长白山阔叶红松林植物多样性及其群落空间结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林是陆地生态系统的主体,是人类赖以生存的重要自然资源,对调节生态平衡具有不可替代的作用。长白山阔叶红松林与世界其它地区的森林一样,在遭受长期的采伐干扰后,形成了小面积的原始林与大面积的次生林并存的局面。如何恢复林分质量偏低的次生林是森林可持续经营面临的迫切任务。为此,本文从阔叶红松林及其次生林的时间格局变化和群落空间结构变化两个方面研究了次生林与原始林在组织、结构方面的差异和差距,并探讨了生态位互补作用对维持原始林稳定性的重要作用,为以生态学知识为基础的可持续森林经营提供了理论依据。兹分述如下:
     在长白山自然保护区内及长白山白河林业局光明林场,用Topcon全站仪共设置了四块永久样地。样地类型及面积大小依次为:阔叶红松林样地(100m×100m);近熟林样地(260m×200m);中龄林样地(260m×200m),成熟林样地(160m×100m)。对各样地内所有的乔木、对阔叶红松林的全部灌木及中龄林样地的部分灌木进行了每木相对坐标定位及每木调查,对阔叶红松林、中龄林及成熟林内的草本按机械布点设置(1m×1m)样方并在生长季节内按月份调查其多样性变化。
     调查表明:阔叶红松林带共有维管植物265种,其中乔木47种,灌木31种,草本187种。
     阔叶红松林、近熟林、成熟林和中龄林中的树种数分别为20、29、34和40种。各林型的乔木多样性高低与它们的物种丰富度一致。中龄林阳性先锋树种优势度明显,演替层树种组成最丰富。未来顶级群落中的优势种群在次生林中的相对多度高于原始林,相对优势度低于原始林,相对频度变化较小,其中水曲柳(Fraxinus mandshurica Rupr.)在各个林型中的各项指标变化最大,色木槭(Acer mono Maxim.)在各个林型中的表现最稳定。
     阔叶红松林与中龄林的灌木分别为18种和30种。中龄林林下灌木种类、平均密度及生物多样性远远高于阔叶红松林。
     中龄林、成熟林及阔叶红松林林下草本植物种数依次为158种、137种和103种。林下草本层多样性在生长季节内都经历了由低到高,再由高到低的过程。遗传距离检验证明,同一个群落,草本层在各个月份之间存在显著差异,其遗传距离差异从大到小依次为:5月与6月;6月与7月;8月与9月;7月与8月。各个样地间草本层在5月没有显著差异,在其它各月间差异显著。
     各种类型的次生林在乔木层、灌木层以及草本层的多样性均高于阔叶红松林,主要是因为在次生林的各个层次喜光植物的比例都有不同程度的增加。
     Ripley'(K)点格局分析表明:阔叶红松林中,红松(Pinus koraiensis Sieb. et Zucc.)在0—13m、水曲柳(F. mandshurica Rupr.)在7-9m、糠椴(Tilia mandshurica Rupr. et Maxim.)在0—47m、紫椴(T. amurensis Rupr.)在0—7m及9—30m的尺度内为聚集分布,其余尺度为随机分布,蒙古栎(Quercus mongolica Fish. ex Turcz.)在所有尺度上呈随机分布。上层乔木优势种群关联不显著的种对包括:紫椴—水曲柳,蒙古栎—红松;在小尺度内负关联的种对包括:紫椴—蒙古栎,紫椴—水曲柳;在较大尺度内显著负关联的种对是:糠椴—紫椴。亲缘关系接近的树种负关联的尺度范围大,生态习性接近的优势种在小尺度上负关联,林冠层优势种总体上呈随机分布的格局,物种之间由于生态位分化使关联不显著。色木槭(A. mono Maxim.)及白牛槭(A. mandshuricum Maxim.)在所有尺度上呈负相关关系。色木槭和白牛槭在0—7m范围内呈显著负关联。青楷槭(A. tegmentosum Maxim.)、假色槭(A. pseudo-sieboldianum(Pax.)Kom.)和簇毛槭(A. barbinerve Maxim.)在较大尺度内都呈聚集分布,且都在较小尺度内达到了最大聚集强度,这些物种在群落中存在小尺度聚集分布,多个小尺度斑块复合形成更大尺度的聚集分布的特点。槭属类树种相互间都存在较大尺度内的空间负关联关系。林冠上层乔木和色木槭之间的关联度不显著,上层乔木和白牛槭之间呈显著的负相关。上层乔木和下层乔木之间,中层乔木与下层乔木之间,整体上呈现先负关联后随机的相互关系。差别只在于关联的尺度大小。灌木层优势种在较大尺度内均为聚集分布。暴马丁香(Syringa reticulata(Blume)Hara var. mandshurica(Maxim.)Hara)和毛榛子(Corylus mandshurica Maxim. et Rupr.)在0—12m内显著负关联,东北山梅花(Philadelphus schrenkii Rupr.)与东北溲疏(Beutzia amurensis(Regel)Airy-Shaw)在0—15m尺度内显著负关联;东北山梅花与毛榛子在0—37m内显著负关联;暴马丁香与东北山梅花仅在0—6m尺度范围内显著负关联。
     角尺度分析表明:阔叶红松林及其次生林整体上呈聚集分布的格局。
     中龄林、成熟林、近熟林以及阔叶红松林混交度大小依次为:0.54、0.63、0.64、0.53。研究表明:在同一个群落内,上层乔木的混交度水平高,下层乔木的混交度水平低;种子繁殖的树种的混交度水平高,萌蘖繁殖的混交度水平低,两种繁殖方式兼有的树种混交度水平较高。在次生林中,先锋树种的混交度水平高,未来顶级群落的优势树种的混交度总体偏低,在原始林中,林冠上层的优势树种的混交度高。
     相邻木结构单元大小比数分析表明:在同一个群落,上层乔木在生长上占优势,下层乔木在生长上处于被压状态;在次生演替的相对早期阶段,先锋树种在生长上处于优势,未来顶级群落的树种暂时处于被压状态;在次生演替相对中期阶段,阳性树种和未来顶级群落的优势树种共同占优势;在顶级群落中,先锋树种被淘汰,优势树种在生长上占有绝对优势。
     对阔叶红松林及其次生林的生物多样性变化、优势种群的点格局分析以及相邻木结构单元的空间结构分析,定量的阐明了在次生林中,先锋树种在小尺度内同种个体共存的现象很少见,先锋树种在生长上处于优势,未来顶级群落的优势树种由于遭到采伐等干扰,又由于林下有不同规模的幼苗和幼树存在,混交度水平较低,生长上不占优势,随着次生林的恢复,先锋树种及先锋草本植物逐渐被淘汰,生物多样性下降,未来顶级群落中的优势树种在生长上逐渐处于优势地位,相对优势度逐渐升高,又由于自疏作用,上层乔木的混交度水平得到提高,同层树种之间以及不同层树种之间生态位逐渐分化,种群格局趋于随机分布,群落趋于稳定。
The forest is the principal part of the terrestrial ecosystem, an important natural resource for the people to live on, which functions indispensably on the adjustment of the eco-balance. The situation is that the phenomenon of the coexistence of the small-area virgin forest and the large-area secondary forest in the region of Mount Changbai is similar to that of any other region, because of cutting and other mankind disturbance. So, how to recover the low-quality secondary forest is the stringent problem faced with the sustainable development of forest for us to solve. Therefore, the paper focuses on the difference of the organization, structure between the virgin forest and secondary forest, with the example of the change of temporal pattern and dimensional structure on the broad-leaved korean pine forest and its secondary forest. The paper also discussed the reciprocal function of niche is of great importance for the maintenance of the stability of the virgin forest. The detail is as follows:
    In the region of the Guangming Forest Centre of the Baihe Forest Bureau and the natural reserve of Mount Changbai, four fixed-plots have been set up with Topcon total station. The type and size of the plots is respectively as:
    Broad-leaved korean pine forest plot (100m×100m) Closely mature forest plot (260m × 200m ) Middle-year forest plot (260m × 200m ) Secondary mature forest plot (160m × 100m)
    The coordinate positioning and research of each single tree are carried out on the whole of the shrubs of the broad-leaved korean pine forest and part of the shrubs of the middle-year forest. The research of the diversity change in the growing seasons is also been performed with the sample setting of 1m × 1m of broad-leaved korean pine forest, middle-year forest and secondary mature forest.
    The research shows that there are vascular plants of 265 species, in which there are 47 tree species, 31 shrub species and 187 herb species.
    The number of tree species is 20、 29、 34 and 40 in the broad-leaved korean pine forest, closely mature forest, secondary mature forest, middle-year forest respectively. The abundance of the tree diversity of each type of forests above is consistent with that of their species. The dominance of the pioneer species is obvious in the middle-year forest. And the species in the succession layer is most abundant. The relative abundance of the dominant plant population in the future climax community is more than that in the virgin forest, while its relative dominance is less and the change of the relative frequency is minor. Fraxinus mandshurica Rupr.is one of them, all of whose indexes changes most. And the indexes of Acer mono Maxim stays most stable.
    The species of shrubs are 18 and 30 in the broad-leaved korean pine forest and middle-year forest respectively. The species of the shrubs under the trees, its average density and biodiversity of the middle-year forest are far higher than that of the broad-leaved korean pine forest
    The species of herbs are 158, 137 and 103 under the middle-year forest, secondary mature forest and broad-leaved korean pine forest respectively. The diversity of the herb layer experiences the process from the lower class to higher class, then vice versa in the growing season. The test of the hereditary distances demonstrates that there are obvious differences of herb layer between months in the same community. The detailed figures of the difference of the hereditary distances arranged from the longest to the lowest are as follows: May and June, June and July, August and September, July and August. What's more, the herb layers of different plots have no obvious differences in May, while with great difference in other months.
    The diversity of tree, shrub and herb layers is much more abundant in the types of secondary forests than that in the broad-leaved korean pine forest. The main cause is that there is some increase of the propotion of the sun plants in each of these layers in the secondary forests.
    Ripley's K (d) function shows that Pinus koraiensis is in the aggregated distribution in the range of 0-13m, F. mandshurica 7-9m, Tilia mandshurica 0-47m and T. amurensis 0-7m and 9-30m.They are in the random distribution in other ranges. Quercus mongolica is in the random distribution of all the ranges. The pairs of the dominant species in the upper stratum whose relativity is minor include: T. amurensis - F. mandshurica, and Q. mongolica - P. koraiensis; The pairs that are negative association in a narrow rage include: T. amurensis - Q. mongolica, and T. amurensis - F. mandshurica; While in a wide range includes T. mandshurica - T. amurensis. The species who have close relationship with each other is more negatively associated in a wide range, and the dominant species whose ecological behavior are more close to each other shows negative association in a narrow rage. The dominant species of the crown layer demonstrate a pattern of random distribution, and the interrelationship of species is not obvious because of the polarization of the niches. A. mono shows obvious negative association in all levels of range. So does with A. mandshuricum. The two are obviously negatively associated with each other in the range from 0 to 7m. A. tegmentosum, A. pseudo-sieboldianum and A. barbinerve are in the aggregated distribution in a wider range, and they have reached the maximal aggregated intensity in the minor range. There exists narrow-ranged aggregated distribution among these species, and then many narrow-ranged patches constitute a wider-ranged aggregated distribution. The species of Q. mongolica have a wider-ranged spatial negative association each other. There is no significant relationship between the upper stratum in the crown layer and A. mono, while the upper stratum is negatively associated with A, mandshuricum obviously. There exists the interrelationship that first negative association and then random distribution in the whole in the example of the upper stratum and the lower stratum, the middle stratum and the lower stratum. The only difference lies in the range size of the interrelationship. Syringa reticulata(Blume)Hara. var.mandshurica and Corylus mandshurica only shows obvious negative association in the scale from 0 to 12m., Philadelphus schrenkii and Deutzia amurensis from 0 to 15m, C. mandshurica and P. schrenkii from 0 to 37m, and S. reticulata(Blume)Hara var.mandshurica and P. schrenkii only from 0 to 6m.
    The analysis of the stand neighborhood pattern demonstrates that the broad-leaved korean pine forest and its secondary forests show the aggregated distribution in a whole.
    The magnitude of the minglings of the middle-year forest, secondary mature forest, closely mature forest and the broad-leaved korean pine forest shows as follows : 0.54,0.63,0.64,0.53.
    The research shows that in the same community, the higher the level of the minglings in the upper stratum, the lower the level of the minglings in the lower stratum; the higher the level of the minglings in the species of the seed-breeding, the lower the level of the mingling the stump-breeding. When a species has the both breeding ways , the level of mingling will be higher. In the secondary forests, the level of the mingling of eh pioneer species is higher, while the dominant species of the future climax community lower. In the virgin forests, the dominant species of the upper crown layers have higher level of mingling.
    The analysis of the neighborhood comparison of the nearest neighborhood stand structure unit shows that in a community, the upper stratum take advantage over the lower stratum in growth, which accords with the practice; in the relatively early phase of the secondary succession, pioneer species dominate in growth, and the species of the future climax community are restrained temporarily; in the relatively middle phase, pioneer species and dominant plants of the future climax community share the advantage; in the climax community, pioneer species is first to be eliminated, while the dominant species take the sheer advantage.
    The research includes the analysis of the biodiversity change of the broad-leaved korean pine forest and its secondary forests, Ripley's K (d) function of the dominant plant population and the spatial structure of the neighborhood stand structure unit. Those findings clarify quantificationally that in the secondary forests, co-existence of the same types of the pioneer species is rare, while the pioneer species take advantage in growth. Therefore, the level of mingling of the dominant species in the future climax community is low because of the cutting and the existence of the young trees, and it is alse inferior to others in growth. With the recovery of the secondary forests, the pioneer species and herbs are been eliminating, and there comes the decline in biodiversity. The dominant species of the future climax community is beginning to take the advantage in growth and its relative dominance increases. But due to "self-thinning", the level of mingling of the upper trees is growing, while the niche between the species of the same layers and the different layers gradually differentiates, the population pattern become randomly distributed and the community grows to be stable.
引文
[1] 安慧君.阔叶红松林空间结构研究[D].北京林业大学博士论文,2003
    [2] 安树青,朱学雷,王峥峰.海南五指山热带山地雨林植物物种多样性的研究[J].生态学报,1999,19(6):803~809
    [3] 蔡飞,宋永昌.A study on the structure and dynamics of Schima superba population on Wuyi Mountain[J].植物生态学报,1997,21,138~148
    [4] 蔡晓明.生态系统生态学[M].北京:科学出版社,2000
    [5] 藏润国,郭志华,蒋有绪.生物多样性的形成、维持机制及其宏观研究方法[J].林业科学,2002,(06)
    [6] 操国兴,钟章成,刘芸等.The study of distribution pattern of Camellia rosthorniana population in Jinyun Mountain[J].生态学杂志,20(1):10~12
    [7] 陈灵芝.生物多样性保护现状及其对策,生物多样性研究的原理与方法[M].北京:科学技术出版社,1994;13~35
    [8] 迟振文,张凤山,李晓宴.长白山北坡森林生态系统水热状况初探[J].森林生态系统研究,1981,2:167—177
    [9] 代力民,谷会岩,邵国凡等.中国长白山阔叶红松林[M].沈阳:辽宁科学技术出版社,2004,12
    [10] 关继义,陈义亮,祝宁等.灌木层及主要灌木树种在蒙古栎林养分循环中的地位和作用[J].植物研究1999,19(1):100~110
    [11] 郭忠玲,马元丹,郑金萍.长白山落叶阔叶混交林的物种多样性、种群空间分布格局及种间关联性研究[J].应用生态学报,2004,15(11):2013~2018
    [12] 韩有志,王政权.两个林分水曲柳土壤种子库空间格局的定量比较.应用生态学报2003,14(4):487~492
    [13] 郝占庆.长白山北坡阔叶红松林草本植物物种多样性及其季节动态[J].生物多样性,1994,2(3):125~132
    [14] 郝占庆.长白山北坡植物群落多样性及其梯度格局分析[D].中国科学院博士学位论文,2000
    [15] 郝占庆,陶大力,赵士洞.长白山北坡阔叶红松林及其次生白桦林高等植物物种多样性比较[J].应用生态学报,2001,12(5):653~658
    [16] 侯向阳.长白山阔叶红松林主要树种空间格局的模拟分析[J].植物生态学报,1997,21(3)242~249
    [17] 胡小兵,于明坚.Size structure and distribution pattern of Cyclobalanopsis guauca population in evergreen broad-leaved forests[J].浙江大学学报(理学版),2003,30,574~579
    [18] 胡艳波,惠刚盈.吉林蛟河天然红松阔叶林空间结构分析[J].林业科学研究2003,16(5)523~530
    [19] 胡艳波等.优化林分空间结构的森林经营方法探讨[J].林业科学研究,2006,19(1):1~8
    [20] 惠刚盈,克劳斯·冯佳多.森林空间结构量化分析方法[M].中国科学技术出版社,北京,2003
    [21] 惠刚盈,von Gadow K,Albert M.一个新的林分空间结构参数——大小比数[J].林业科学研究,1999a,12(1):1~6
    [22] 惠刚盈,yon Gadow K,Albert M.角尺度——一个描述林木个体分布格局的结构参数[J].林业科学,1999b,35(1):37~42
    [23] 惠刚盈,胡艳波.混交林树种空间隔离程度表达方式的研究[J].林业科学研究,2001,14(1):177~181
    [24] 惠刚盈,克劳斯.冯佳多.森林空间结构量化分析方法[M].中国科学技术出版社,2003
    [25] 蒋有绪.区域生物多样性保护的基本构想[M].刘世荣等主编:中国暖温带森林生物多样性研究.北京:中国林业出版社,1998;37~44
    [26] 蒋志刚,马克平,韩兴国.保护生物学[M].杭州:浙江科学技术出版社,1997
    [27] 金永焕,李敦求,姜好相等.择伐干扰后长白山天然次生林物种多样性的变化[M].吉林农业大学学报,2006,28(1):35~40
    [28] 金则新.Dominant population structure and trend of deciduous broad-leaved forest in the Tiantai Mountains of Zhejiang[J].浙江林学院学报,2001,18,245~251
    [29] 雷相东,唐守正.林分结构多样性指标研究综述[J].林业科学,2005,38(3):140~147
    [30] 李博等,植物生态学实验[M].北京,人民教育出版社,1981,125~126
    [31] 李春喜,王志和,王文林.生物统计学(第2版)[M].北京:科学出版社,2000,1~113
    [32] 李盾,黄楠,王强等.天然次生林林木空间格局及更新格局[J].东北林业大学学报,2004,32(5):4~8
    [33] 李海涛.植物种群分布格局研究概况[J].植物学通报,1995,12(2):19-26
    [34] 李海涛.八一农学院学报,1994,17(1):77~85
    [35] 李俊清.阔叶红松林中红松的分布格局及其动态[J].东北林业大学学报,1986,14(1)
    [36] 李先琨,苏宗明,黄玉清等.元宝山南方红豆杉的群落及种群结构特征[J].南京林业大学学报2001,25(2):23~28
    [37] 联合国粮食及农业组织.世界森林状况[M].罗马:2005,5~7
    [38] 刘红梅,蒋菊生.生物多样性研究进展[J].热带农业科学,2001,(06):69~77
    [39] 刘建军.干旱区资源与环境,1988,2(3):67~75
    [40] 刘建军.植物生态学与地植物学学报,1991,15(3):243~249
    [41] 刘守江,苏智先.四川九顶山西坡红桦林天然种群空间结构及更新研究[J].应用生态学报,2004,15(1):1~4
    [42] 刘艳红,赵惠勋.干扰与物种多样性维持理论研究进展[J].北京林业大学学报,2000,22(4):101~105
    [43] 刘玉成,缪世利.生态科学,1984,(2):96~106
    [44] 陆阳.生态科学,1982,(1):74~80
    [45] 陆阳.植物生态学与地植物学学报,1986,10(1):272~281
    [46] 陆阳.武汉植物学研究,1987,5(4):359~371
    [47] 马克平,钱迎倩.生物多样性保护及其研究进展[J].应用与环境生物学报,1998,4(1):95~99
    [48] 马克平.生物群落多样性的测度方法:α多样性的测度方法(上)[J].生物多样性,1994,2(3):162~168
    [49] 马克平.试论生物多样性的概念[J].生物多样性,1993,1(1):20~22
    [50] 欧阳志云,刘建国,肖寒等.卧龙自然保护区大熊猫生境评价[J].生态学报,2001,(11)
    [51] 彭少麟,王伯荪.热带、亚热带森林生态系统研究[J].生态科学,1984,(2):24~37
    [52] 皮洛E.C,卢泽愚译.数学生态学[M].北京:科学出版社,1988
    [53] 钱迎倩.我国生物多样性保护与持续利用中存在的问题与对策,生物多样性研究进展[M].北京:中国科学技术出版社,1995:15~23
    [54] 钱迎倩,马克平,王展.生物多样性研究的现状与发展趋势[J].科技导报,1995,1:27~30
    [55] 钱迎倩,马克平主编.生物多样性的原理和方法[M].北京:中国科学技术出版社,1994
    [56] 邵国凡,刘琪璟,钱宏等 长白山阔叶红松林早春草本层生物量初报.森林生态系统研究1992(6):24~44
    [57] 沈浩,刘登义.遗传多样性概述[J].生物学杂志,2001,18(3):5~8
    [58] 沈泽吴,方精云,刘增力等.贡嘎山东坡植被垂直带谱的物种多样性格局分析[J].植物生态学报,2001,(06)
    [59] 宋明华,董鸣,蒋高明等.东北样带上的克隆植物及其重要性与环境的关系[J].生态学报,2001,21(7):1096~1102
    [60] 苏含英,林代斌.影响水曲柳人工林生长的主要立地因子(英文)[J].林业研究(英文版),2003,14(1):83~86
    [61] 孙伟中等.长白山北坡椴树阔叶红松林群落主要树种分布格局的研究[J].应用生态学报,1997,8(2)
    [62] 孙中伟,赵士洞.长白山北坡椴树阔叶红松林群落木本植物种间联结性与相关性研究[J].应用生态学报,1996,7(1):1~5
    [63] 孙中伟,赵士洞.长白山北坡椴树阔叶红松林群落特征[J].生态学杂志,1995,14(5),26~30
    [64] 孙中伟.椴树阔叶红松林群落主要树种径级结构研究[J].生态学杂志,1997,16(1)
    [65] 汤孟平,唐守正,雷相东.种群格局分析的Ripley'K函数的边界效应[J].生态学报,2003,23,1533~1538
    [66] 汤孟平,周国模,施拥军等.天目山常绿阔叶林优势种群及其空间分布格局[J].植物生态学报,2006,30(5):743~752
    [67] 唐守正,刘世荣.我国天然林保护与可持续经营[J].中国农业科技导报,2000,2(1):16~18
    [68] 王翠红.中国陆地生物多样性分布格局的研究[D].山西大学博士论文,2004
    [69] 王峰峥,安树青,Campell D G等.海南五指山热带雨林的物种多样性[J].生态学报,1999,19(1):45~51
    [70] 王铁牛.长白山云冷杉林经营模式的研究[D].北京林业大学博士论文,2005年
    [71] 王巍,刘灿然,马克平等Population structure and dynamics of Quercus liaotungensis in two broad-leaved deciduous forests in Dongling Mountain, northern China[J].植物学报,1999,41,425~432
    [72] 王战.长白山北坡主要森林类型及其群落结构特点[J].森林生态系统,1980,Ⅰ:25—42
    [73] 王峥峰,安树青,朱学雷,Campell D G,杨小波.热带森林乔木种群分布格局及其研究方法的比较[J].应用生态学报,1998,9(6):575~580
    [74] 吴大容,苏志尧,李秉滔等.福建三明莘口青钩栲种群结构和空间分布格局动态初步研究[J].林业科学,2000,36(3):30~35
    [75] 吴刚,梁秀英,张旭东等.长白山红松阔.叶林主要树种高度生态位的研究[J].应用生态学报,1999,10(3):262~264
    [76] 吴文春,邵国凡,Celsolan.生物多样性管理最小有效面积选取模型与GIS和耦合[J].生态学报,2003,23(7):1258~1267
    [77] 吴征镒,中国种子植物属的分布[J].云南植物研究,1991,增刊Ⅳ:1~139
    [78] 夏铭.生物多样性研究进展[J].东北农业大学学报,1999,30(01):94-100
    [79] 肖文发,徐德应森林能量利用与产量形成的生理生态基础[M].北京:中国林业出版社, 1999
    [80] 徐化成.中国红松天然林[M].北京:中国林业出版社,2001
    [81] 徐化成.森林生态与生态系统经营[M].北京:化学工业出版社,2004
    [82] 徐文铎,林长清.长白山植被垂直分布与热量指数关系的初步研究[J].森林生态系统研究,1981,2:88~95
    [83] 薛达元著.生物多样性经济价值评估——长白山自然保护区案例研究[M].北京:中国环境科学出版社,1997
    [84] 阳含熙.长白山北坡阔叶红松林数量分类[J].森林生态系统研究,1985,Ⅳ:31~44
    [85] 阳含熙.长白山北坡阔叶红松林主要树种的分布格局森林.生态系统研究,1985,5
    [86] 杨持.生态学报,1984,4(4):345~353
    [87] 杨利民,韩梅,李建东.生物多样性研究的历史沿革及现代概念[J].吉林农业大学学报,1997,19(2):109~114
    [88] 杨美华.长白山的气候特点及北坡垂直带[J].气象学报,1981,39(3):311~319.
    [89] 杨在中.生态学报,1984,4(3):237~247
    [90] 杨在中.生物数学学报,1986,1(2):96—106
    [91] 于凤英,周永斌,安云全,郝占庆.长白山阔叶红松林早春植物群落特征研究[J].沈阳农业大学学报,2003,34(6):430~433
    [92] 岳天祥.生物多样性模型研究[J].自然资源学报,1999,14(04):1~5
    [93] 岳天祥.生物多样性研究及其问题.生态学报,2001,21(03):462~467
    [94] 曾志新,罗军,颜立红,雏建文,肖绿田.生物多样性的评价指标和评价标准[J].湖南林业科技,1999,26(02):26~29
    [95] 詹洪振.凉水自然保护区阔叶红松林的群落结构初报[J].东北林业大学学报,1984,12(增)
    [96] 张凤山,李晓宴.长白山北坡主要森林类型生长季的温湿特征[M].森林生态系统研究第4卷.(1984).243~251
    [97] 张金屯.植被数学生态学方法[M].北京:中国科学技术出版社,1995
    [98] 张金屯,孟东平.芦芽山华北落叶松林不同龄级立木的点格局分析.生态学报,2004,2004,24(1):36~41
    [99] 张金屯.植物种群空间分布的点格局分析[J].植物生态学报,1998,22(4):344~349
    [100] 张金屯.论生物多样性保护与可持续发展[J].经济地理,1999,19(2):70~75
    [101] 张金屯.数量生态学[M].北京:科学出版社,2004,213~220
    [102] 张维平.生物多样性面临的威胁及其原因[J].环境科学进展,1999,7(5):123~131
    [103] 张维平.生物多样性面临的威胁及其原因[J].环境污染治理技术与设备,1999
    [104] 赵常明,陈庆恒,乔永康.青藏高原东缘岷江冷杉天然群落的种群结构和空间分布格局[J].植物生态学报,2004,28(3):341~350
    [105] 赵刚,邹学忠,吴月亮等.紫椴适生立地条件研究.辽宁林业科技,2005年1期:7~9
    [106] 赵志模,郭依泉.群落生态学原理与方法[M].重庆:科学技术文献出版社重庆分社,1990
    [107] 周国法,徐汝梅.生物地理统计学—生物种群时空分析的方法及应用[M].北京:科学出版社,1998
    [108] 周海燕,张景光,李新荣等.生态脆弱带不同区域近缘优势灌木的生理生态学特性[J].生态学报,2005,25(1):168~177
    [109] 周先叶,王伯荪,李鸣光.An analysis of interspecific associations in secondary succession forest communities in Heishiding Natural reserve Guangdong Province[J].植物生态学报, 2000,24,332~339
    [110] 周晓峰.中国森林与生态环境.北京:中国林业出版社,1999:232~233
    [111] Joni Kuiansuu,荆淘,马万里 阔叶红松原生次生林和杂木林中紫椴的生态学特征[J] 北京林业大学学报,2003,25(1):113~116
    [112] Mclntosh R P.生态学概念和理论的发展(徐嵩龄译)[M].北京:中国科学技术出版社,1992
    [113] Mcneely,J 1990.李文军等译 保护世界的生物多样性 见中国科学院生物多样性委员会编 生物多样性译丛(一)[M]北京:中国科学技术出版社,1992:1~194
    [114] H.Walter著(中科院植物所生态室译).世界植被[M].北京:科学出版社,1984,113~116.
    [115] E.C.皮洛(卢泽愚译).数学生态学(第二版)[M].北京:科学出版社,1991
    [116] Abrams PA. Monotonic or animodal diversity-productivity gradients: What does competition thery? [J]. Ecology, 1995,76:2019~2027
    [117] Abramsky Z, Rosenzweig M L. Tilman's productivity-diversity relationship shown by desert rodents [J]. Nature, 1984, 309:105~151
    [118] Abugov R. Species diversity and phasing of disturbance [J]. Ecology,1982,63(2):289~293.
    [119] Adams J M, Woodwara F I.. Patterns in tree species richness as a test of the glacial extinction hypothesis [J]. Nature,1989, 339 (29):699~701
    [120] Batista J, Maguire D. Modeling the spatial structure of tropical forest [J]. Forest Ecology, 1998,(110):293~314
    [121] Bazzaz FA. Successional environments: plant-plant interactions, 239-263:In: Grace JB and Tilman D(eds.). Perspectives on plant competition[M]. Academic Press, Inc., New York, 1990
    [122] Buongiorno J, Dahir S, Lu H et al. Tree size diversity and economic returns in uneven aged forest stand [J]. For. Sci. 1994,40 (1): 83~103
    [123] Connell,J. H. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees[J]. In: Dynamics of Numbers in Populations. Proceedings of the advanced Study institute(eds Den Boer),P. J. & Gradwell,G, 1971.
    [124] Cottam,G, Curtis,J. T. and B. W. Hale. Ecology, 1953, 34:741~757
    [125] Currie D J, Paquin V. Large-scale biogeographical of species richness of trees[J]. Nature,1987,329 (24): 326~327
    [126] Currie D J. Energy large-scale patterns of animal-and plant-species richness [J]. The American Naturalist,1991,137 (1): 27~49
    [127] D.米勒—唐布依斯,H.埃仑伯格著.植被生态学的目的和方法[M].北京:科学出版社,1986,63~76
    [128] Daubenmire,R. F. Plant communities: A textbook of plant synecology[M]. Harper & Row, New York, 1968
    [129] Dennis F., Whigham. Ecology of woodland herbs in temperate deciduous forests Annu. Rev[J]. Ecol., 2004, 5:583~621
    [130] F. A. Jones, et al. A Genetic Evaluation of seed dispersal in the neotropical tree Jacaranda copaia (Bignoniaceae) [J]. The American naturalist,2005,166 (5): 543~555
    [131] Fisher R A & Willianms C B. The relation between the number of species and number of individuals ini random sample of an animal population[J]. Journal of animal Ecology 1943(12):42~58
    [132] Gary M Barker. Phylogenetic diversity: a quantitative frame work[J]. Biological Journal of Linnean society, 2002,78:165-174
    
    [133] Greig-Smith,P. Quantitative plant Ecology[M]. London, Butterworths, 1964
    [134] Hubbell,S. J. ,at al. 2001a. Local neighborhood effects on long-term survival of individual trees in a Neotropical forest. Ecological Research 16:859-875
    [135] HubbelLS. P. The unified neutral theory of biodiversity and biogeography[M]. Princeton University Press, Princeton, NJ,2001b
    [136] HubbelLS. P. & Foster,R. B. (). Biology, chance and history in the structure of tropical rainforest tree communities. In: Community Ecology (ed. Diomand, J. ) [J]. Harper & Row, New York, 1986,314-329
    [137] Hutchinson, G. E. The concept of pattern in ecology [J]. Proc. , Acad. Nat. Sic. , 1953,105:1-12
    [138] J. S. Singh, The biodiversity crisis: A multifaceted review [J]. Current science, 2002,28 (6):638-647
    [139] Janzen,D. H. Herbivores and the number of tree species in tropical forests [J]. Am. Nat., 1970,104,501-528
    
    [140] Jeffries M J. Biodiversity and conservation [M]. Routledge, London and New York,1997:39-73
    [141] Jingyun Fang, Sandra brown, Yanghong Tang, et al. Overestimated biomass carbon pools of the northern mid-and high latitude forests [J]. Climatic change,2006,74:355-368
    [142] K. N. Ganeshaiah, Chandrashekara L . Avalanche index :a new measure of biodiversity based on biological heterogeneity of communities [J]. Current Science 1997,73:128-133
    [143] K. N. Ganeshaiah, R. UmaShaanker. Measuring biological heterogeneity of forest vegetation types: avalanche index as an estimate of biological diversity Biodiversity and conservation [J].2000,9: 953-963
    [144] Kadmon R & Danin A. Distribution of plant species in Israel in relation to spatial variation in rainfall [J]. Vegetation Science, 1999,10:421 -432
    [145] Kershaw, K. A. and J. H. Looney, 1985, Quantitative and Dynamic Plant Ecology [M]. (Third edition) Published by Edward Arnold. P50, P121, P122, P127., Mead, R. 1974, Biometrics, 30:295-307
    
    [146] Kershaw,K. A. 1958,J. Ecol. ,46:571-592
    [147] Kershaw,K. A. 1960,J. Ecol. ,48:233-242
    [148] Kershaw,K. A. 1962,J. Ecol. ,50:163-179
    [149] Kershaw,K. A. 1970,J. Ecol. ,51:729-73
    [150] Kochummen, K. M. et al. (1990). Floristic composition of the Pasoh Forest Reserve, alow land rain forest in Peninsular Malaysia [J]. Trop. For. Sci. ,3,1-13
    [151] Kuuluvainen T , Penttinen A , Leinonen K et al . statistical opportunities for comparing stand structural heterogeneity in managed and primeval forests : An example from boreal spruce forest in southern Finland. Silva Fennica [J]. 1996 ,30 (223) :315-328
    [152] Laaka-Lindberg S, Hedderson TA, Longton RE. Rarity and reproduction characters in the British hepatic flora[J]. Lindbergia, 2000(25):78-84
    [153] Lahde E. , Laiho O. and Norokorpi Y. Diversity oriented sivicultures in boreal zone of Europe. Forest Ecological Man2agement, 1999, 118:223-243
    [154] Li H and Reynold J F. A simulation experiment to quantify spatial heterogeneity in categorical maps[J]. Ecology, 1994, 75(8):2446-2455
    [155] Lucy A. Tallents, Jon C. Lovett, John B. Hall, et al. Phylogenetic diversity of forest trees in the Usambara mountains of Tanzania: correlations with altitude [J]. Botanical Journal of the Linnean, Society,2005,149,217-228
    [156] MacArthur R H. Patterns of species diversity[J]. Biological Reviews of the Cambridge Philosophical Society , 1965,40:510-533
    [157] MacArthur R. H. and MacArthur G. W. On bird species diversity[J]. Ecology, 1961, 42 :594-598
    [158] Magurran A E. Ecological diversity and its measurement[M]t. Princeton, Princeton University press,1988:61-72
    
    [159] MargalefR. Infornation theory in ecology[J]. General Systermaties,1957(3):36-71
    
    [160] Mead, R. Biometrics, 1974,30:295-307
    [161] Miller T E. Community diversity and interactions between the size and frequency of disturbance [J]. American Naturalist,1982,120:533-536
    [162] Moeur M . Characterizing spatial patterns of trees using stem mapped data [J]. For. Sci . ,1993 ,39 (4) :756-775
    [163] Morisita, M. Measuring of the dispersion of individuals and analysis of the distributional patterns [M]. Mem, Fao, Soi. , Kyusha University Der. E. 1959,380-385
    
    [164] Myers, N. ,Ambio, 1993, 22, 74-79
    [165] Naeem S & Hakendon k. Lawton J H. et al. Biodiversity and plant productivity in a model assemblage of plant species [J]. Oikos, 1996,75:259-264
    [166] Odum, E. P. Fundamentals of Ecology, 3~(rd) , ed [M]. Saunder College Publishing Philadelphia, 1971
    [167] Owen J G. On productivity as predictor of rodent and carnivore diversity [J]. Ecology, 1988,69(4):1161-1165
    
    [168] Pemadasa,M. A. 'P. Greig-Smith and P. H. Lovell 1974 ,J. Ecol. ,62:379-402
    
    [169] Phillips M. E. 1854 New Phyol. ,53:312-342
    
    [170] Pickett S T A & White P S. Patch dynamics: A synthesis. In: The ecology of natural disturbance and patch dynamics [M]. London: Academic press, 1985
    [171] Pianka D. Biodiversity evaluation in agricultural landscapes: An approach at two different scales [J]. Agriculture Ecosystems and Environment,1997,62:81-91
    [172] Raven, P. H. , We are Killing our World: The Global Ecosystem Crisis [J]. MacArthur Foundation, Chicago, 1987
    [173] Rebertus AJ, Williamson GB, Moser EB. Fire-induced changes in Quercus laevis spatial pattern in Forida sandhills[J]. Journal of Ecology, 1989 (77) : 638-650
    [174] Reyes Tirado. Shrub spatial aggregation and consequences for reproductive success [J]. Oecological, 2003, 136:296-301
    [175] Richard Condit,et al. Spatial pattern in the distribution of tropical tree species [J]. Science, 2000,5(288),1414-1418
    [176] Richerson P J & Lum K L. Patterns of plant species diversity in California: relation to weather and topography [J]. American Naturalist, 1980,116(4):504-536
    [177] Robert B. Biodiversity dynamics: From population and community ecology approaches to a landscape ecology point of view [J]. landscape and Urban Planning, 1985,31:89-98
    [178] Szwagrzyk J. Small-scale pattern of trees in a mixed Pinus sylvestris-Fagus sylvatica forest [J]. Forest Ecology and Management, 1992,51,301-315
    [179] Thompson, H. R. , 1958 J. Bot. ,6:322-342
    
    [180] Tilman D, Wedin D & knops J. Productivity and sustainability influenced by biodiversity in grassland ecosystem [J]. Nature,1996,379:718-720
    [181] United Nations. Report of the United Nations Conference on Environment and Development [M]. New York: United Nations Publication, 1993
    [182] Vazquez J A G & Givnish T J. Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlan, Jalisco,Mexico [J]. Ecology, 1998,86:999-1020
    [183] von Gadow K, Fueldner K, Zur Methodik der Bestandesbeschreibung[R]. Klieken:Vortrag anlaesslich der Jahrestagung der A G Forsteinrichtung,1992
    [184] von Gadow K, Hui G Y. Characterizing forest spatial structure and diversity [A] Proceedings of the SUFOR International Workshop "Sustainable Forestry in Temperate Region"[C] Sweden: Lund university,2002
    [185] Ward J S . Long term spatial dynamics in an old growth deciduous forest [J]. For Ecol Man, 1996,83 :189-202
    [186] Webb,C. O. ,and D. R. Peart. 1999. Seedling density dependence promotes coexistence of Bornean rainforest trees [J]. Ecology 80:2006-2017
    [187] Wells Ml, Getis A The spatial characteristics of stand structure in Pinus torreyana [J]. Plant Ecology ,143,153-170
    [188] Wills,C. & Green ,D. R. A genetic herd-immunity model for the maintenance of MHC polymorphism [J]. Immunol. Rev. ,1995,143,263-292
    
    [189] Wills,C. Plagues: Their Origin, History, and Future. HarperCollins, New York, 1996a. [M]
    
    [190] Wills,C. Safety in diversity [M]. New York, 1996b, 149,3 8-42
    [191] Wilson E O . The current state of biological diversity [M] . In Wilson E O(ed). Biodiversity. Washington D C. National Academy of Sciences Press, 1988
    [192] Wilson EO. The diversity of life [M]. Cambridge: The Belknap press of Harvard University press. 1992:183-211
    [193] Wilson, E O. et al. The current state of biological diversity, In Wilson , E. O. (edit) [M] . Washington, D. C. National Academy of Science Press, 1988,3-18
    [194] Zhao CM, Chen QH, Qiao YK,et al. Structure and spatial pattern of a natural Abies faxoniana population on the eastern edgy of Qinghai-Tibetan plateau[J]. Acta Phytoecologica Sinica, 2004,341-350

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700