九段沙湿地自然保护区大型底栖动物生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口湿地是海洋、淡水、陆地间的一种过渡区域,是自然保护和全球变化研究的重要对象。长江河口潮滩湿地资源丰富,大型底栖动物群落与其生活底质构成了生态系统的底栖亚系统,其分布与河口理化环境密切相关,通常作为环境监测的指示动物,是河口湿地生态系统多样性最直接和最值得研究的一个层次。此外,上世纪90年代,长江口湿地人为引入了外来物种—互花米草(Spartina
     alterniflora),而有关外来物种对原有湿地生态系统的影响还未有一致的结论。因此,2004年11月至2005年11月以长江口新生湿地—九段沙为对象进行了相关研究,内容包括:(1)新生湿地大型底栖动物群落空间结构和季节变化;(2)互花米草入侵对底栖动物群落的影响;(3)湿地基底环境条件对底栖动物群落的影响。
     本次研究区域覆盖九段沙上、中、下三个主体沙洲的6个主要生境类型:低潮位光滩、高潮位光滩、芦苇(Phragmites australis)带、海三棱藨草(Scirpus×mariqueter)带、藨草(Scirpus triqueter)带和互花米草带。设置了7个采样区,216个样点,共采集样方864个。统计了大型底栖动物的种类组成、密度、生物量、多样性指数及均匀度指数等群落特征,同时对其所在土壤的湿度、盐度、pH、营养元素(速效氮和速效钾)和有机质含量等因子进行了测定。
     主要结论如下所述:
     1.本次周年调查共记录到31种大型底栖动物,主要由甲壳动物、环节动物、软体动物及昆虫幼体类群组成,优势种为谭氏泥蟹(Ilyrplax deschampsi)、光滑狭口螺(Stenothyra glabra)、堇拟沼螺(Assiminea violacea)、焦河蓝蛤(Potamocorbula ustulata)、中国绿螂(Glaucomya chinensis)和霍甫水丝蚓(Limnodriu hoffmeisteri),且生物密度四季变化明显。九段沙湿地大型底栖动物四季生物密度和生物量空间梯度为下沙>上沙>中沙,夏季上沙和中沙底栖动物密度存在显著差异(方差分析)。
     2.季节对比分析结果表明,春季大型底栖动物生物密度和生物量处于最高水平,多样性指数最高。夏季密度和生物量最低,物种多样性也较低,分布较不均匀。秋、冬季生物种类数与生物量差异不显著(方差分析),生物密度冬季较秋季高。九段沙湿地大型底栖动物密度和生物量均呈春季最高,夏、秋季下降,秋季末和冬季回升的趋势,总体生物多样性水平较低,群落密度集中于少数优势种,分布也较不均匀。这有可能与九段沙是成陆不久的新生湿地、生物群落正处于演替的初级阶段、系统结构类型较单一等因素特性有关。
     3.由物种组成分析可知,九段沙湿地大型底栖动物群落时空变化与优势种的消
The estuary wetland is a kind of transition zone among the sea, freshwater and land. It is an important object in the research of the nature protection and the changing world. There is abundance wetland resource in Yangtze River estuary, and the community of macrobenthos with the habitats composed a macrobenthos sub-system in the ecosystem. The macrobenthos distribution has high correlation with the environment factors. As the indicator species, the macrobenthos is the most direct and valuable subject in the estuary ecosystem research. Additionally, in the last 90's, the invasive species Spartina alterniflora were induced to the Yangtze River estuary, there were no accordant conclusions about the effect of invasive species on the original wetland ecosystem.
    During the year 2004-2005, the relevant research was taken on the new-form wetland (Jiuduansha) in Yangtze River estuary. The main contents were: (1) The spacial-temporal pattern of macrobenthos in the different habitats in Jiuduansha; (2) The impact ion of the introduced species Spartina alterniflora to the community characteristic of macrobenthos; (3) The wetland environment factors relationship with the community of macrobenthos.
    We selected the three main shoals of Jiuduansha wetland with six main habitat types including Phragmites australis zone, Scirpus×mariqueter zone, S. triqueter zone, and Spartina alterniflora zone, low tidal mudflats and high tidal mudflats. A total of 864 samples in 216 sites from 7 transects were sellected annually. The species composition, density, biomass, Shannon-Wiener diversity index and Pielou even index were used to describe the characters of the macrobenthos community. Meanwhile, the wet, salinity, pH, nutrition factors (NH_4~+-N, NO_3~--N & K~+) and the organic matter (O.M.) of wetland sediment were measured.
    The main conclusions as follows:
    A total of 31 macrobethos species were found, consisting of Mollusca, Annelida, Crustacea, and Insect larva, with the dominant species being Ilyrplax deschampsi, Stenothyra glabra, Assiminea violacea, Potamocorbula ustulata, Glaucomya chinensis and Limnodriu hoffmeisteri. The seasonal Fluctuation of the macrobenthos density was obvious. The spatial grads of macrobenthos density and biomass were Xiasha>Shangsha>Zhongsha. The density of macrobenthos in Shangsha and Zhongsha were significantly different in summer (One-Way ANOVA).
引文
1.陈家宽,马志军,李博,等.2003.上海九段沙湿地自然保护区科学考察集.北京:科学出版社.
    2.陈吉余.1988.上海市海岛资源综合调查报告.上海:上海科技出版社.
    3.陈吉余,李道季,金文华.2001.浦东国际机场东移与九段沙生态工程.中国工程科学,3:1-8.
    4.陈沈良,张国安,杨世伦.等.2004.长江口水域悬沙浓度时空变化与泥沙再悬浮.地理学报,59(2):260-266.
    5.陈中义,付萃长,王海毅,等.2005.互花米草入侵东滩盐沼对大型底栖无脊椎动物群落的影响.湿地科学,3(1):1-7.
    6.郭玉清,张志南,慕芳红.2002.渤海小型底栖动物生物量的初步研究.海洋学报,24(6):76-83.
    7.韩洁,张志南,于子山.2001.渤海大型底栖动物丰度和生物量的研究.青岛海洋大学学报,31(6):889-896.
    8.蒋福兴,王维中,黄耀生,等.1992.大米草-双齿围沙蚕相关性初探.生态学报,12(1):84-88.
    9.刘建康.1995.东湖生态学研究.北京:科学出版社.
    10.陆健健,孙宪坤,何文珊.1998.上海地区湿地的研究.见:郎惠卿,林鹏,陆健健.中国湿地研究和保护.上海:华东师范大学出版社.
    11.马克平.1994.生物多样性的测度方法.钱迎倩,马克平.生物多样性研究的原理与方法.北京:中国科学技术出版社.
    12.《全国海岸带和海涂资源综合调查简明规程》编写组.1986.全国海岸带和海涂资源综合调查简明规程.北京:海洋出版社.
    13.上海市海岛资源综合调查报告编写组,1995.上海市海岛资源综合调查报告.上海:上海科学技术出版社.246-249.
    14.上海市农林局.2002.上海崇明东滩鸟类自然保护区调查报告.上海:华东师范大学出版社.
    15.童远瑞,孟方新,徐琴.1985.大米草潮间带的动物调查.南京大学学报专刊:133-140.
    16.汪松年,2003.上海湿地利用和保护.上海:科学技术出版社.
    17.王遵亲,祝寿泉,俞仁培,等.中国盐渍土.北京:科学出版社,1993,387-399.
    18.谢一民,2004.上海湿地.上海:上海科学技术出版社.
    19.杨万喜,陈永寿.1996.嵊泗列岛潮间带群落生态学研究Ⅰ.岩相潮间带底栖 生物群落组成及季节变化.应用生态学报,7(3):305-309.
    20.杨万喜,陈永寿.1998.嵊泗列岛潮间带群落生态学研究Ⅱ.岩相潮间带底栖生物群落组成及季节变化.应用生态学报,9(1):75-78.
    21.袁兴中,何文珊,孙平跃,等.1999.长江口九段沙湿地生物资源及其变化趋势研究.环境与开发,14(2):1-4.
    22.袁兴中,陆健健,2001a.长江口岛屿湿地的底栖动物资源研究.自然资源学报,16:37—41.
    23.袁兴中,陆健健,2001b.长江口潮沟大型底栖动物群落的初步研究.动物学研究,22(3):211-216.
    24.袁兴中,陆健健.2002.长江口潮滩湿地大型底栖动物群落的生态学特征.长江流域资源与环境,11《5):414-420.
    25.袁兴中,刘红.陆健健.2002.长江口新生沙洲底栖动物群落组成及多样性特征.海洋学报.24(2):133-139.
    26.袁兴中,陆健健.刘红.2002a.河口盐沼植物对大型底栖动物群落的影响.生态学报,22(3):326-333.
    27.袁兴中,陆健健,刘红.2002b.长江口底栖动物功能群分布格局及其变化.生态学报,22(12):2054-2062.
    28.周时强,郭丰,吴荔生,等.2001.福建海岛潮间带底栖生物群落生态的研究.海洋学报,23(5):104-109.
    29.周晓,葛振鸣,施文彧,王天厚,等.2006a.长江口九段沙湿地大型底栖动物群落结构的季节变化规律.应用生态学报.17(11):2079-2083.
    30.周晓,王天厚,葛振鸣,施文彧.2006b.长江口九段沙互花米草入侵后对大型底栖动物群落结构的影响.生物多样性.14(1):165-171.
    31.朱晓君,陆健健.2003.长江口九段沙潮间带底栖动物的功能群.动物学研究,24(5):355-361.
    32. Able KW. Hagan SM. 2000. Effects of common reed(Phragmites australis) invasion on marsh surface macrofauna: Response of fishes and decapod crustaceans. Estuaries, 23: 633-646.
    33. Alkemdae R, Wielemaker A, Hemminga MA. 1993. Correlation between nematode abundance and decomposition rate of Spartina anglica leaves. Marine Ecology Progress Series, 99: 293-300.
    34. Anddrsen AN. 1995. A classification of Australian ant communities based on functional groups which parallel plant life-forms in relation to stress and disturbance. Journal of Biogeography, 22: 15-29.
    35. Angradi TR, Hagan SM. Able KW. 2001. Vegetation type and the intertidal macroinvertebrate fauna of a brackish marsh: Phragmites vs. Spartina. Wetlands, 21: 75-92.
    36. Ayres DR, Strong DR. 2002. The S partina invasion of San Francisco Bay. Aquatic Nuisance Species Digest, 4: 37-39.
    37. Barry JP, Dayton PK. 1991. Physical heterogeneity and the organization of marine communities. In: Kolasa J, Pickett STA, eds. Ecological Heterogeneity. Berlin: Spring-Verlag, 270-319.
    38. Begon M, harper JL, Townsend CR. 1996. Ecology: Individuals, Populations and Communities. Oxford: Blackwell Science.
    39. Bonsdorff E, Norkko A & Sandberg E. 1995. Structuring zoobentho s: the impo rtance of predation, cropp ing and physical disturbance. J. Exp. Mar. Biol. Ecol. 192: 125-144.
    40. Callaway JC. Josselyn MN. The introduction and spread of smooth cordgrass (Spartina alterniflora) in South San Francisco Bay. Estuaries, 1992, 15: 218-226.
    41. Cao H, Zhuo, RZ. 1985. A study of synecology and producitivity of Spartina angliea plantation in Qidong County, Jiangsu. Joural of Najing University (Natural Science), 83-115.
    42. Capehart AA, Hacknty C, 1989. The potential role of roots and rhizomes in structuring salt Marsh benthic communities. Esturaies, 12: 119-122
    43. Constable A J. 1999. Ecology of benthic macro-invertebrates in soft-sediment environments: A review of progress to-wards quantitative models and predictions. Australian Journal of Ecology, 24: 452-476.
    44. Cordell JR. Simenstad CA, Feist B, et al. 1998. Ecological effects of Spartina alterniflora invasion of the Littoral flat community in Willapa Bay, Washington. Abstracts from the Eighth International Zebra Mussel and Other Nuisance Species Conference, Sacramento Califomia.
    45. Daehler CC, Strong DR. 1996. Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA. Biological Conservation, 78: 51-58.
    46. Douglas JS, Mitsch WJ. 2003. A model of macroinvertebrate trophic structure and oxygen demand in freshwater wetlands. Ecological Modelling, 161: 183-194.
    47. Dumbauld BR., Peoples M, Holcomb L, Ratchford S. 1997. The potential influence of the aquatic weed Spartina alterniflora and control practices on clam resources in Willapa Bay. Washington. In: Pattem, K.(ed.), Proceedings of the Second International Spatina Conference. Washington State University. Olympia, 51-57.
    48. Doody JP. 2001. Coastal conservation and Management: An Ecological Prospective. Boston, Kluwer Academic Publisers.
    49. Engel VD, Summers JK. 1999. Latitudinal gradients in benthic community composition in westem Atlantic estuaries. Journal of Biogeography, 26: 1007-1023.
    50. Fauchald K Jumars PA. 1979. The diet of worms: A study of Polychaete feeding guilds. Oceanogr. M ar. Biol. Ann. Rev. 17: 193-284.
    51. Foss S. 1992. Spartina: Threat to Washington, saltwater habitat. Washington State Department of Apriculture Bulletin, Olympia.
    52. Gallagher JL. Reimold RJ, Linthurst RA, et al.. 1980. Aerial production, mortality, and mineral accumulation-export dynamics in Spartina alterniflora and Juncus roemerianus Plant stands in a Georgia salt marsh. Ecology, 61: 303-312.
    53. Gleason ML, Elmer DA. Pien NC, et al. 1979. Effect of stem density upon sediment retention by salt marsh cordgrass, Spartina alterniflora Loisel. Estuaries, 2: 271-273.
    54. Grebmeidr JM, McRoy CP, Feder HM. 1988. Pelagic-benthic coupling on the shelf of the Northern Bering and Chichi Seas. Ⅰ. Food supply source and benthic biomass. Mainer Ecology, Progress Series, 45(11): 57-67.
    55. Grosholz E. 2002. Ecological and evolutionary consequences of coatal invasions. Trends in Ecoolgy and Evolution, 17: 22-27.
    56. Hedge P, Kriwoken LK. 2000. Evidence for effects of Spartina anglica invasion on benthic macrofauna in Little Swanport estuary, Tasmania. Austral Ecology, 25: 150-159.
    57. Jones J, Rowatt SM, Ress HL, el al. 1993. Marine pollution monitoring group: Fifth report of the group coordinating sea disposal monitoring. Aquat. Environ. Monit. Rep. Direct. Fish. Res. Low estoft, 39: 1-42.
    58. Josefson AB. 1985. Distribution of diversity and functional groups of marine benthic infauna in the Skagerrak(eastem Noah Sea)-Can larval availability affect diversity? Sarsia, 70: 229-249.
    59. Lamont BB. 1995. Testing the effect of ecosystem compositiono/structure on its functioning. Oikos. 74: 283-295.
    60. Lana P, Guiss C. 1991. Influence of Spartina alterniflora on structure and temporal variability of macrobenthic associations in a tidal flat of Paranagua Bay, Brazil. Marine Ecology Progress Series, 73: 231-234.
    61. Long SP, Mason CF. 1983. Saltmarsh Ecology. Blackie and Sons, New York.62. Luiting VT, Cordell JR, Olson AM, et al. 1997. Doex exotic S partina alterniflora change benthic invertebrate assemblages. In: Pattem K(ed.), Proceedings of the Second International Spartina Conference. Olympia: Washington State University, 48-50.
    63. Magurran AE, 1988. Ecological Diversity and Its Measurement. Sydney: Croom helm. 7-46.
    64. Malakoff D. 1998. Restored wetlands flunk real-World Test. Science 280: 371-372.
    65. Michael E. Valdez, 1997. Expanding Wetlands Globally. Science, 277: 297-30166. Montagna PA, Kallke RD. 1995. Ecology of infaunal Mollusca in south Texas estuaries. American Malacological Bulletin, 11: 163-175.
    67. Moodley L, Heip CHR. Middelburg JJ. 1998. Benthic activity in sediments of the Northwestem Adriatic Sea: sediment oxygen consumption, macro and meiofauna dynamics. Journal of Sea Research, 40: 263-280
    68. Moran VC, Southwood TRE. 1982. The guild composition of arthropod communities in trees. J. A nim. Ecol. 51: 289-306.
    69. Nailek JHE, 1998. Tidal Flat-sedimentary and Biotic District. Translated by Wang S-S (汪寿松), Chen C-M(陈昌明). Beijing: Science Press. 97-137.
    70. Naiman RJ Decamps H. 1990. The Ecology and Management of Aquatic-terrestrial Ecotones. Paris: UNESCO(Paris) and the Parthenon Publishing Group. 316.
    71. Norkko A. Bonsdorff E. 1996. Population responses of coastal zoobenthos to stress induced by drifting algal mats. Mar. Ecol. Progr. Ser. 140: 141-150.
    72. Ong B, Krishaans S. 1995. Changes in the macrobenthos community of a sand flat after erosion. Coastal and Shelf Science, Estuarine, 40(1): 21-33
    73. Pearson TH, Rosenberg R. 1987. Feast and famine: Structuring factors in marine benthic communities In: Gee JHR, Giller PS, eds. Organization of Communities Past and Present. Oxford: Blackwell science. 373-395.
    74. Pianka ER. 1986. Ecology and natural history of desert lizards. New Jersey: Princeton University Press.
    75. Pielou EC. 1975. Ecological Diversity. New York: John Wiley. 16-51.
    76. Posey MH. 1990. Functional approaches to soft-substrate communities: How useful are they? Aquat Sci. 2: 343-356.
    77. Poser MH. Alphin TD. Meyer DL, et al. 2003. Benthic communities of common reed Phragmites australis and marsh cordgrass Spartina alterniflora marshes in Chesapeake Bay. Marine Ecology-Progress Series, 261: 51-61.
    78. Ricklefs RE. Schluter D. 1993. Species Diversity in Ecological Communities. Chicago: The University of Chicago Press. 21-49.
    79. Sala OE, Lauenroth WK. Golluscio RA. 1997. Plant functional types in temperate scampi-arid regions. In: Smith TM, Shugart HH, Woodward FI, eds. Plant Functional Types. Their relevance to Ecosystem Properties and Global Change Cambridge: Cambridge University Press. 217-233.
    80. Scholes RJ, Pickett G, Ellery WN, et al. 1997. Plant functional types in African savannas and grasslands. In: Smith TM, Shugart HH &Woodward FI, eds. Plant Functional Types. their relevance to Ecosystem Properties and Global Change. Cambridge: Cambridge University Press. 255-270.
    81. Shannon CE and Weaver W. 1949. The Machematical Theory of eommunication. Urbanna: University of Illinois Press.
    82. Shaver GR, Giblin AE, Nadelhoffer KJ, et al. 1997. Plant functional types and eco system change in arctic tundras. In: Smith TM, Shugart HH &Woodward FI, eds. Plant Functional Types. T heir relevance to Ecosystem Properties and Global Change. Cambridge: Cambridge University Press. 153-173.
    83. Talley TS, Levin LA. 2001. Modification of sediments and macrofauna by an invasive marsh plant. Biological Invasions, 3: 51-68.
    84. Terborg J. Robinson S. 1986. Guilds and their utility in ecology. In: Kikkawa J and Anderson DJ, eds. Community ecolog: pattern and processes. Melbourne: Blackwell Scientific Publications, 65-99.
    85. Tilman D, knops J, Wedin D, et al. 1997. The influence of functional diversity and composition on ecosystem processes. Science, 277: 1300-1302.
    86. Timms BV. 1985. The structure of macrobenth ic communities of A ustralian lakes. Proc Ecol Soc Sust, 14: 51-59.
    87. Underwood AJ, Fairwcather PG. 1985. Intertidal communities: do they have different ecologies or different eco logists? Proc Ecol Soc Aust, 14: 7-16.
    88. Wainright SC. Weinstein MP, Able KW, et al. 2000. Relative importance of benthic microalgae, phytoplankton and the detritus of smooth cordgrass(Sparti na) and the common reed(Phragmites) to brackish marsh food webs. Journal of Experimental Marine Biology and Ecology, 200: 77-91.
    89. Warren RS, Fell PE, Grimsby JL, et al. 2001. Rates, pattems, and impacts of phragmites australis expansion and effects of experimental Phragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River. Estuaries, 24: 90-107.
    90. Windham L, Lathrop RG. 1999. Effects of Phragmites australis(eommon reed) on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey. Estuaries, 22: 927-935.
    91. Wu H, Zhang DH. 1985. Effects of Spartina anglica on saline soil amelioration. Joural of Nanjing University(Natural Science), 322-333.
    92. Zedler JB. 1996. Ecological issues in wetland mitigation: an introduction to the forum. Ecological Applications, 6: 33-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700