天然气制乙炔工艺的氢能利用与多联产系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高效、多功能的多联产系统作为可持续发展能源利用技术,是缓解日益严重的资源、能源和环境等多方面的压力,提高能源利用率,建立资源节约型社会的重要手段。
     本文依托国家自然科学基金重大研究计划资助,开展天然气基乙炔化工与动力系统集成整合原则和有效途径的研究,旨在揭示氢能转化对包含氢工艺的天然气基多联产系统的作用规律,提出相应的能量集成方法,开拓新颖氢燃料热力循环系统,以及天然气基乙炔与氢能动力有机整合的多联产系统。本文主要研究内容如下:
     首先,研究了天然气基乙炔动力多联产系统能量集成的策略,并以逆变换反应这一关键过程研究为基础,提出了氢能间接发电的氢能利用途径。研究了逆变换反应中反应条件对氢气的转化率和吸收所需能量品位的影响规律。提出提高逆变换反应中CO_2与氢气的物质量比,不但可以降低逆变换反应热源的温度,吸收更多的低品位热,而且可以提高氢气的转化率,提高CO的生成量,从而提高系统的能量利用效率。因为在相同的条件下,CO气体比H_2气体燃烧时能够释放出更多的热量。相对于直接利用H_2的动力转化过程,这是间接转化与利用H_2的一种方法。研究认为有效转化和利用天然气基乙炔工艺副产的富氢合成气,是天然气基乙炔动力多联产系统创新的重要途径,也是核心的系统能量集成原则。
     提出了一种新的图式热力学分析和集成工具,及其系统能量分析与集成的启示性准则。以氢作为关键化学品,关联氢与多联产系统目的化学品的转化速率以及过程的(火用)变,提出了流量—(火用)变图FED(Flowrate Exergy Diagram),并提出了使用FED进行含氢工艺的天然气基多联产系统能量分析与集成的一系列启示性准则。该方法直观、简明地描述复杂系统中氢或含氢化学品量改变所引起的热力学代价,便于指出能量转换的薄弱环节,提出工艺改进和系统能量集成的方法。
     然后,以氢能直接动力转化与间接转化两种途径,开展了下述三个天然气基乙炔动力多联产系统创新:
     (1)天然气基乙炔工艺与燃料电池多联产系统(氢能直接动力转化)。基于对天然气部分氧化制乙炔工艺和天然气水蒸汽重整制H_2及燃料电池PEMFC(Proton Exchange Membrane Fuel Cell)工艺的FED分析和比较,提出了一个新颖的天然气基乙炔与PEMFC多联产系统。新系统将传统合成乙炔工艺中的副产H_2作为PEMFC的H_2源,通过水气变换反应提高H_2产率,并采用催化燃烧和余热锅炉系统回收PEMFC尾气余热。研究了该多联产系统的热力学性能,并利用图式分析工具FED,研究了多联产系统的的物质和能量转化规律,揭示出天然气基乙炔与PEMFC集成的多联产系统氢能转化与能量转换利用之间的集成整合。
     (2)天然气基乙炔工艺与氢氧联合循环多联产系统(氢能直接动力转化)。基于对天然气水蒸汽重整制H_2及氢氧联合循环系统的分析研究,应用FED启示性准则和多联产系统集成方法,构思并设计了一种天然气基乙炔与氢氧联合循环多联产系统。研究了该多联产系统的能量转化特性和系统效率,利用FED研究了天然气基乙炔与氢氧联合循环多联产系统的氢能转化和能量集成作用。
     (3)天然气基乙炔工艺与逆变换化学回热循环多联产系统(氢能间接动力转化)。构思了一种由氢气CO_3逆变换化学回热、余热制冷和进气冷却构成的新型氢能间接动力转化热力循环。研究了该循环的发电效率等能量转化特性和该循环的热力学性能及其影响参数,并考察了循环压比对系统循环的影响规律,说明新循环实现了氢能的间接高效利用。进而基于对该循环的分析和天然气基乙炔动力多联产的系统能量集成原则,构思并集成了一种新型的天然气基乙炔与逆变换化学回热动力多联产系统,并研究了该多联产系统的能量转化特性和系统能量转换效率。
Due to the increasing depletion of resources and energy sources all over the world, efficient and economical energy systems are of utmost importance for the future in terms of sustainable development. Polygeneration systems, which integrate high efficiency systems, are effective ways to achieve efficient resources utilizing and build an economy resource social.
     Supported by the NSF of China (No.: 90210032), the major aim of this research is to investigate the integration principles and reasonable matching relations of the natural gas-based acetylene process. The major aim of this research is to propose a mechanism of hydrogen conversion and utilization in natural gas et al. fossil fuel complex energy conversion systems, and to develop a novel hydrogen power generation cycle and polygeneration systems for acetylene production and power generation. The main contents are as follows:
     First, the influence of operational conditions on the fractional conversion of hydrogen and the energy level needed in the conversion process of hydrgen to carbon monoxide are investigated. This paper finds out that the increasing of the molar ratio of carbon dioxide to hydrogen can achieve two aims: (1) decreasing the temperature of heat source; and (2) increasing the fractional conversion of hydrogen and increasing the content of carbon monoxide. Under the same conditions, the burning of the CO gas is able to release more heat than the H_2 gas. Comparing with the process of hydrogen conversion to power directly, H_2 and CO_2 inverse shift reaction can be considered as a indirect way of hydrogen conversion and utilization. Based on the analysis of acetylene process based on natural gas, this paper finds that when the process produces acetylene product a large amount of H_2-rich gas will be produced in the reactor. So the efficient conversion and utilization of hydrogen is an important way to establish novel polygeneration systems of acetylene and power and becomes the energy integration principles of polygeneration systems.
     Secondly, this paper presents a graphic analysis method will be introduced, which involves thermodynamic principles of energy analysis and energy integration, a flowrate-exergy diagram (FED), which consists of a plot representing the increase or decrease of the flowrate of H_2 vs. the exergy change of the process, and a series of revelatory criteria to use the FED mainly from process configuration. In some complex energy conversion process system related to hydrogen, as like as an acetylene production process, the influence of hydrogen conversion and utilization on the characteristics of energy conversion is very important. The proposed tool visually and concisely describes the conversion rates of hydrogen and hydrogenous chemicals associating with the exergy loss. Based on the analysis and comparison of the graph it is able to discover the cause of affecting the hydrogen conversion efficiency and find out the relative advanced technology. Then the FED may be used to develop retrofitting processes to improve the energy conversion efficiency.
     Then three novel acetylene production and power generation polygeneration systems based on natural gas systems were developed and investigated in this paper. They related to direct power conversion and indirect conversion of hydrogen.
     Based on the investigation of partial oxidation/combustion (POC) of natural gas for producing acetylene process and the proton exchange membrane fuel cell (PEMFC), a novel polygeneration system that integrates the acetylene process and fuel cells is presented. The system produces acetylene and power by a process of the POC of natural gas process, a water gas water-gas shift reactor, a fuel cell and a waste heat boiler auxiliary system to recover the exhaust heat and gas from the fuel cell. The new polygeneration system's exergy analysis and the flow rate of the products were investigated by the aid of FED, to reveal that the energy conversion and systematic integration mechanism demonstrated the improvement of natural gas energy conversion efficiency.
     Based on the analysis of steam reforming of natural gas and H_2/O_2 cycle system, a novel acetylene and H_2/O_2 cycle polygeneration system was proposed by the use of FED revelatory criteria and system integration method. The energy conversion characteristics and system efficiency of the system are researched. The thermodynamic principle of the new system and coupling mechanism for hydrogen conversion and energy integration between the acetylene process based on natural gas and H_2/O_2 cycle were both revealed with the aid of FED method.
     A novel high-efficiency power cycle system is proposed, which is composed of chemical recuperative with H_2 and CO_2 reverse shift reaction, chemical heat recovery with an ammonia absorption refrigeration cycle, and cooling the inlet gas. First, the heat is recovered from the turbine exhaust to drive H_2 and CO_2 reverse shift reaction, and then lower temperature heat from the turbine exhaust is provided with the ammonia absorption refrigeration system to generate chilled media, which is used to cool the turbine inlet gas except export. In this paper, a detailed thermodynamic analysis is carried out to reveal the performance of the proposed cycle and the influence of key parameters pressure ratio and temperature of interlet on performance is discussed, which shows the new cycle achieves the indirect efficient use of hydrogen. Based on the analysis of the power cycle and the energy integration principles of acetylene and power polygeneration systems, a new acetylene and power polygeneration system is proposed.
引文
[1]常宏岗.天然气化工现状及发展动向[J].石油与天然气化工,2005,34(6):462-464
    [2]田霖.天然气化工利用现状及发展动向[J].化工科技,2006,14(3):64-67
    [3]王悦,吴锦标,魏宗妹.天然气化工原料需求分析[J].石油化工技术经济,2005,5:27-31
    [4]董澍.天然气化工技术的现状与发展[J].浙江化工,2006,37(6):25-27
    [5]钱伯章.天然气化工技术现状与发展趋势[J].江苏化工,2004,32(5):1-6
    [6]曾毅,王公应.天然气制乙炔及下游产品研究进展.石油与天然气化工,2004,1:4
    [7]杨永进.微波低温等离子体裂解天然气制乙炔装置与工艺研究[J].中国基础科学,2006,1:13-14
    [8]高建兵.乙炔生产方法及技术进展[J].天然气化工,2005,30(1):63-66
    [9]陈赓良.天然气化工技术开发动向[J].石油规划设计,1996,3:9-12
    [10]钱伯章.天然气化工技术现状与发展趋势[J].江苏化工,2004,32(5):1-6
    [11]Huff G A,Vasalos I A.Oxidative pyrolysis of natural gas in a spouted-bed reactor:reaction stoichiometry and experimental reactor design[J].Catalysis Today,1998,46:223-231
    [12]但渝江.两种乙炔尾气转化技术分析比较[J].天然气化工,2002,27(5):25-31
    [13]陈仕萍.乙炔尾气制甲醇和天然气制甲醇的比较[J].天然气化工,2006,31(1):51-54
    [14]陈立春,蔡春艳,周贤洪.天然气制乙炔可行性探讨[J].聚氯乙烯,2000,2:5-11
    [15]郭春文.天然气合成乙烯乙炔技术[J].四川化工,2004,7(1):24-26
    [16]徐燮寿.天然气乙炔法生产PVC可行性探讨[J].中国氯碱,2000,5:5-9
    [17]于静.天然气制乙炔工艺装置调查报告[J].中国氯碱,2000,3:3-4
    [18]李锦春.当代乙炔化工研究开发领域探讨[J].天然气化工,1993,18(1):38-42
    [19]陈滨.石油化工手册(2)[M].北京:化学工业出版社,1988
    [20]杨秉仁.由天然气制乙炔及其综合利用[J].化学工程师,1992,4:37-40
    [21]Fincke J R,Anderson R P,Hyde T,Detering B A,Wright R,Bewley R L,Haggard D C,Swank W D.Plasma thermal conversion of methane to acetylene[J].Plasma Chemistry and Plasma Processing,2002,22(1):105-134
    [22]李锦春.甲烷化学最新技术进展[J].天然气化工,1999,24(5):49-55
    [23]唐宏青.天然气部分氧化制合成气的研究和实践[J].中氮肥,2004,1:1-5
    [24]罗义文,漆继红,印永祥,戴晓雁,徐咔秋.等离子体裂解天然气制乙炔的技术和经济分析[J].天然气化工,2002,27(3):37-42
    [25]Anderson R P,Fincke J R.Conversion of natural gas to liquids via acetylene as intermediate[J].Fuel,2002,81:909-925
    [26]罗义文,漆继红,印永祥,戴晓雁.热等离子体裂解甲烷的热力学与动力学分析[J].四川大学学报(工程科学版),2003,35(4):33-37
    [27]黄华章.电弧等离子体法制乙炔技术的现状及发展前景[J].浙江化工,2001,32(4):49-50
    [28]Radoiu M T,Chen Y,Depew M C.Catalytic conversion of methane to acetylene induced by microwave irradiation[J].Applied Catalysis B:Environment,2003,43(2):187-196
    [29]Liu C J,Mallinson R,Lobban L.Nonoxidative methane conversion to acetylene over zeolite in a low temperature plasma[J].Journal of Catalysis,1998,179:326-334
    [30]Yao S,Nakayama A,Suzuki E.Acetylene and hydrogen from pulsed plasma conversion of methane[J].Catalysis Today,2001,71:219-223
    [31]DOE.A National Vision of America's Transition to a Hydrogen Economic-to 2030 and Beyond,Based on the Results of the National Hydrogen Economic Vision Meeting[R].Washington,DC,U.S.2001
    [32]Seth D.Hydrogen futures:toward a sustainable energy system[J].International Journal of Hydrogen Energy,2002,27(3):235-264
    [33]Zegers P.Fuel cell commercialization:The key to a hydrogen economy[J].Journal of Power Sources,2006,154:497-502
    [34]Sherif S A,Barbir Frano,Veziroglu T N.Towards a hydrogen economy[J].The Electricity Journal,2005,18(6):62-76
    [35]臧明昌.第四代核能和氢气经济-21世纪能源领域的新进展[J].核科学与工程,2004,24(3):193-199
    [36]倪维斗,张斌,李政.氢能经济·CO_2·IGCC[J].煤炭转化,2003,26(3):1-10
    [37]庞名立.天然气:通向氢能时代的桥梁[J].天然气经济,2006,1:29-32
    [38]刘少文,吴广义.制氢技术现状及展望[J].贵州化工,2003,28(5):12-15
    [39]李文兵,齐智平.甲烷制氢技术研究进展[J].天然气工业,2005,25(2):165-169
    [40]Steinberg M.Production of hydrogen and methanol from natural gas with reduced CO_2 emission [J].International Journal of Hydrogen Energy,1998,23(6):419-425
    [41]Rosen M A.Thermodynamic investigation and comparison of selected production processes for hydrogen and hydrogen-derived fuels[J].Energy,1996,21(12):1079-1094
    [42]李瑛,王林山.燃料电池.北京:冶金工业出版社,2000
    [43]Kolios G,Gl(o|¨)ckler B,Gritsch A,Morillo A,Eigenberger G.Heat-integrated reactor concepts for hydrogen production by methane steam reforming[J].Fuel Cells,2005,5(1):52-65
    [44]Wolf J,Yan J.Parametric study of chemical looping combustion for tri-generation of hydrogen,heat,and electrical power with CO_2 capture[J].International Journal of Energy Research,2005,29(8):739-753
    [45]Liu Z,Jun K W,Roh H S,Park S E.Hydrogen production for fuel cells through methane reforming at low temperatures[J].Journal of Power Sources,2002,111(2):283-287
    [46]汪寿建.天然气综合利用技术[M].北京:化学工业出版社,2003
    [47]许珊,王晓来,赵睿.甲烷催化制氢气的研究进展[J].化学进展,2003,15(2):141-150
    [48]褚洪岭,王桂芝,龚凡,杨玉和.制氢工艺技术经济与新技术[J].化工技术经济,2005,23(9):36-39
    [49]Fierro J L G,Pe(n)a M A,Gomez J P.New catalytic routes for syngas and hydrogen production[J].Applied Catalysis A,1996,144(1-2):7-57
    [50]蔡秀兰,董新法,林维明.甲烷自热重整制氢技术的研究进展[J].现代化工,2006,26(1):24-27
    [51]Ma L,Trimm D L.Alternative catalyst bed configurations for the autothermic conversion of methane to hydrogen[J].Applied Catalysis A,1996,138(2):265-273
    [52]Saito M,Wu J,Tomoda K,Takahara I,Murata K.Effects of ZnO contained in supported Cu-based catalysts on their activities for several reactions[J].Catalysis Letters,2002,83(1-2):1-4
    [53]Chen C S,Cheng W,Lin S.Mechanism of CO formation in reverse water-gas shift reaction over Cu/Al_2O_3 catalyst[J].Catalysis Letters,2000,68:45-48
    [54]Park S W,Joo O,Jung K,Kim Hyo,Han S.Development of ZnO/Al_2O_3 catalyst for reverse-water-gas-shift reaction of CAMERE(carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) process[J].Applied Catalysis A:General,2001,211:81-90
    [55]Joo O,Jung K.Stability of ZnAl_2O_4 Catalyst for Reverse-Water-Gas-Shift Reaction(RWGSR)[J].Bulletin of the Korean Chemical Society,2003,240):86-90
    [56]毛宗强.氢能-21世纪的绿色能源[M].北京:化学工业出版社,2005
    [57]毛宗强.氢能及其近期应用前景[J].科技导报,2005,23(2):34-38
    [58]陈彬剑,方肇洪.燃料电池技术的发展现状[J].节能与环保,2004,8:36-38
    [59]Farrauto R J.Introduction to solid polymer membrane fuel cells and reforming natural gas for production of hydrogen[J].Applied Catalysis B:Environmental,2005,56:3-7
    [60]王金全,王春明,张永,徐晔,贾东升.氢能发电及其应用前景[J].解放军理工大学学报(自然科学版),2002,3(6):50-56
    [61]黄倬,屠海令,张翼强.质子交换膜燃料电池的研究开发与应用[M].北京:冶金工业出版社,2000
    [62]Arvindan N S,Rajesh B,Madhivanen M,Pattabiraman R.Hydrogen generation from natural gas and methanol for use in electrochemical energy conversion systems(fuel cell)[J].Indian Journal Engineering Material Science,1999,6:73-86
    [63]Kreutz T G,Ogden J M.Assessment of hydrogen-fueled proton exchange membrane fuel cells for distributed generation and cogeneration[R],in:Proceedings of the 2000 US DOE Hydrogen Program Review,2000
    [64]Schaller K V,Gruber C.Fuel cell drive and high dynamic energy storage systems -Opportunities for the future city bus[J].Fuel Cells Bulletin,2000,27:9-13
    [65]Feitelberg A S,Stathopoulos J,Qi Z,Smith C,Elter J F.Reliability of Plug Power GenSys~(TM) fuel cell systems[J].Journal of Power Sources,2005,147:203-207
    [66]Stone C,Morrison A E.From curiosity to "power to change the world"[J].Solid State Ionics,2002,152-153:1-13
    [67]Yu X,Zhou B,Sobiesiak A.Water and thermal management for Ballard PEM fuel cell stack[J].Journal of Power Sources,2005,147:184-195
    [68]Barisic Z.European field trial program with 250 kW PEM fuel cell power plants[R],in:Proceedings of the Fuel Cell Home,Lucerne,Switzerland,2001,187-196
    [69]Virji M B V,Adcock P L,Mitchell P J,Cooley G.Effect of operating pressure on the system efficiency of methane-fuelled solid polymer fuel cell power source[J].Journal of Power Sources,1998,71:337-347
    [70]耿东森,岳瑞娟,李培金.操作条件对质子交换膜燃料电池性能的影响[J].北京化工大学学报,2005,32(4):44-48
    [71]Ersoz A,Olgun H,Ozdogan S.Simulation study of a proton exchange membrane(PEM) fuel cell system with autothermal reforming[J].Energy,2006,31:1490-1500
    [72]Ersoz A,Olgun H,Ozdogan S.Reforming options for hydrogen production from fossil fuels for PEM fuel cells[J].Journal of Power Sources,2006,154:67-73
    [73]Mathiak J,Heinzel A,Roes J,Kalk Th,Kraus H,Brandt H.Coupling of a 2.5 kW steam reformer with a l kW PEM fuel cell[J].Journal of Power Sources,2004,131:112-119
    [74]Wallmark C,Alvfors P.Design of stationary PEFC system configurations to meet heat and power demands[J].Journal of Power Sources,2002,106:83-92
    [75]Godat J,Marechal F.Optimization of a fuel cell system using process integration techniques[J].Journal of Power Sources,2003,118:411-423
    [76]姚志彪,熊源泉.天然气制氢及质子交换膜燃料电池的研究[J].研究与探讨,2004,5:40-43
    [77]Cai R,Fang G.Analysis of a novel hydrogen and oxygen combined cycle[J].International Journal of Hydrogen Energy,1991,16(4):249-254
    [78]王逊,张世铮,蔡睿贤.改进型氢氧联合循环及其性能初步分析[J].工程热物理学报,1997,18(5):525-528
    [79]Funatsu T,Dohzono Y,Fukuda M.Startup analysis of an H_2-O_2-fired gas turbine cycle[J].Electrical Engineering in Japan,1999,128(1):9-16
    [80]Malyshenko S P,Gryaznov A N,Filatov N I.High-pressure H_2/O_2-steam generators and their possible applications[J].International Journal of Hydrogen Energy,2004,29(6):589-596
    [81]Sugisita H,Mori H,Uematsua K.Study of thermodynamic cycle and system configurations of hydrogen combustion turbines[J].International Journal of Hydrogen Energy,1998,23(8):705-712
    [82]Gambini M,Vellini M.Overall performance of H_2/O_2 cycle power plants based on steam-methane reforming.International Joint Power Generation Conference,Scottsdale,AZ,United States,2002,467-479
    [83]Gambini M,Vellini M.Comparative analysis of H_2/O_2 cycle power plants based on different hydrogen production systems from fossil fuels[J].International Journal of Hydrogen Energy,2005,30(6):593-604
    [84]Duan L,Lin R,Deng S,Jin H,Cai R.A Novel IGCC system with steam injected H_2/O_2 cycle and CO_2 recovery[J].Energy Conversion and Management,2004,45(6):797-809
    [85]苟晨华,蔡睿贤,洪慧.新型甲醇燃料化学回热燃气轮机循环[J].中国电机工程学报,2006,26(7):1-5
    [86]Abdallah H,Harvey S.Thermodynamic analysis of chemically recuperated gas turbines[J].International Journal of Thermal Sciences,2001,40(4):372-384
    [87]Alves L G,Nebra S A.Basic chemically recuperated gas turbines-power plant optimization and thermodynamics second law analysis[J].Energy,2004,29(12-15):2385-2395
    [88]Olmsted J H,Grimes P G.Heat engine efficiency enhancement-through chemical recovery of waste heat[C].in Proceedings,7th Intersociety Energy Conversion Engineering Conference,1972:241-248
    [89]Janes J.Chemically recuperated gas turbine.California Energy Commission[R].Sta:P500-92-015,1992
    [90]Harvey S,Kane N.Analysis of a reheat gas turbine cycle with chemical recuperation using Aspen [J].Energy Conversion and Management,1997,38(15-17):1671-1679
    [91]Carapellucci R,Milazzo A.Thermodynamic optimization of a reheat chemically recuperated gas turbine[J].Energy Conversion and Management,2005,46(18-19):2936-2953
    [92]Abdallah H,Facchini B,Danes F,De Ruyck J.Exergetic optimization of intercooled reheat chemically recuperated gas turbine[J].Energy Conversion and Management,1999,40(15-16):1679-1686
    [93]洪慧,金红光,李涛等人.中低温余热与甲醇化学间冷相结合热力循环研究[J].工程热物理学报,2004,25(1):1-4
    [94]Sugishita H,Mori H,Fukue I,Uematsu K.Combined cycle power plant[P].US Patent,2002/0095931 A1.2002-7-25
    [95]Cao W,Zheng D.Exergy regeneration in an O_2/CO_2 gas turbine cycle with chemical recuperation by CO_2 reforming of methane[J].Energy Conversion and Management,2006,47:3019-3030
    [96]倪维斗,李政,薛元.以煤气化为核心的多联产能源系统--资源/能源/环境整体优化与可持续发展[J].中国工程科学,2000,2(8):59-68
    [97]王庆一.“梦幻21”煤基能源工厂:多联产,高效率,零排放[J].中国煤炭,2001,27(9):5-8
    [98]王毅,肖云汉,张士杰,周宏春,钱京京.中国煤炭清洁利用的战略方向-煤炭气化多联产的优势、障碍与对策研究[R].北京:自然资源保护委员会,2004
    [99]耿加怀.兖矿煤气化多联产系统关键技术的研发与工业应用[J].中国科技产业,2006:23-27
    [100]孙照亮.神华宁煤集团发展煤化工多联产的探讨[J].两北煤炭,2006,4(2):34-38
    [101]肖云汉,张士杰.煤炭多联产技术和氢能技术[J].华北电力大学学报,2004,31(6):5-9
    [102]邓剑.煤气化多联产[J].上海节能,2006,(6):46-48
    [103]李现勇.煤基多联产系统中动力生产过程的分析[D].北京:中国科学院工程热物理研究所,2003
    [104]徐振刚.煤基能化联产系统集成优化与评价方法[D].北京:煤炭科学总院北京煤化工分院,2004
    [105]Kaggerud K H,Bolland O,Gundersen T.Chemical and process integration:Synergies in co-production of power and chemicals from natural gas with CO_2 capture[J].Applied Thermal Engineering,2006,26(13):1345-1352
    [106]Jackson R G.Polygeneration system for power and methanol based on coal gasification[J].Coal Conversion,1989,3:60-64
    [107]张斌,李政,倪维斗.煤气化氢电联产减排CO_2的系统研究[J].煤炭转化,2005,28(2):7-17
    [108]Gray D,Salerno S,Tomlinson G.Polygeneration of SNG,hydrogen,power,and carbon dioxide from Texas Lignite[R].Mitretek Technical Report,DOE's National Energy Technology Laboratory,Virginia,2004
    [109]Duan Y,Zhang J,Shi L,Zhu M.Exergy analysis of methanol-IGCC polygeneration technology based on coal gasification[J].Tsinghua Science of Technolology,2002,7(2):190-193
    [110]Chiesa P,Consonni S,Kreutz T G,Williams R H.Co-production of hydrogen,electricity and CO_2from coal with commercially ready technology Part A:Performance and emissions[J].International Journal of Hydrogen Energy,2005,30:747-767
    [111]Gao L,Jin H,Liu Z,Zheng D.Exergy analysis of coal-based polygeneration system for power and chemical production[J].Energy,2004,29:2359-2371
    [112]Kreutz T G,Williams R H,Consonni S,Chiesa P.Co-production of hydrogen,electricity,and CO_2 from coal with commercially ready technology Part B:Economic analysis[J].International Journal of Hydrogen Energy,2005,30:769-784
    [113]王逊,肖云汉.甲醇-动力联产系统热功转换过程分析[J].工程热物理学报,2003,24(3):379-381
    [114]麻林巍,倪维斗,李政,任挺进.以煤气化为核心的甲醇、电的多联产系统分析(上)[J].动力工程,2004,24(3):451-456
    [115]麻林巍,倪维斗,李政,任挺进.以煤气化为核心的甲醇、电的多联产系统分析(下)[J].动力工程,2004,24(4):603-608
    [116]刘培,高健,李政.甲醇/电多联产系统变工况特性的研究[J].动力工程,2006,26(4):587-591
    [117]张勇,倪维斗,李政.水煤气变换反应对多联产系统能源转换效率与温室气体排放的影响[J].动力工程,2006,26(3):432-436
    [118]刘广建,刘宇,李政,倪维斗,徐恒泳.新型二甲醚-发电多联产系统的设计与分析[J].动力工程,2006,26(2):295-298
    [119]段远源,刘洁.多联产系统中合成气一步法制取二甲醚的热力学分析[J].热科学与技术,2007,6(2):106-112
    [120]陈斌,金红光,高林.二甲醚分产及二甲醚-动力联产的比较[J].工程热物理学报,2006,5:721-724
    [121]陈斌,金红光.煤基和天然气基DME联产比较[J].工程热物理学报,2007,28(4):541-544
    [122]周齐宏,胡山鹰,陈定江,李有润,周丽.基于合成气的联供联产系统的3E分析[J].计算机与应用化学,2006,23(3):193-197
    [123]Zhou L,Hu S,Li Y,Zhou Q.Study on co-feed and co-production system based on coal and natural gas for producing DME and electricity[J].Chemical Engineering Journal,2008,136(1):31-40
    [124]Hugill J,Tiilemans F W,Dijkstra J W,Spoelstra S.Feasibility study on the co-generation of ethylene and electricity through oxidative coupling of methane[J].Applied Thermal Engineering,2005,25(8-9):1259-1271
    [125]王凡,郑丹星,纪培军.天然气一步法制乙烯工艺的多联产系统[J].工程热物理学报,2007,28(1):18-20
    [126]Verkhivker G.,Yantovski E.Zero-emissions gas-fired cogeneration of power and hydrogen[J].International Journal of Hydrogen Energy,2001,26(10):1109-1113
    [127]张斌,李政,倪维斗.煤气化氢电联产减排CO_2的系统研究[J].煤炭转化,2005,8(2):7-17
    [128]何琨,吴德荣,马紫峰.乙烯裂解工艺与IGCC-SOFC发电制氢联合工艺技术经济分析[J].武汉理工大学学报,2006,28:125-130
    [129]张向荣,高林,金红光,蔡睿贤.煤基氨-动力多联产系统的设计和分析[J].动力工程,2006,26(2):298-294
    [130]张向荣,高林,金红光.天然气基合成氨-动力多联产系统研究[J].天然气化工,2007,32(2):38-43
    [131]徐钢,李洪强,韩巍,金红光.天然气基多联产系统研究进展[J].化工进展,2006,25:525-532
    [132]高林.煤基化工-动力多联产系统开拓研究[D].北京:中国科学院工程热物理研究所,2005
    [133]Ebrahim M,Al-Kawari.Pinch technology:an efficient tool for chemical-plant energy and capital-cost saving[J].Applied Energy,2000,65:45-49
    [134]Umeda T,Itoh J,Shiroko K.Heat exchange system synthesis by thermodynamic approach[J].Chemical Engineering Progress,1978,74:70-79
    [135]Ishida M,Kawamura K.Energy and exergy analysis of a chemical process system with distributed parameters based on the energy-direction factor diagram[J].Industrial & Engineering Chemistry Process Design and Development,1982,21:690-695
    [136]El-Halwagi M M,Manousiouthakis V.Synthesis of mass exchange networks[J].AIChE Journal,1989,35:1233-1244
    [137]El-Halwagi M M,Spriggs H D.Solve design puzzles with mass integration[J].Chemical Engineering Progress,1998,8:25-44
    [138]Wang Y,Smith R.Waste water minimization[J].Chemical Engineering Science,1994,49(7):981-1006
    [139]Dhole V R,Ranchandani N.Make your process water pay for itseIf[J].Chemical Engineering,1996(1):100
    [140]Bealing C,HuRon D.Hydrogen-pinch analysis[J].Chemical Engineering,2002(5):56-61
    [141]Hallale N.Burning bright trends in process integration[J].Chemical Engineering Progress,2001(7):30-41
    [142]El-Halwagi M M,Gabriel F,Harell D.Rigorous grap-hical targeting for resource conservation via material recycle/reuse networks[J].Industrial & Engineering Chemistry Research,2003,42: 4319-4328
    [143]Hebecker D,Bittrich P.Energy and materials conversion with the help of regeneration and energy transformation[J].International Journal of Thermal Sciences,2001,40:316-328
    [144]Denbigh K G.The second-law efficiency of chemical processes[J].Chemical Engineering Science,1956,6(1):1-9
    [145]Kameyama H,Yoshida K,Yamauchi S.Evaluation of reference exergies for the elements[J].Applied Energy,1982,11(1):69-83
    [146]Xinhaia Y,Tunga T S,Zhengdonga W,Yunshi Q.On-board production of hydrogen for fuel cells over Cu/ZnO/Al_2O_3 catalyst coating in a micro-channel reactor[J].Journal Power Sources,2005,150:57-66
    [147]Yen C Y.Acetylene supplement A.Process economics program,PEP report 16A[R].Menlo Park,California:SRI consulting;1981
    [148]Campbell F T,Gerhartz W,Yamamoto Y S.Ullmann's Encyclopedia of Industrial Chemistry.Vol.Al:Abrasives to Aluminum Oxide[M].Weinheim:FRG,1985
    [149]郑丹星,武向红,宋之平等.能量系统(火用)分析技术导则.GB/T 14909-2005[S].北京:中国标准出版社.2005.155066.1-10908
    [150]Syed N N.Small-scale hydrogen plants.Process economics program,PEP report 32B[R].Menlo Park,California:SRI consulting,2003
    [151]Kivisaari T,Van der Laag P C,Ramsk(o|¨)ld A.Benchmarking of chemical flow sheeting software in fuel cell application[J].Journal Power Sources,2001,94:112
    [152]Pettersson L,Westerholm R.State of the art of multi-reformers for fuel cell vehicles,problem identification and research needs[J].International Journal of Hydrogen Energy,2001,26:243
    [153]Cownden R,Nahon M,Rosen M A.Modelling and analysis of a solid polymer fuel cell system for transportation applications[J].International Journal of Hydrogen Energy,2001,26:615-623
    [154]Korotkikh O,Farrauto R.Selective catalytic oxidation of CO in H_2:fuel cell applications[J].Catalysist Today,2000,62:249-254
    [155]Feitelberg A S,Rohr Jr D F.Operating line analysis of fuel processors for PEM fuel cell systems [J].International Journal of Hydrogen Energy,2005,30:1251-1257
    [156]Degtiarev V L,Grybovsky V P.Carbon dioxide semi-closed power plant[R].Author sertif.Bull:USSR,1971
    [157]Cau G,Cocco D.Performance assessment of semi-closed chemical recuperated gas turbine systems[J].ASME paper 2000-GT-161
    [158]Mathieu P,Nihart R.Zero-Emission MATIANT cycle[J].Transactions of the ASME,1999,121:116-120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700