成年人外周血淋巴细胞CLOCK蛋白和BMAL1蛋白昼夜节律性表达规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人和动物的生理机能、生化代谢、行为表现等常以24 h为周期发生规律性变动,这种变化的节律称为昼夜节律。从细菌到哺乳动物体内都有控制昼夜节律的装置,称为生物钟。生物钟作为定时系统,既使机体的生命活动和行为以24 h为周期发生规律性变动,又能在外界环境因素的作用下重设节律输出,以使机体活动与环境变化达成和谐统一。昼夜节律的分子生物学基础是一系列钟基因的转录-翻译活动形成的振荡反馈环路,其中作为环路中正向调节成分的核心钟基因Clock和Bmal1,已被证实不但24 h节律性表达于中枢钟组织如视交叉上核与松果体,而且也表达于包括血细胞在内的各种外周钟组织,上述基因产物以异二聚体形式形成正向转录因子,在生物钟的分子振荡机制中起着极其重要的作用。关于人类外周血淋巴细胞核心钟基因Clock和Bmal1的昼夜节律性表达外观,已有报道进行了mRNA水平的研究,而在翻译水平上人类外周血淋巴细胞CLOCK和BMAL1蛋白—这对正向转录因子的昼夜节律性表达规律及其光反应性有着怎样的表现,至今尚待明确,这正是本文所要探讨的内容。
     目的:
     探讨成年人外周血淋巴细胞CLOCK蛋白和BMAL1蛋白的昼夜节律性表达规律,旨在进一步从蛋白水平上解析、丰富人类外周免疫钟运行的分子调控机制。
     方法:
     8名健康男性志愿者,年龄18~22岁,平均20岁。预先在昼夜节律模式条件(自然光制,16 h-light : 8 h-dark cycle, LD )下生活1周,室温25±1 oC。受试者自由饮水,无烟酒嗜好,日常活动和饮食成分基本一致。随后在一昼夜内每隔4 h抽取各受试者外周血12 ml,分离淋巴细胞,提取总蛋白,用BCA(bicinchonininc acid)法测定蛋白浓度,采用Western Blot方法,检测不同昼夜时点(zeitgeber time,ZT,共6个,每个时点n=8)样品中CLOCK和BMAL1蛋白的表达量,通过余弦法和Clock Lab软件获取节律参数,并经振幅检验分析其是否存在昼夜节律。
     结果:
     1. LD(16:8)光制下,正常成年人外周血淋巴细胞核心转录因子钟蛋白CLOCK和BMAL1的表达呈现明显的昼夜节律性振荡变化(振幅F检验,P<0.05)。
     2. CLOCK蛋白的峰值相位-40.94±13.63,表达振幅0.50±0.23,中值2.91±0.23,峰值和谷值时间分别位于ZT3和ZT15,蛋白峰时水平3.40±0.34,谷时水平2.41±0.29。
     3. BMAL1蛋白的峰值相位-88.49±12.23,表达振幅0.31±0.08,中值2.85±0.49,峰值和谷值时间分别位于ZT6和ZT18,蛋白峰时水平3.15±0.54,谷时水平2.55±0.46。
     4. LD(16:8)光制下,人外周血淋巴细胞BMAL1蛋白在不同昼夜时点的表达水平、振幅、中值、蛋白峰时水平和谷时水平,分别与CLOCK蛋白相比,均无显著性差别(P>0.05);但其峰值相位、峰值时间和谷值时间,分别与CLOCK蛋白相比,均有显著性差异(P<0.05),相位延迟3小时。
    
     结论:
     1. LD(16:8)光制下,成年人外周血淋巴细胞核心钟蛋白CLOCK和BMAL1的表达呈现明显的昼夜节律性振荡,CLOCK蛋白的峰值和谷值时刻分别位于ZT3和ZT15,BMAL1蛋白的峰值和谷值时刻分别位于ZT6和ZT18。
     2. LD(16:8)光制下,人外周血淋巴细胞核心钟蛋白CLOCK和BMAL1在不同昼夜时点的表达水平、振幅、中值、蛋白峰时水平和谷时水平相一致。
     3. LD(16:8)光制下,人外周血淋巴细胞核心钟蛋白BMAL1昼夜节律性表达的峰值相位、峰值时间和谷值时间,相对钟蛋白CLOCK而言,其节律相位滞后3小时。
Circadian rhythms can be found at levels of physiological function, biochemical metabolism and behavior change for 24 h which is the regular cycle in human and animals. Signal output of the rhythm in vivo, generated by endogenous biological clocks, not only regulate various activities spontaneously but also receive resetting by the entrainment with external environmental factors named zeitgeber, in order to make body activities be in accordance with environmental changes. The molecular regulatory mechanisms of clock oscillation consist of clock signal input, several clock genes, clock-associated genes, clock-controlled genes and their protein, through the interconnection of intracellular transcription– translation - posttranslation event, to organize a fundamental molecular framework named autoregulatory feedback loop of the clock oscillator for accurate clock signal output. Of core clock genes, the Clock and Bmal1 genes whose product i.e. heterodimer has been together regarded as a crucial positive transcription regulator in the loop, have been evidenced the 24-hour rhythmic expressions not only in central clock tissues such as the suprachiasmatic nucleus (SCN) and the pineal gland (PG), but also in various peripheral clock tissues including blood cells.
     The research of core clock genes Clock and Bmal1 circadian expressive profile has been reported at mRNA levels in human peripheral blood lymphocytes, however, study on circadian rhythmic expressions and photoresponses of CLOCK and BMAL1 proteins in human peripheral blood lymphocytes is not clear so far, which is an aim of present study.
     Objective: This study was conducted to investigate the circadian rhythmic expressions of clock proteins, CLOCK and BMAL1 in the human peripheral blood lymphocytes and to better understand molecular regulatory mechanism of the peripheral immuneclock action.
     Methods: 8 healthy male volunteers aged from 18~22 years (mean age 20 years) previously lived under the circadian model condition (natural light regime, 16 h-light : 8 h-dark cycle, LD) for a week, room temperature 25±1 oC. All subjects drank water freely, and had no smoking and alcohol drinking but the same food intake and daily activities. Then every subject was sampled for the peripheral blood 12 ml every 4 hours in a circadian day. Lymphocytes were separated from blood and the total proteins were extracted from each sample. The method of bicinchonininc acid (BCA) was used to examine the total proteins concentration and the Western Blot was conducted to determine the temporal changes of CLOCK and BMAL1 protein levels during different zeitgeber time (ZT, n=6 for 24 hours, each time point was n=8). The data of circadian parameters were obtained and analyzed by both the cosine function, Clock Lab software and the amplitude F test to reveal two protein circadian rhythm in the LD (16:08) condition.
     Results:
     1. Under the LD (16:08) light regime, the core transcription factors CLOCK and BMAL1 in healthy adult human peripheral blood lymphocytes displayed a robust circadian oscillatory expressions (amplitude F test, P < 0.05).
     2. For the CLOCK protein expression within 24 hs, circadian parameters peak phase was -40.94±13.63, amplitude was 0.50±0.23, mesor was 2.91±0.23, peak time was ZT3, trough time was ZT15, protein level at peak was 3.40±0.34 and protein level at trough was 2.41±0.29.
     3. For the BMAL1 protein expression within 24 hs, circadian parameters peak phase was -88.49±12.23, amplitude was 0.31±0.08, mesor was 2.85±0.49, peak time was ZT6, trough time was ZT18, protein level at peak was 3.15±0.54 and protein level at trough was 2.55±0.46.
     4. Under the LD (16:08) light condition, the expression level at different circadian time points, amplitude, mesor, protein level at peak time and protein level at trough time of the BMAL1 protein in human peripheral blood lymphocytes, compared with that of the CLOCK protein respectively, had no significant difference obtained (P> 0.05), however, the peak phase, peak time and trough time of the BMAL1 protein expression within 24 hs showed 3 hours later than those of the CLOCK protein (P <0.05).
     Conclusion:
     1. Under the LD (16:08) light regime, expressions of the CLOCK and BMAL1 proteins in healthy adult human peripheral blood lymphocytes possess a remarkable circadian oscillation with a peak at ZT3 and a trough at ZT15 for the CLOCK protein , and with a peak at ZT6 and a trough at ZT18 for the BMAL1 protein.
     2. Under the LD (16:08) light condition, the expression level at different circadian time points, amplitude, mesor, protein level at peak time and protein level at trough time of the CLOCK protein in healthy adult human peripheral blood lymphocytes is corresponding to that of the BMAL1 protein, respectively.
     3. Under the LD (16:08) light regime, the peak phase, peak time, trough time of the BMAL1 protein circadian expression in healthy adult human peripheral blood lymphocytes, compared with those of the CLOCK protein, are delayed 3 hours.
引文
[1] Cornelissen G, Halberg F, Introduction to chronobiology. In: MN Medtronic. Medtroni Chronobiology Seminar 7. Library of Congress (USA) Minneapolis, 1994, 1-52.
    [2] King DP, Takahashi JS. Molecular genetics of circadian rhythms in mammals. Annu Rev Neurosci, 2000, 23(1): 713-742.
    [3] Stehle JH, Von Gall C, Korf HW. Melatonin: a clock-output, a clock-input. J Neuroendocrinology, 2003, 15(4): 383-389.
    [4] Lowrey PL, Takahashi JS. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. J Annu Rev Genomics Hum Genet, 2004, 5: 407-441.
    [5] Schibler U, Ripperger J, Brown SA. Peripheral circadian oscillators in mammals: time and food. J Biol Rhythms, 2003, 18(3): 250-260.
    [6] Yamamoto T, Nakahata Y, Soma H, et al. Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol Biol, 2004, 9(5): 18-21.
    [7] Pando MP, Morse D, Cermakian N, et al. Phenotypic rescue of a peripheral clock genetic defect via SCN hierarchical dominance. Cell, 2002, 110(1): 107-117.
    [8] Buijs RM, Van Eden CG, Goncharuk VD, et al. The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system. J Endocrinol, 2003, 177(1): 17-26.
    [9] Herzog ED, Takahashi JS, Blook GD. Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nat Neurosci, 1998, 1 (8): 708-713.
    [10] Fukada Y, Okano T. Circadian clock system in the pineal gland. Mol Neurobiol, 2002, 25(1): 19-30.
    [11] Okamura H, Yamaguchi S, Yagita K. Molecular machinery of the circadian clock in mammals. Cell Tissue Res, 2002 , 309(1): 47-56.
    [12] Gekakis N, Staknis D, Nguyen HB, et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science, 1998, 280 (5369): 1564-1569.
    [13] Hogenesch JB, Gu YZ, Jain S, et al. The basic-helix- loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci USA, 1998, 95(10): 5474-5479.
    [14] Travnickova-Bendova Z, Cermakian N, Reppert SM, et al. Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc Natl Acad Sci USA, 2002, 99 (11): 7728-7733.
    [15] Yamaguchi S, Mitsui S, Miyake S, et al. The 5` upstream region of mPer1 gene contains two promoters and is responsible for circadian oscillation. Curr Biol, 2000, 10 (14): 873-876.
    [16] Griffin EA, Staknis D, Weitz CJ. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science, 1999, 286 (5440): 768-771.
    [17] Kume K, Zylka MJ, Sriram S, et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell, 1999, 98 (2): 193-205.
    [18] Etchegaray JP, Lee C, Wade PA, et al. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature, 2003, 421 (6919): 177-182.
    [19] Onishi H, Yamaguchi S, Yagita K, et al. Rev-erb alpha gene expression in the mouse brain with special emphasis on its circadian profiles in the suprachiasmatic nucleus. J Neurosci. Res, 2002, 68 (5): 551-557.
    [20] Preitner N, Damiola F, Lopez-Molina L, et al. The orphan nuclear receptor REV-ERB-alpha controls circadian transcription within the positive limb of mammalian circadian oscillator. J Cell, 2002, 110(2): 251-260.
    [21] Ueda HR, Chen W, Adachi A, et al. A transcription factor response element for gene expression during circadian night. Nature, 2002, 418 (6897): 534-539.
    [22] Shearman LP, Sriram S, Weaver DR, et al. Interacting molecular loops in the mammalian circadian clock. Science, 2000, 288 (5468): 1013-1019.
    [23] Lee C, Etchegaray JP, Cagampang FR, et al. Posttranslational mechanisms regulate the mammalian circadian clock. Cell, 2001, 107(7): 855-867.
    [24] Vielhaber E, Eide E, Rivers A, et al. Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon. Mol. Cell. Biol, 2000,20(13): 4888-4899.
    [25] Yagita K, Tamanini F, Yasuda M, et al. Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein. EMBO J, 2002, 21(6): 1301-1314.
    [26] Eide EJ, Vielhaber EL, Hinz WA, et al. The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iepsilon. J Biol Chem, 2002, 277(19): 17248-17254.
    [27] Keesler GA, Camacho F, Guo Y, et al. Phosphorylation and destabilization of human period I clock protein by human casein kinase I epsilon. NeuroReport, 2000, 11(5): 951-955.
    [28] Lowrey PL, Shimomura K, Antoch MP, et al. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science, 2000, 288 (5465): 483-492.
    [29] Camacho F, Cilio M, Guo Y, et al. Human casein kinase I delta phosphorylation of human circadian clock proteins period 1 and 2. FEBS Lett., 2001, 489(2-3): 159-165.
    [30] Akashi M, Tsuchiya Y, Yoshino T, et al. Control of intracellular dynamics of mammalian period proteins by casein kinase I epsilon (CKIepsilon) and CKIdelta in cultured cells. Mol Cell Biol, 2002, 22(6): 1693-1703.
    [31] Petrovsky N, Harrison LC. The chronobiology of human cytokine production. Int Rev Immunol, 1998, 16(5-6): 635-649.
    [32] Esquifino AI, Pandi-Perumal SR, Cardinali DP, et al. Circadian organization of the immune response: A role for melatonin. Clinical and Applied Immunology, 2004, 4(6): 423-433.
    [33] Haus E, Smolensky MH. Biologic rhythms in the immune system. Chronobiol Int, 1999, 16(5): 581-622.
    [34]童建.免疫系统的生物节律[J].国外医学免疫学分册, 1999, 22(1):30-33
    [35] Bourin P, Mansour I, Doinel C, et al. Circadian rhythms of circulating NK cells in healthy and human immunodeficiency virus-infected men. Chronobiol Int, 1993, 10(4): 298-305
    [36] Fernandes G.. Biological rhythm in clinical and laboratory medicine. Springer- Verlang, 1992, 493.
    [37] Canon C. Biological rhythm in clinical and laboratory medicine. Springer- Verlang, 1992, 635.
    [38] Steeves TD, King DP, Zhao Y, et al. Molecular cloning and characterization of the human CLOCK gene: expression in the suprachiasmatic nuclei. J Genomics, 1999, 57(2): 189-200.
    [39] Ikeda M, Nomura M. cDNA cloning and tissue-specific expression of a novel basic helix–loop–helix/PAS protein (BMAL1) and identification of alternatively spliced variants with alternative translation initiation site usage. Biochem Biophys Res Commun, 1997, 233 (1): 258–264.
    [40] Wolting CD, McGlade CJ. Cloning and chromosomal localization of a new member of the bHLH/PAS transcription factor family. Mamm Genome, 1998, 9(6): 463–468.
    [41] Jin X, Shearman LP, Weaver DR, et al. A molecular mechanism regulating rhythmic output from suprachiasmatic circadian clock. Cell, 1999, 96(1): 57-68.
    [42] Ripperger JA, Shearman LP, Reppert SM, et al. CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev, 2000, 14(6): 679-689.
    [43] Honma S, Ikeda M, Abe H, et al. Circadian oscillation of BMAL1, a partner of a mammalian clock gene Clock, in rat suprachiasmatic nucleus. Biochem Biophy Res Commun, 1998, 250(1): 83-87.
    [44] Namihira M, Honma S, Abe H, et al. Daily variation and light responsiveness of mammalian clock gene, Clock and BMAL1, transcripts in the pineal body and different areas of brain in rats. Neurosci Lett, 1999, 267(1): 69-72.
    [45] Lincoln G, Messager S, Andersson H, et al. Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: evidence for an internal coincidence timer. Proc Natl Acad Sci USA, 2002, 99(21): 13890-13895.
    [46] Abe H, Honma S, Namihira M, et al. Phase-dependent induction by light of rat Clock gene expression in the suprachiasmatic nucleus. Mol Brain Res, 1999, 66(1-2): 104-110.
    [47] Wang GQ, Du YZ, Tong J. Daily Oscillation and Photoresponses of Clock Gene, Clock, and Clock-associated Gene, Arylalkylamine N-acetyltransferase Gene Transcriptions in the Rat Pineal Gland. Chronobiology International, 2007, 24(1): 9-20.
    [48] King DP, Zhao Y, Sangoram AM, et al. Positional cloning of the mouse circadian Clock gene. Cell, 1997, 89 (4): 641-653.
    [49] Du YZ, Fan SJ, Meng QH, et al. Circadian expression of clock and screening of clock-controlled genes in peripheral lymphocytes of rat. Biochem Biophys Res Commun, 2005, 336 (4): 1069-1073.
    [50] Plytycz B, Seljelid R. Rhythms of immunity. Arch Immumol Ther Exp (Warsz),1997, 45: 157-162.
    [51] Born J, Lange T, Hansen K, et al. Effects of sleep and circadian rhythm on human circulating immune cells. J Immunol, 1997, 158(4): 454-464.
    [52] Kusanagi H, Hida A, Satoh K, et al. Expression profiles of 10 circadian clock genes in human peripheral blood mononuclear cells. Neurosci Res, 2008, 61 (2): 136-142.
    [53] Abe H, Honma S, Namihira M, et al. Circadian rhythm and light responsiveness of BMAL1 expression, a partner of mammalian clock gene Clock, in the suprachiasmatic nucleus of rats. Neurosci Lett, 1998, 258 (2): 93-96.
    [54] Eide EJ, Vielhaber EL, Hinz WA, et al. The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iepsilon. J Biol Chem, 2002, 277(19): 17248-17254.
    [55] Gallego M., Eide EJ, Woolf MF, et al. An opposite role for tau in circadian rhythms revealed by mathematical modeling. Proc Natl Aca Sci USA, 2006, 103(28): 10618-10623.
    [56] Sanada K, Okano T, Fukada, Y. Mitogen-activated protein kinase phosphorylates and negatively regulates basic helix-loop-helix-PAS transcription factor BMAL1. Biol. Chem. 2002 , 277(1) : 267–271
    [57] Wang GQ, Tong J. Advances in study on molecular mechanism of circadian clock in pineal gland. Prog Physiol Sci 2004; 35(3): 210-214.
    [1] Lowrey PL, Takahashi JS. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet, 2004, 5: 407-441.
    [2]周先举,袁春燕,杨旭科等.果蝇昼夜节律的分子机制研究进展[J].生物化学与生物物理进展, 2005, 32 (1):3-7
    [3] Gallego M, Virshup DM. Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol, 2007, 8(2):139-147
    [4] Emery P, Reppert SM. A rhythmic Ror. Neuron, 2004, 43(4): 443-446
    [5] Sato TK, Panda S, Miraglia LJ, et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron, 2004, 43(4): 527-537.
    [6] Etchegaray JP, Yang X, DeBruyne JP, et al. The polycomb group protein EZH2 is required for mammalian circadian clock function. J Biol Chem, 2006, 281(30): 21209-21215.
    [7] Doi M, Hirayama J, Sassone-Corsi P. Circadian regulator CLOCK is a histone acetyltransferase. Cell, 2006, 125(3): 497-508.
    [8] Debruyne JP, Noton E, Lambert CM, et al. A clock shock: mouse CLOCK is not required for circadian oscillator function. Neuron, 2006,50(3): 465-477.
    [9] Yu W, Zheng H, Houl JH., et al. PER-dependent rhythms in CLK phosphorylation and E-box binding regulate circadian transcription. Genes Dev, 2006, 20(6): 723–733.
    [10] Cyran SA, Buchsbaum AM, Reddy KL, et al. vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell, 2003, 112(3):329-341.
    [11] Numano R, Yamazaki S, Umeda N, et al. Constitutive expression of the Period1 gene impairs behavioral and molecular circadian rhythms. Proc Natl Acad Sci USA, 2006, 103(10): 3716-3721.
    [12] Sanada K, Okano T, Fukada Y. Mitogen-activated protein kinase phosphorylates and negatively regulates basic helix-loop-helix-PAS transcription factor BMAL1. J Biol Chem, 2002, 277(1): 267-271
    [13] Vielhaber E, Eide E, Rivers A. Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase Iε. Mol Cell Biol, 2000, 20(13): 4888-4899.
    [14] Kloss B, Price JL, Saez L, et al. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iε. Cell, 1998, 94(1): 97-107.
    [15] Gallego M., Eide EJ, Woolf MF, et al. An opposite role for tau in circadian rhythms revealed by mathematical modeling. Proc Natl Aca Sci USA, 2006, 103(28): 10618-10623.
    [16] Camacho F, Cilio M, Guo Y, et al. Human casein kinase Iδphosphorylation of human circadian clock proteins period 1 and 2. FEBS Lett, 2001, 489(2-3): 159-165.
    [17] Eide EJ, Vielhaber EL, Hinz WA, et al. The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iepsilon. J Biol Chem, 2002, 277(19): 17248-17254.
    [18] Vielhaber E, Virshup DM. Casein kinase I: from obscurity to center stage. IUBMB Life, 2001, 51(2): 73-78.
    [19] Jones CR, Campbell SS, Zone SE, et al. Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nature Med, 1999, 5(9): 1062-1065.
    [20] Toh KL, Jones CR, He Y, et al. An hPer2 phosphorylation sitemutation in familial advanced sleep phase syndrome. Science, 2001, 291 (5506): 1040-1043.
    [21] Xu Y, Padiath QS, Shapiro RE, et al. Functional consequences of a CKIδmutation causing familial advanced sleep phase syndrome. Nature, 2005, 434 (7033): 640-644.
    [22] Meggio F, Pinna LA. One-thousand-and-one substrates of protein kinase CK2? FASEB J, 2003, 17(3): 349-368.
    [23] Allada R, Meissner RA. Casein kinase 2, circadian clocks, and the flight from mutagenic light. Mol Cell Biochem, 2005, 274(1-2): 141-149.
    [24] Lin JM, Schroeder A, Allada R. In vivo circadian function of casein kinase 2 phosphorylation sites in Drosophila PERIOD. J Neurosci, 2005, 25(48): 11175-11183.
    [25] Martinek S, Inonog S, Manoukian AS. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell, 2001, 105(6): 769-779.
    [26] Yin L, Wang J, Klein PS, Lazar MA. Nuclear receptor Rev-erbαis a critical lithium-sensitive component of the circadian clock. Science, 2006, 311(5763): 1002-1005.
    [27] Harada Y, Sakai M, Kurabayashi N, et al. Ser-557-phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase-3β. J Biol Chem, 2005, 280(36): 31714-31721.
    [28] Weber F, Hung HC, Maurer C, et al. Second messenger and Ras/MAPK signaling pathways regulate CLOCK/CYCLE-dependent transcription. J Neurochem, 2006, 98(1): 248-257.
    [29] Ceulemans H, Bollen M. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev, 2004, 84(1): 31-39.
    [30] Sathyanarayanan S, Zheng X, Xiao R, et al. A Posttranslational regulation of Drosophila PERIOD protein by protein phosphatase 2A. Cell, 2004, 116(4): 603-615.
    [31] Cegielska A, Gietzen KF, Rivers A, et al. Autoinhibition of casein kinase Iε(CKIε) is relieved by protein phosphatases and limited proteolysis. J Biol Chem, 1998, 273(3): 1357-1364.
    [32] Yang Z, Sehgal A. Role of molecular oscillations in generating behavioral rhythms in Drosophila. Neuron, 2001, 29(2): 453-467.
    [33] Koh K, Zheng X, Sehgal A. JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS. Science, 2006, 312 (5781): 1809-1812.
    [34] Kim EY, Edery I. Balance between DBT/CKIεkinase and protein phosphatase activities regulate phosphorylation and stability of Drosophila CLOCK protein. Proc Natl Acad Sci USA, 2006, 103(16): 6178-6183.
    [35] Miyazaki K, Nagase T, Mesaki M, et al. Phosphorylation of clock protein PER1 regulates its circadian degradation in normal human fibroblasts. Biochem J, 2004, 380(1): 95-103.
    [36] Shirogane T, Jin J, Ang XL, et al. SCFβ-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J Biol Chem, 2005, 280(29): 26863-26872.
    [37] Gallego M, Kang H, Virshup DM. Protein phosphatase 1 regulates the stability of the circadian protein PER2. Biochem J, 2006,399(1): 169-175 .
    [38] Ang XL, Wade HJ. SCF-mediated protein degradation and cell cycle control. Oncogene, 2005, 24(17): 2860-2870.
    [39] Grima B, Lamouroux A, Chélot E, et al. The F-box protein slimb controls the levels of clock proteins period and timeless. Nature, 2002, 420(6912): 178-182.
    [40] Ko HW, Jiang J, Edery I. Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime. Nature, 2002, 420 (6916): 673-678.
    [41] Lin FJ, Song W, Meyer-Bernstein E, et al. Photic signaling by cryptochrome in the Drosophila circadian system. Mol Cell Biol, 2001, 21(21): 7287-7294.
    [42] Partch CL, Shields KF, Thompson CL, et al. Posttranslational regulation of the mammalian circadian clock by cryptochrome and protein phosphatase 5. Proc Natl Acad Sci USA, 2006, 103(27): 10467-10472.
    [43] Cardone L, Hirayama J, Giordano F, et al. Circadian clock control by SUMOylation of BMAL1. Science, 2005, 309(5739): 1390-1394.
    [44] Cyran SA, Yiannoulos G, Buchsbaum AM, et al. The double-time protein kinase regulates the subcellular localization of the Drosophila clock protein period. J Neurosci, 2005, 25(22): 5430-5437.
    [45] Kume K, Zylka MJ, Sriram S, et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell, 1999, 98(2): 193-205 .
    [46] Takano A, Isojima Y, Nagai K. Identification of mPer1 phosphorylation sites responsible for the nuclear entry. J Biol Che, 2004, 279(31): 32578-32585.
    [47] Takano A, Shimizu K, Kani S, et al. Cloning and characterization of rat casein kinase 1ε. FEBS Lett, 2000, 477(1-2): 106-112.
    [48] Akashi M, Tsuchiya Y, Yoshino T, et al. Control of intracellular dynamics of mammalian period proteins by casein kinase Iε(CKIε) and CKIδin cultured cells. Mol Cell Biol, 2002, 22(6): 1693-1703.
    [49] Iitaka C, Miyazaki K, Akaike T, et al. A role for glycogen synthase kinase-3βin the mammalian circadian clock. J Biol Chem, 2005, 280(33): 29397-29402.
    [50] Saez L, Young MW. Regulation of nuclear entry of the Drosophila clock proteins period and timeless. Neuron, 1996, 17(5): 911-920.
    [51] Shafer OT, Rosbash M, Truman JW. Sequential nuclear accumulation of the clock proteins period and timeless in the pacemaker neurons of Drosophila melanogaster. J Neurosci, 2002, 22(14): 5946–5954.
    [52] Meyer P, Saez L, Young MW. PER–TIM nteractions in living Drosophila cells: an interval timer for the circadian clock. Science, 2006, 311(5758): 226–229.
    [53] Dunlap JC. Physiology. Running a clock requires quality time together. Science, 2006, 311 (5758): 184–186.
    [54] Swiatek W, Tsai IC, Klimowski L, et al. Regulation of casein kinase Iεactivity by Wnt signaling. J Biol Chem, 2004, 279(13): 13011–13017.
    [55] Wijnen H, Boothroyd C, Young MW, et al. Molecular genetics of timing in intrinsic circadian rhythm sleep disorders. Ann Med, 2002, 34(5): 386–393.
    [56] Lewy AJ, Lefler BJ, Emens JS, et al. The circadian basis of winter depression. Proc Natl Acad Sci USA, 2006, 103(19): 7414–7419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700