 and Ultra
     Wideband Solutions” IEEE Communications Magazine, 2003, 41 (4) 75~82
    [9] P. Niovi, A. J. Han Vinck, Y. Javad and H. Bahram, “Power Line Communications: State of the
     Art and Future Trends” IEEE Communications Magazine, 2003, 41 (4) 35~39.
    [10] Jiang Xia, J. Nguimbis, Cheng Shijie, “ Development of the electricity market and
     communications based on powerline networks”, RELAY JIDIANQI, Journal of the National
     Bureau of Machine Building Industry, P.R.China, 1999, 27 (6): 14~17.
    [11] K. Dostert, “ RF-Models of Electrical Power Distribution Grid”, Proceedings of the 1998
     International Symposium on Powerline communications and its Applications, Tokyo, (1998. 3):
     105~114.
    [12] H. Philipps, “Performance Measurements of Powerline Channels at High Frequencies,”
     Proceedings of the 1998 International Symposium on Powerline Communications and its
     Applications. Tokyo, Japan 1998: 229~237.
    [13] O. G. Hooijen, “On the Channel Capacity of the Residential Power Circuit used as a Digital
     Communications Medium”. IEEE Communications Letters, 1998 2 (10):267~268.
     98
    
    
    [14] M. Zimmerman. K. Dostert, “The Low Voltage Power Distribution Network as Last Mile Access
     Network Signal Propagation and Noise Scenario in the HF-Range”, International Journal of
     Electronics and Communications (AEU), 2000, 54 (1): 13~22.
    [15] R. M. Vines, H. J. Trussel, L. J. Gale, J. B. J. B. O’Neal, "Noise on residential power
     distribution circuits". IEEE Transactions on Electromagnetic Compatibility, 1984, 26 (4): 161-168.
    [16] R. M. Vines, H. J. Trussel, M. J. TrusseL, K. C. Shuey and al, "Impedance of the residential
     power distribution circuit", IEEE Transactions on Electromagnetic Compatibility, 1985, 27 (1):
     6~12.
    [17] Gen Marubyashi, "Noise Measurements of residential Powerline", Proceedings of the 1997
     International Symposium on Powerline Communications and its Applications, Essen, Germany, 2nd
     edition 1997: 104~108.
    [18] M. H. L. Chan, R. W. Donaldson, "Amplitude, width and inter-arrival distributions for noise
     impulses, and bit error rates on intrabuilding powerline communication networks", IEEE
     Transactions on Electromagnetic Compatibility, 1989, 31 (3): 320~323.
    [19] C. Hensen and W. Schulz, “Time dependency of the channel characteristics of low power lines
     and its effects on hardware implementation”. International Journal of Electronics and
     Communications (AEU), 2000, 54 (1): 23~32.
    [20] A. Jose, B. Agustin, B. Jorge, C. Judit, D. Victor, and al. , “ Extending the power Line Lan up to
     the Neighborhood Transformer” IEEE Communications Magazine, 2003, 41 (4) 64~70.
    [21] M. Zimmermann and K. Dostert, “Analysis and Modeling of Impulse Noise in Broad-Band
     Powerline Communication”, IEEE Transactions on Electromagnetic Compatibility, 2002, 44 (1):
     249~258.
    [22] S. Sasaki, G. Marubayashi, "Parallel combinational Spread Spectrum Communication Systems
     over Residential Power line", Proceedings of the 1997 International Symposium on Powerline
     Communications and its Applications, Tokyo, Japan 1997: 89~93.
    [23] K. M. Dostert, "Frequency-Hopping Spread-Spectrum Modulation for Digital Communications
     Over Electrical Power lines", IEEE Journal on Selected Areas in Communications, 1990, 8 (4):
     700~710.
    [24] He Hai bo, Zhou Yong-hua, Wu Xin, Zhang Youbin, J. Nguimbis, Shijie Cheng, “ The state of
     research and application of low voltage powerline communication” RELAY JIDIANQI, Journal of
     the National Bureau of Machine Building Industry, P.R.C, 2001, 29 (7): 12~16.
    [25] T. M. Cover and J.A. Thomas, “Elements of Information Theory.” Wiley, New York, 1991.
    [26] J.W. Fisher III and J.C. Principe, “A methodology for information theoretic feature extraction,”
     Proceedings of IEEE World Congress on Computational Intelligence, Anchorage, Alaska, 4-9
     (1998.5): 1712~1716.
    [27] J. C. Principe, J. W. Fisher III, and D. Xu, “Information theoretic learning in Unsupervised
     Adaptive Filtering” Simon Haykin Edition Wiley, New York, 2000.
     99
    
    
    [28] K. Torkkola and W. Campbell, “Mutual information in learning feature transformations,” in
     Proceedings of the 17th International Conference on Machine Learning, Stanford, CA, USA, June
     29 - July 2 2000: 1015~1022.
    [29] Renyi, A. “Some Fundamental Questions of Information Theory”. Selected Papers of Alfred Renyi,
     Akademia Kiado, Budapest, 1976, 2 (): 526~552.
    [30] J. N Kapur, “Measures of Information and Their Applications”. John Wiley & Sons, New Delhi,
     1994.
    [31] Claude E. Shannon, Warren Weaver “The mathematical theory of communication”. 1949
     University of Illinois Press, Urbana, 1998.
    [32] T. M Cover and J. A Thomas , “Elements of Information Theory”, John Wiley, New York, 1991.
    [33] R. Fano, “Transmission of information”, MIT Press and John Wiley, New York, 1961.
    [34] S. Kullback, “Information Theory and Statistics”, Dover Publications, Inc., New York, 1968.
    [35] E. Jaynes, “Information theory and statistical mechanics”, Physical Reviews, 1957 106 (1):
     620~630.
    [36] A. Renyi, “On Measures of Entropy and Information”. Selected Papers of Alfred Renyi, Akademia
     Kiado, Budapest, 1976. 2 (): 565~580,
    [37] J. N Kapur, H. K. Kesavan H., “Entropy Optimization Principles and Applications”, Academic
     Press, Inc., San Diego, 1992.
    [38] Diniz, Paolo S. R., Adaptive Filtering, Algorithm and Practical Implementation, Kluwer Academic
     Publishers, Norwell, Massachusetts, 1997.
    [39] D. Erdogmus, J. C. Principe, “Comparison of Entropy and Mean Square Error Criteria in
     Adaptive System Training Using Higher Order Statistics”, in Proceedings of Independent
     Component Analysis. Helsinki, Finland 2000, 75~80.
    [40] K.E. Hild, D. Erdogmus, and J. C. Principle, Blind Source Separation using Renyi’s Mutual
     Information, IEEE Signal Processing Letter, 2001 8 (6): 174~176.
    [41] D. Liu, B. Flint, B. Gaucher, Y. Kwark, “Wide Band AC Power Line Characterization”, IEEE
     Transactions on Consumer Electronics, 1999, 45 (4), 1087~1097.
    [42] J. Barnes, “A Physical Multi-Path Model for Power Distribution Network Propagation.”
     Proceedings of the 1998 International Symposium on Powerline Communications and its
     Applications. Tokyo 24-26 (1998.3): 76~89.
    [43] A. Dalby, “Signal Transmission on Powerline – Analysis of Power line Circuits.” Proceedings of
     the 1997 International Symposium on Powerline Communications and its Applications. Essen,
     Germany, 2-4 April (1998. 4): 37~44.
    [44] F. J. Canete, J. A. Cortés, L. Diez and J. T. Entrambasaguas, “ Modeling and Evaluation of the
     Indoor Power Line Transmission Medium”, IEEE Communications Magazine, 2003, 41 (4) 41~47.
     100
    
    
    [45] H. Philipps, “Modeling of Powerline Communication Channels”, Proceedings of the 3rd
     International Symposium on Powerline Communications and its Applications, Lancaster, UK, 1999:
     14~21.
    [46] M. Zimmermann and K. Dostert, “A MultiPath Model for the Powerline Channel”, IEEE
     Transactions on Communications, 2002, 50 (4): 553~559.
    [47] R. E. Matick, “Transmission Lines for Digital and Communication Networks,” IEEE Press, New
     York, 1995.
    [48] D. Anastasiadou and T. Antonakopoulos, “An Experimental Setup for Characterizing the
     Residential Power Grid Variable Behavior”, Proceedings of the 6th International Symposium on
     Powerline Communications and its Applications, Athens, Greece, 2002: 65~70.
    [49] R. W. Chang and R. A. Gibby, “Theoretical study of performance of an orthogonal multiplexing
     data transmission scheme.” IEEE Transactions on Communications, 1968, COM-16(4): 529~40.
    [50] L. J. Cimini, “Analysis and simulation of a digital mobile channel using orthogonal frequency
     division multiplexing.” IEEE Transactions on Communications. 1985, COM-33(7): 665~675.
    [51] Y. Wu and B. Caron. “Digital television terrestrial broadcasting” IEEE Communication
     Magazines, 1994, 32(5): 46~52.
    [52] Youbing Zhang, Cheng Shijie, Joseph Nguimbis, “Analysis and simulation of a low-voltage
     powerline channel using Orthogonal Frequency Division multiplexing”, Istanbul University-Journal
     of Electrical & Electronics Engineering. 2003, 3 (1): 827~833.
    [53] Haibo He, Shijie Cheng, Youbing Zhang, and J. Nguimbis, “Analysis of reflection of signal
     transmitted in low-voltage powerline with complex wavelet”, IEEE Transactions on power delivery.
     2004, 19 (1): 86~91.
    [54] R. R. Mosier and R. G. Clabaugh, “Kineplex, a bandwidth-efficient binary transmission system”,
     AIEE Transactions, 1958, 76 (): 723~ 728.
    [55] Robert Chang, “Orthogonal frequency division multiplexing”, US. Patent 3,488445, filed
     November 14, 1966, issued January 6, 1970.
    [56] Robert Chang, “Synthesis of Band-Limited Orthogonal Signals for Multi-channel Data
     Transmission”, The Bell System Technical Journal, December 1966, 1775 ~1796.
    [57] S. B. Weinstein, Paul M. Ebert, “Data Transmission by Frequency-Division Multiplexing Using
     the Discrete Fourier Transform”, IEEE Transactions on Communications Technology, 1971,
     COM-19 (5): 628~ 634.
    [58] I. Kalet, “The multi-tone channel,” IEEE Transactions on Communications, 1989, 37(2):119~124.
    [59] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency division multiplexing using the
     discrete Fourier transform.” IEEE Transactions on Communications. 1971, COM-19(5): 628~634.
    [60] A. Peled and A. Ruiz, “ Frequency domain data transmission using reduced computational
     complexity algorithms”, IEEE Proceedings of the International Conference in Acoustics., Speech,
     Signal Processing, Denver, 1980 : 964~967.
     101
    
    
    [61] T. Pollet and M. Moeneclaey, “Synchronizability of OFDM signals”. Proceeding Globecom,
     Singapore, 1995, 3 (): 2054~2058.
    [62] W. D. Warner and C. Leung, “OFDM/FM frame synchronization for mobile radio data
     communication.” IEEE Transactions on Vehicular Technology. 1993, 42(3): 302~313.
    [63] L. Wei and C. Schlegel. “Synchronization requirements for multi-user OFDM on satellite mobile
     and two-path Rayleigh-fading channel.” IEEE Transaction on Communications. 1995, 43 (2, 3, 4):
     887~895.
    [64] T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE
     Transactions on Communications. 1997, 45(): 1613~1621.
    [65] Selaka B. Bulumulla, Saleem A. Kassam, and Santosh S. Venkatesh, “A Systematic Approach
     to Detecting OFDM Signals in a Fading Channel” IEEE Transaction on Communications. 2000, 48
     (5): 725~728.
    [66] Shu Lin, Daniel J. Costello, “Error Control Coding.” Englewood Cliffs, Prentice-Hall, New
     Jersey, 1983.
    [67] L. R. Rabiner, B. Gold. “Theory and Application of Digital Signal Processing”. Englewood Cliffs,
     Prentice Hall, New Jersey, 1975.
    [68] S. B. Weinstein, P. M. Ebert, “Data transmission by frequency division multiplexing using the
     discrete Fourier transform”, IEEE Transactions on Communications Technology, 1971, 19(5):
     628~634.
    [69] D. Wulich and L. Goldfeld, “Reduction of peak factor in orthogonal multi-carrier modulation by
     amplitude limiting coding,” IEEE Transaction on Communications, 1999, 47 (1): 18~21.
    [70] X. Li and J. A. Ritcey, “M-sequences for OFDM peak-to-average power ratio reduction and
     error correction," Electronic Letters, 1997, 33 (7): 554~555.
    [71] M. Friese, “Multi-carrier modulation with peak-to-average power ratio,” Electronics Letters,
     1996,32 (8): 713~714.
    [72] H. Stott, “The threat to New Radio Systems From distributed Wired-Communication Installations”,
     BBC R&D, 8th International Conference on HF Radio Systems & Techniques, IEE Conference
     Publication 10-13 (2000. 7), (474): 385~389.
    [73] Richard, James. “A Pragmatic Approach to Setting Limits to Radiation from Powerline
     Communications Systems.” Proceedings of the 3rd International Symposium on Powerline
     Communications and its Applications, Lancaster University, Lancaster, (30. 3 ~1. 4) 1999.
    [74] M. H. L. Chan, R. W. Donaldson, "Attention of Communication signals on residential and
     commercial intra building power distribution circuits", IEEE. Transaction on Electromagnetic
     Compatibility, 1986, 28 (4): 220~230.
    [75] Xiaowen Wang and K. J. Ray Liu, “Adaptive Channel Estimation Using Cyclic Prefix in Multi-
     carrier Modulation System”. IEEE Communications Letters, 1999, 3 (10): 291~293.
     102
    
    
    [76] Y. Li, N. Seshadri, and S. Ariyavisitakul, “Channel estimation for OFDM systems with
     transmitter diversity in mobile wireless channels,” IEEE Journal on Selected Areas in
     Communications, 1999, 17 (3): 461~471.
    [77] P. Hoeher, S. Kaiser, and P. Robertson, “Two-dimensional pilot-symbol aided channel
     estimation by Wiener filtering,” IEEE Proceedings of the International Conference in Acoustics.,
     Speech, Signal Processing, Munich, Germany, 1997: 1845~1848.
    [78] Ye (Geoffrey) Li, “Simplified Channel Estimation for OFDM Systems with Multiple Transmit
     Antennas” IEEE Transactions on wireless Communications, 2002, 1(1): 67~75.
    [79] O. Edfors, M. Sandell, J.-J. van de Beek, S. K. Wilson, and P. O. B?rjesson, “OFDM channel
     estimation by singular value decomposition,” IEEE Transactions on Communications, 1998, 46 (7):
     931~939.
    [80] J.-J van de Beek, O. Edfors, M. Sandell, S.K. Wilson and P.O. Borjesson, “On channel
     estimation in OFDM systems”. IEEE Proceedings of the 45th Vehicular Technology Conference,
     Chicago, 1995: 815~819.
    [81] Y. Zhao and A. Huang, “A novel channel estimation method for OFDM Mobile Communications
     Systems based on pilot signals and transform domain processing,” IEEE Proceedings of the 47th
     Vehicular Technology Conference, Phoenix, USA, 1997: 2089~2093.
    [82] Joseph Nguimbis, Shijie Cheng (Member IEEE), Youbing Zhang and Lan Xiong, “Coupling
     Unit Topology for Optimal Signaling Through the Low Voltage Powerline Communication
     Network”, Paper TPWRD-00472-2002 accepted for publication in IEEE Transactions on power
     delivery. Nov. 2003.
    [83] G. Lukkasen, “A Wideband Power amplifier (25 to 110Mhz) with the MOS Transistor BLF 245”.
     Application Note NCO8602. Philips Semiconductors, March 23, 1998
    [84] James K. Hardy, “High Frequency circuit design,” Reston Publishing Company, Inc, A Prentice-
     Hall Company, Reston, Virginia 1979.
    [85] Joseph J. Carr, “Secrets of RF Circuit Design 3rd Edition,” Publishing House of Electronics
     Industry, McGraw- Hill Education (Asia) Beijing 2001.
    [86] John G. Proakis, “Digital Communications Fourth Edition”, McGraw-Hill International Edition
     Electrical Engineering Series, Singapore 2001.
    [87] Simon Haykin, Adaptive Filter Theory, Third Edition, Prentice Hall Publishing House of
     Electronics Industry, Beijing 1998.
    [88] B. Mulgrew and C.F.N. Cowan, “Adaptive Filters and Equalizers.” Boston, MA: Kluwer, 1988.
    [89]G. Deco and D. Obradovic, “An Information-Theoretic Approach to Neural Computing”, New
     York, Springer, 1996.
    [90] J. Principe, J. Fisher, “Entropy manipulation of arbitrary nonlinear mappings”, Proceedings of the
     IEEE Workshop on Neural Networks for Signal Processing, Amelia Island, 1997, 14~23.
     103
    
    
    [91] J. G. Taylor and M. D. Plumbley, “Information theory and neural networks”. In J. G. Taylor,
     editor, “Mathematical Approaches to Neural Networks”, 307~340. Elsevier Science Publishers, the
     Netherlands, 1993.
    [92] M. D. Plumbley, “An Information-Theoretic Approach to Unsupervised Connectionist Models”.
     PhD thesis, Cambridge University Engineering Department, UK, May 1991.
    [93] M. D. Plumbley, “Information theory and neural network learning algorithms”. In G. Orchard,
     editor, “Neural Computing Research and Applications”. Proceedings of the second Irish Neural
     Networks Conference, Belfast, Northern Ireland, 25-26 June 1992 : 145~155. Institute of Physics
     Publishing, Bristol, UK, 1993.
    [94] P.R. Chang and B.C. Wang, “Adaptive decision feedback equalization for digital channels using
     multilayer neural networks”, IEEE Journal on Selected Areas in Communications, 1995 13 ():
     316~324.
    [95] S. Chen, Mulgrew, and P.M. Grant, “A clustering technique for digital communications channel
     equalization using radial basis function networks”. IEEE Transactions on Neural Networks, 1993,
     4(1): 570~578.
    [96] J. Cid-Sueiro, A. Artes-Rodriguez and A. R. Figueiras-Vidal. “Recurrent radial basis function
     networks for optimal symbol-by-symbol equalization”, EURASIP Signal Processing, 1994 40():
     53~63.
    [97] A. Renyi, “On measures of entropy and information”, in Proc. 4th Berkeley Symposium on
     Mathematical Statistics and Probability, University of California Press (Berkeley), 1962, 1():
     547~561.
    [98] A. Renyi, “Probability Theory,” American Elsevier Publishing Company Inc., New York, 1970.
    [99] J.C. Principe, D.Xu, Q. Zhao, and J. W. Fisher III, “Learning from Examples with Information
     Theoretic Criteria,” Journal of VLSI Signal Processing, 2000, 26(): 61~77.
    [100] R. Moddemeijer, “On Estimation of Entropy and Mutual Information of Continuous
     Distributions”. IEEE Transactions on Signal Processing, 1989, 16 (3): 233~246.
    [101] P. Hall and S. Morton, “On the Estimation of Entropy”, Ann. Inst. Stat. Math., 1993, 45(): 69~88.
    [102] E. Parzen,“On the estimation of a probability density function and the mode”, Ann. Inst. Stat.
     Math., 1962, 33(): 1065.
    [103] Mark Girolami & Chao He, “Probability Density Estimation from Optimally Condensed Data
     Samples”. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2003 25(10):
     1253~1264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700