分子筛的晶化机理及多孔涂层的制备与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子筛在石油化工、精细化工及日用化工等领域具有极其广泛的应用。其晶化机理及应用研究一直是分子筛领域的重要研究内容。本论文主要围绕这两个方面展开了研究。
     应用小角X-射线散射(SAXS)和冷冻透射电子显微镜(cryo-TEM)技术对MFI型分子筛清液合成体系的室温晶化过程进行了近300天的跟踪监测。首次发现了在MFI型分子筛晶体出现之前存在的一种较大的无定形聚集状纳米粒子,这种粒子会在较短时间内转变为MFI型分子筛晶体。
     对于NaX分子筛的清液合成体系,综合应用小角X-射线散射(SAXS)、冷冻透射电子显微镜(cryo-TEM)、紫外拉曼光谱(UV Raman Spectroscopy)、红外光谱(IR Spectroscopy)、核磁共振(NMR)等表征技术对其在室温下的晶化机制进行了研究。研究结果发现体系中也存在极小的纳米粒子,这些粒子随着时间的演化在结构和组成上越来越接近NaX分子筛,我们推测铝在固相中的富集对成核起了重要作用。
     此外,首次在钛合金表面制备了含银分子筛抗菌薄膜涂层,并进行了体外抗菌和细胞毒性检测。结果表明该薄膜涂层不仅显示出很强的抗菌能力,而且具有良好的生物相容性,因此该涂层可用于骨科内外固定板和人工假体表面,在临床上具有潜在的应用价值。
     首次以单分散的GeO2晶体为模板,使用温和的方法制备了具有较好形貌和稳定性的立方SiO2空心壳纳米粒子,通过使用“手动组装”(manual assembly)和挥发溶剂组装等技术,将这种SiO2空心立方壳及GeO2-SiO2核-壳粒子组装成了单层薄膜涂层。
In the past half century, zeolites have played increasingly important roles as catalysts in petroleum refining, petrochemical and other chemical industries. Currently, there are 194 known zeolite frameworks, however, only a few of them have been widely used in industry. More and more zeolites with novel structures and compositions were highly desired not only in the traditional fields of catalysis, adsorption and ion-exchange, but also in the newly developed fields such as petroleum refining and intermediacy chemistry process. However, the elusive formation mechanism of zeolite limits the discovery of novel zeolites. Studies on the crystallization process and formation mechanism of zeolites are very important not only because of their theoretical significance but also due to practical values. Extensive efforts have been made to elucidate the crystallization mechanism of zeolites since 1950s. Several mechanisms were proposed based on the observations from specific synthesis conditions. However, no general mechanism was obtained to describe the formation of zeolites due to the complexity of hydrothermal chemical reactions. In this dissertation, zeolites MFI and FAU were selected as models to study the crystallization mechanism of zeolites.
     Room-temperature aging of zeolite precursor silica sol (with and without Al) was followed by SAXS and cryo-TEM. The results from all-silica system provide evidences supporting the recently proposed mechanism of evolution of nanoparticles followed by aggregative crystal growth while adding a new element. The new element, not included in the previously proposed model, is the formation of predominantly amorphous aggregates before MFI crystallization and points to the importance of intra-aggregate rearrangements in nucleation and growth. For the aluminosilicate clear sol, smaller nanoparticles were found in the initial clear sol. The particle size was slightly increasing with time but no larger particle was indentified throughout nearly 300-day aging process. The aluminosilicate nanoparticles have better colloidal stability compared with all-silica ones.
     The early stage of nucleation and crystal growth of FAU was investigated by using combined in situ/ex situ techniques such as Small Angle X-ray Scattering (SAXS), Nuclear Magnetic Resonance (NMR) and UV Raman Spectroscopy. The results show that ca. 2 nm particles exist in the clear solution and the composition and structure of those nanoparticles were evolved with time during the room-temperature aging. The crystal growth curve indicates that a large amount of nuclei exist in the 24-hour aged clear sol, while no change of the particle size was observed during the early 30-hour-aging period. In situ UV Raman and liquid 29Si NMR spectra show that only low-polymerized species exist in the liquid phase and those species do not change within the 4-day-aging process. From the FTIR spectra, we found that broaden bands at the characteristic regions do not show much structural changes with various aging times. All the aluminium atoms in the solid phase are 4-coordinated. The increasing fraction of Si(4Al) in the solid 29Si NMR spectra indicates that the solid phase was getting ordered and there was a chemical composition change during the aging period. The changes of the Si/Al ratio were confirmed by ICP elemental analysis. Based on the studies on both liquid phase and solid phase, we can conclude that i) nucleation happens in solid phase or solid-liquid interface; ii) the chemical evolution catalyzed by OH– anion makes the composition and structure of solid phase similar to that of zeolite; iii) aluminium is enriched onto the nanoparticles and the stability of nanoparticles decreases with time; iv) the aluminium enriched spots in the solid phase might be the starting points of nucleation.
     Besides the research on the fundamental formation mechanism, studies on preparation and applications of porous coatings are also main objects of this dissertation. Porous coatings have attracted much attention due to their usefulness as supporting media in tissue engineering, membranes in separation process, templates for inorganic growth, dielectric materials for electronic devices, and optical materials.
     A silver-ions exchanged zeolite (type LTA) coating on Ti alloy surface was successfully prepared for the first time. In vitro antimicrobial assessments indicates that the Ag-zeolite coating provides efficient antibacterial effect to inhibit the proliferation of bacteria both in suspension surrounding the materials and on the surfaces of the materials. Zeolite exhibits many advantages such as good biocompatibility, mechanical stability, easy manufacture and low cost when used as a Ag+-host surface coating material. Since Ag+ ions can be stoichiometrically exchanged into zeolite, the antibacterial activity and cytotoxicity can be finely tuned by optimizing the loading amount of Ag+ ions. These advantages may potentially benefit the application of this antibacterial coating in orthopedic implants.
     A benign and facile process for forming monodisperse, hollow porous silica shells of a novel cubic morphology is identified. Templated on monodisperse crystalline germania cores that can be removed via aqueous dissolution. The hollow shells and their core–shell precursors are amenable to assembly into highly porous, gap-free near-monolayer films through manual and evaporative assembly techniques.
引文
[1] McBain J W, The Sorption of Gases. 1932, London: G. Routledge & Sons, Ltd.
    [2] Cronstedt A F, Kongl Vetenskaps Academiens Handlingar Stockholm, 1756. 17: 120.
    [3] de St Claire Deville H, Compt. Rend. Séances Acad. Sci. , 1862. 54: 324.
    [4] Barrer R M, Synthesis of a zeolitic mineral with chabazite-like sorptive properties, J. Chem. Soc., 1948: 127.
    [5] Barrer R M, Hinds L, and White E A, The hydrothermal chemistry of silicates. Part III. Reactions of analcite and leucite, J. Chem. Soc., 1953: 1466.
    [6] Barrer R M and Marcilly C, Hydrothermal chemistry of silicates. Part XV. Synthesis and nature of some salt-bearing aluminosilicates, J. Chem. Soc. A, 1970: 2735.
    [7] Milton R M, US Patent, 2,882,243, 1959.
    [8] Milton R M, US Patent, 2,882,244, 1959.
    [9] Milton R M, ACS Symp. Ser., 1989. 398: 1.
    [10] Barrer R M and Denny P J, Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates, J. Chem. Soc., 1961: 971.
    [11] Kerr G T, Chemistry of Crystalline Aluminosilicates. II. The Synthesis and Properties of Zeolite ZK-4, Inorg. Chem., 1966. 5: 1537.
    [12] Kerr G T and Kokotailo G T, SODIUM ZEOLITE ZK-4, A NEW SYNTHETIC CRYSTALLINE ALUMINOSILICATE, J. Am. Chem. Soc., 1961. 83: 4675.
    [13] Wadlinger R J, Kerr G T, and Rosinski E J, US Patent, 3,308,069, 1967.
    [14] Argauer R J and Landolt G R, US Patent, 3,702,886, 1972.
    [15] Wilson S T, Lok B M, Messina C A, et al., Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids, J. Am. Chem. Soc., 1982. 104: 1146.
    [16] Davis M E, Saldarriaga C, Montes C, et al., A molecular sieve with eighteen-membered rings, Nature, 1988. 331: 698-699.
    [17] Dessau R M, Schlenker J L, and Higgins J B, Framework topology of AIPO4-8: the first 14-ring molecular sieve, Zeolites. 10(6): 522-524.
    [18] Huo Q, Xu R, Li S, et al., Synthesis and characterization of a novel extra large ring of aluminophosphate JDF-20, J. Chem. Soc., Chem. Commun., 1992: 875.
    [19] Flanigen E M, Lok B M, Patton R L, et al. Proc. of 7th Int. Zeolite Conf. 1986. Tokyo: Kodansha-Elsevier, 103-112.
    [20] Li Y, Yu J H, and Xu R R. AlPO Database. http://mezeopor.jlu.edu.cn/alpo/.
    [21] Shannon M D, Casci J L, Cox P A, et al., Structure of the two-dimensional medium-pore high-silica zeolite NU-87, Nature, 1991. 353(6343): 417-420.
    [22] Delprato F, Delmotte L, Guth J L, et al., Synthesis of new silica-rich cubic and hexagonal faujasites using crown-etherbased supramolecules as templates, Zeolites, 1990. 10: 546-552.
    [23] Lawton S L and Rohrbaugh W J, The Framework Topology of ZSM-18, a Novel Zeolite Containing Rings of Three (Si,Al)-O Species, Science, 1990. 247(4948): 1319-1322.
    [24] Lobo R F and Davis M E, CIT-1: A New Molecular Sieve with Intersecting Pores Bounded by 10- and 12-Rings, Journal of the American Chemical Society, 1995. 117(13): 3766-3779.
    [25] Yoshikawa M, Wagner P, Lovallo M, et al., Synthesis, Characterization, and Structure Solution of CIT-5, a New, High-Silica, Extra-Large-Pore Molecular Sieve, The Journal of Physical Chemistry B, 1998. 102(37): 7139-7147.
    [26] Bialek R, Meier W M, Davis M, et al., The synthesis and structure of SSZ-24, the silica analog of AIPO4-5, Zeolites, 1991. 11(5): 438-442.
    [27] Lobo R F, Pan M, Chan I, et al., SSZ-26 and SSZ-33: Two Molecular Sieves with Intersecting 10- and 12-Ring Pores, Science, 1993. 262(5139): 1543-1546.
    [28] Nakagawa Y, US Patent, 5,271,921, 1993.
    [29] Freyhardt C C, Tsapatsis M, Lobo R F, et al., A high-silica zeolite with a 14-tetrahedral-atom pore opening, Nature, 1996. 381: 295.
    [30] Corma A, Diaz-Cabanas M J, Martinez-Triguero J, et al., A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst, Nature, 2002. 418(6897): 514-517.
    [31] Corma A, Diaz-Cabanas M J, Jorda J L, et al., High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings, Nature, 2006. 443(7113): 842-845.
    [32] Corma A, Rey F, Rius J, et al., Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites, Nature, 2004. 431(7006): 287-290.
    [33] Sun J, Bonneau C, Cantin A, et al., The ITQ-37 mesoporous chiral zeolite, Nature, 2009. 458(7242): 1154-1157.
    [34] http://www.iza-structure.org.
    [35]徐如人,庞文琴,等,分子筛与多孔材料化学. 2004,北京:科学出版社.
    [36] Cundy C S and Cox P A, The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism, Microporous Mesoporous Mater., 2005. 82: 1.
    [37] Barrer R M, Baynham J W, Bultitude F W, et al., Hydrothermal chemistry of the silicates. Part VIII. Low-temperature crystal growth of aluminosilicates, and of some gallium and germanium analogues, J. Chem. Soc., 1959: 195.
    [38] Barrer R M, Chem. Brit., 1966: 380.
    [39] Flanigen E M and Breck D W, 137th Meeting of the ACS, 1960, Cleveland, OH, Abstracts, 33-M
    [40] Breck D W, Crystalline molecular sieves, J. Chem. Ed., 1964. 41: 678.
    [41] Kerr G T, Chemistry of Crystalline Aluminosilicates. I. Factors Affecting the Formation of Zeolite A, J. Phys. Chem., 1966. 70: 1047.
    [42] Kerr G T, Crystallization of sodium zeolite A, Zeolites, 1989. 9: 451.
    [43] Zhdanov S P, ACS Adv. Chem. Ser., 1971. 101: 20.
    [44] Derouane E G, Detremmerie S, Gabelica Z, et al., Synthesis and characterization of ZSM-5 type zeolites I. physico-chemical properties of precursors and intermediates, Appl. Catal., 1981. 1: 201.
    [45] Gabelica Z, Blom N, and Derouane E G, Synthesis and characterization of zsm-5 type zeolites: III. A critical evaluation of the role of alkali and ammonium cations, Appl. Catal., 1983. 5: 227.
    [46] Gabelica Z, Derouane E G, and Blom N, Synthesis and characterization of pentasil type zeolites: II. Structure-directing effect of the organic base or cation, Appl. Catal., 1983. 5: 109.
    [47] Gabelica Z, Derouane E G, and Blom N, ACS Symp. Ser., 1984. 248: 219.
    [48] Bodart P, Nagy J B, Gabelica Z, et al., J. Chim. Phys., 1986. 83: 777.
    [49] Chang C D and Bell A T, Studies on the mechanism of ZSM-5 formation, Catal. Lett., 1991. 8: 305.
    [50] Burkett S L and Davis M E, Mechanisms of Structure Direction in the Synthesis of Pure-Silica Zeolites. 1. Synthesis of TPA/Si-ZSM-5, Chem. Mater., 1995. 7: 920.
    [51] Burkett S L and Davis M E, Mechanism of Structure Direction in the Synthesis of Pure-Silica Zeolites. 2. Hydrophobic Hydration and Structural Specificity, Chem. Mater., 1995. 7: 1453.
    [52] Burkett S L and Davis M E, Mechanism of Structure Direction in the Synthesis of Si-ZSM-5: An Investigation by Intermolecular 1H-29Si CP MAS NMR, J. Phys. Chem., 1994. 98: 4647.
    [53] Kirschhock C E A, Buschmann V, Kremer S, et al., Zeosil Nanoslabs: Building Blocks in nPr4N+-Mediated Synthesis of MFI Zeolite, Angew. Chem., Int. Ed. Engl., 2001. 40: 2637.
    [54] Kirschhock C E A, Kremer S P B, Grobet P J, et al., New Evidence for Precursor Species in the Formation of MFI Zeolite in the Tetrapropylammonium Hydroxide?Tetraethyl Orthosilicate?Water System, J. Phys. Chem. B, 2002. 106: 4897.
    [55] Kirschhock C E A, Ravishankar R, Jacobs P A, et al., AggregationMechanism of Nanoslabs with Zeolite MFI-Type Structure, J. Phys. Chem. B, 1999. 103: 11021.
    [56] Kirschhock C E A, Ravishankar R, Van Looveren L, et al., Mechanism of Transformation of Precursors into Nanoslabs in the Early Stages of MFI and MEL Zeolite Formation from TPAOH-TEOS-H2O and TBAOH-TEOS-H2O Mixtures, J. Phys. Chem. B, 1999. 103: 4972.
    [57] Kirschhock C E A, Ravishankar R, Verspeurt F, et al., Identification of Precursor Species in the Formation of MFI Zeolite in the TPAOH-TEOS-H2O System, J. Phys. Chem. B, 1999. 103: 4965.
    [58] Ravishankar R, Kirschhock C, Schoeman B J, et al., Physicochemical Characterization of Silicalite-1 Nanophase Material, J. Phys. Chem. B, 1998. 102: 2633.
    [59] Ravishankar R, Kirschhock C E A, Knops-Gerrits P P, et al., Characterization of Nanosized Material Extracted from Clear Suspensions for MFI Zeolite Synthesis, J. Phys. Chem. B, 1999. 103: 4960.
    [60] Davis T M, Drews T O, Ramanan H, et al., Mechanistic principles of nanoparticle evolution to zeolite crystals, Nature Materials, 2006. 5(5): 400-408.
    [61] McNicol B D, Pott G T, Loos K R, et al., ACS Adv. Chem. Ser., 1973. 121: 152.
    [62] McNicol B D, Pott G T, and Loos K R, Spectroscopic studies of zeolite synthesis, J. Phys. Chem., 1972. 76: 3388.
    [63] Wenyang X, Jianquan L, Wenyuan L, et al., Nonaqueous synthesis of ZSM-35 and ZSM-5, Zeolites, 1989. 9(6): 468-473.
    [64] Ciric J, Kinetics of zeolite A crystallization, J. Colloid Interface Sci., 1968. 28: 315.
    [65] Angell C L and Flank W H, ACS Symp. Ser., 1977. 40: 194.
    [66] Kacirek H and Lechert H, Rates of crystallization and a model for the growth of sodium-Y zeolites, J. Phys. Chem., 1976. 80: 1291.
    [67] Flanigen E M, Bennett J M, Grose R W, et al., Silicalite, a new hydrophobiccrystalline silica molecular sieve, Nature, 1978. 271: 512.
    [68] Schoeman B J and Regev O, A study of the initial stage in the crystallization of TPA-silicalite-1, Zeolites, 1996. 17: 447.
    [69] Schoeman B J, A high temperature in situ laser light-scattering study of the initial stage in the crystallization of TPA-silicalite-1, Zeolites. 18(2-3): 97-105.
    [70] Persson A E, Schoeman B J, Sterte J, et al., Synthesis of stable suspensions of discrete colloidal zeolite (Na, TPA)ZSM-5 crystals, Zeolites, 1995. 15(7): 611-619.
    [71] Watson J N, Brown A S, Iton L E, et al., Detection of TPA-silicalite precursors nucleated during the room temperature aging of a clear homogeneous synthesis solution, J. Chem. Soc., Faraday Trans., 1998. 94: 2181.
    [72] Kirschhock C E A, Ravishankar n, Grobet P J, et al., Reply to the Comment on“Identification of Precursor Species in the Formation of MFI Zeolite in the TPAOH-TEOS-H2O System”, J. Phys. Chem. B, 2002. 106: 3333.
    [73] Kragten D D, Fedeyko J M, Sawant K R, et al., Structure of the Silica Phase Extracted from Silica/(TPA)OH Solutions Containing Nanoparticles, J. Phys. Chem. B, 2003. 107: 10006.
    [74] Knight C T G and Kinrade S D, Comment on“Identification of Precursor Species in the Formation of MFI Zeolite in the TPAOH-TEOS-H2O System”, J. Phys. Chem. B, 2002. 106: 3329.
    [75] Schoeman B J, Analysis of the nucleation and growth of TPA-silicalite-1 at elevated temperatures with the emphasis on colloidal stability, Microporous and Mesoporous Materials, 1998. 22(1-3): 9-22.
    [76] Nikolakis V, Kokkoli E, Tirrell M, et al., Zeolite growth by addition of subcolloidal particles: Modeling and experimental validation, Chemistry of Materials, 2000. 12(3): 845-853.
    [77] Davis T M, Drews T O, Ramanan H, et al., Mechanistic principles of nanoparticle evolution to zeolite crystals, Nat. Mater., 2006. 5: 400.
    [78] Hedrick J L, Miller R D, Hawker C J, et al., Templating Nanoporosity in Thin-Film Dielectric Insulators, Advanced Materials, 1998. 10(13): 1049-1053.
    [79] Lee W W and Ho P S, Low-Dielectric-Constant Materials for ULSI Interlayer-Dielectric Applications, MRS Bull., 1997. 22: 19.
    [80] Yoldas B E and Partlow D P, Wide spectrum antireflective coating for fused silica and other glasses, Appl. Opt., 1984. 23(9): 1418-1424.
    [81] Wirnsberger G and Stucky G D, Ordered Mesostructured Materials with Optical Functionality13, ChemPhysChem, 2000. 1(2): 90-92.
    [82] Zhou H S and Honma I, Dye-Doped Photosensitive Mesostructure Materials, Advanced Materials, 1999. 11(8): 683-685.
    [83] Zusman R, Rottman C, Ottolenghi M, et al., Doped sol-gel glasses as chemical sensors, Journal of Non-Crystalline Solids, 1990. 122(1): 107-109.
    [84] Wirnsberger G, Scott B J, and Stucky G D, pH Sensing with mesoporous thin films, Chemical Communications, 2001(1): 119-120.
    [85] Lew C M, Cai R, and Yan Y, Zeolite Thin Films: From Computer Chips to Space Stations, Accounts of Chemical Research, 2009. 43(2): 210-219.
    [86] Wang Z, Wang H, Mitra A, et al., Pure-Silica Zeolite Low-k Dielectric Thin Films, Advanced Materials, 2001. 13(10): 746-749.
    [87] Wang Z B, Mitra A, Wang H T, et al., Pure Silica Zeolite Films as Low-k Dielectrics by Spin-On of Nanoparticle Suspensions, Advanced Materials, 2001. 13(19): 1463-1466.
    [88] Liu Y, Lew C M, Sun M W, et al., On-Wafer Crystallization of Ultralow-kappa Pure Silica Zeolite Films, Angewandte Chemie-International Edition, 2009. 48(26): 4777-4780.
    [89] Cai R, Sun M W, Chen Z W, et al., Ionothermal synthesis of oriented zeolite AEL films and their application as corrosion-resistant coatings, Angewandte Chemie-International Edition, 2008. 47(3): 525-528.
    [90] Cheng X L, Wang Z B, and Yan Y S, Corrosion-resistant zeolite coatings by in situ crystallization, Electrochemical and Solid State Letters, 2001. 4(5):B23-B26.
    [91] Mitra A, Wang Z B, Cao T G, et al., Synthesis and corrosion resistance of high-silica zeolite MTW, BEA, and MFI coatings on steel and aluminum, Journal of the Electrochemical Society, 2002. 149(10): B472-B478.
    [92] McDonnell A M P, Beving D, Wang A J, et al., Hydrophilic and antimicrobial zeolite coatings for gravity-independent water separation, Advanced Functional Materials, 2005. 15(2): 336-340.
    [93] O'Neill C, Beving D E, Chen W, et al., Durability of hydrophilic and antimicrobial zeolite coatings under water immersion, Aiche Journal, 2006. 52(3): 1157-1161.
    [94] Chen G, Beving D E, Bedi R S, et al., Initial Bacterial Deposition on Bare and Zeolite-Coated Aluminum Alloy and Stainless Steel, Langmuir, 2009. 25(3): 1620-1626.
    [95] Jo M-H, Park H-H, Kim D-J, et al., SiO2 aerogel film as a novel intermetal dielectric, Journal of Applied Physics, 1997. 82(3): 1299-1304.
    [96] Hong J-K, Yang H-S, Jo M-H, et al., Preparation and characterization of porous silica xerogel film for low dielectric application, Thin Solid Films, 1997. 308-309: 495-500.
    [97] Orthaber D, Bergmann A, and Glatter O, SAXS experiments on absolute scale with Kratky systems using water as a secondary standard, Journal of Applied Crystallography, 2000. 33(2): 218-225.
    [1] Rimer J D, Trofymluk O, Navrotsky A, et al., Kinetic and thermodynamic studies of silica nanoparticle dissolution, Chemistry of Materials, 2007. 19(17): 4189-4197.
    [2] de Moor P-P E A, Beelen T P M, Komanschek B U, et al., In Situ Investigation of Si-TPA-MFI Crystallization Using (Ultra-) Small- and Wide-Angle X-ray Scattering, The Journal of Physical Chemistry B, 1997. 101(51): 11077-11086.
    [3] Agger J R, Hanif N, Cundy C S, et al., Silicalite Crystal Growth Investigated by Atomic Force Microscopy, Journal of the American Chemical Society, 2002. 125(3): 830-839.
    [4] Fedeyko J M, Rimer J D, Lobo R F, et al., Spontaneous Formation of Silica Nanoparticles in Basic Solutions of Small Tetraalkylammonium Cations, The Journal of Physical Chemistry B, 2004. 108(33): 12271-12275.
    [5] Cheng C-H and Shantz D F, Silicalite-1 Growth from Clear Solution: Effect of the Structure-Directing Agent on Growth Kinetics, The Journal of Physical Chemistry B, 2005. 109(29): 13912-13920.
    [6] Schoeman B J and Regev O, A study of the initial stage in the crystallization of TPA-silicalite-1, Zeolites, 1996. 17(5-6): 447-456.
    [7] Liang D, Follens L R A, Aerts A, et al., TEM Observation of Aggregation Steps in Room-Temperature Silicalite-1 Zeolite Formation, The Journal of Physical Chemistry C, 2007. 111(39): 14283-14285.
    [8] Ramanan H, Kokkoli E, and Tsapatsis M, On the TEM and AFM Evidence of Zeosil Nanoslabs Present during the Synthesis of Silicalite-113, Angewandte Chemie International Edition, 2004. 43(35): 4558-4561.
    [9] Davis T M, Drews T O, Ramanan H, et al., Mechanistic principles of nanoparticle evolution to zeolite crystals, Nature Materials, 2006. 5(5): 400-408.
    [10] Glatter O, A new method for the evaluation of small-angle scattering data, Journal of Applied Crystallography, 1977. 10(5): 415-421.
    [11] Glatter O, The interpretation of real-space information from small-angle scattering experiments, Journal of Applied Crystallography, 1979. 12(2): 166-175.
    [12] Iler R, The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. 1979, New York: Wiley.
    [13] Rimer J D, Vlachos D G, and Lobo R F, Evolution of Self-Assembled Silica?Tetrapropylammonium Nanoparticles at Elevated Temperatures, The Journal of Physical Chemistry B, 2005. 109(26): 12762-12771.
    [14] Fedeyko J M, Vlachos D G, and Lobo R F, Formation and Structure of Self-Assembled Silica Nanoparticles in Basic Solutions of Organic and Inorganic Cations, Langmuir, 2005. 21(11): 5197-5206.
    [15] Rimer J D, Vlachos D G, and Lobo R F, Evolution of self-assembled silica-tetrapropylammonium nanoparticles at elevated temperatures, Journal of Physical Chemistry B, 2005. 109(26): 12762-12771.
    [16] Orthaber D, Bergmann A, and Glatter O, SAXS experiments on absolute scale with Kratky systems using water as a secondary standard, Journal of Applied Crystallography, 2000. 33(2): 218-225.
    [17] Talmon Y, Imaging surfactant dispersions by electron microscopy of vitrified specimens, Colloids and Surfaces, 1986. 19(2-3): 237-248.
    [18] Fedeyko J M, Egolf-Fox H, Fickel D W, et al., Initial Stages of Self-Organization of Silica?Alumina Gels in Zeolite Synthesis, Langmuir, 2007. 23(8): 4532-4540.
    [1] Mintova S, Olson N H, Valtchev V, et al., Mechanism of zeolite a nanocrystal growth from colloids at room temperature, Science, 1999. 283(5404): 958-960.
    [2] Mintova S, Olson N H, and Bein T, Electron microscopy reveals the nucleation mechanism of zeolite Y from precursor colloids, Angewandte Chemie-International Edition, 1999. 38(21): 3201-3204.
    [3] Wakihara T, Kohara S, Sankar G, et al., A new approach to the determination of atomic-architecture of amorphous zeolite precursors by high-energy X-ray diffraction technique, Phys. Chem. Chem. Phys., 2006. 6: 224-227.
    [4] Fan W, Ogura M, Sankar G, et al., In situ Small-Angle and Wide-Angle X-ray Scattering Investigation on Nucleation and Crystal Growth of Nanosized Zeolite A, Chemistry of Materials, 2007. 19(8): 1906-1917.
    [5] Valtchev V P and Bozhilov K N, Transmission electron microscopy study of the formation of FAU-type zeolite at room temperature, Journal of Physical Chemistry B, 2004. 108(40): 15587-15598.
    [6] Itani L, Liu Y, Zhang W P, et al., Investigation of the Physicochemical Changes Preceding Zeolite Nucleation in a Sodium-Rich Aluminosilicate Gel, Journal of the American Chemical Society, 2009. 131(29): 10127-10139.
    [7] Valtchev V P and Bozhilov K N, Evidences for zeolite nucleation at the solid-liquid interface of gel cavities, Journal of the American Chemical Society, 2005. 127(46): 16171-16177.
    [8] de Moor P P E A, Beelen T P M, Komanschek B U, et al., Imaging the assembly process of the organic-mediated synthesis of a zeolite, Chemistry-a European Journal, 1999. 5(7): 2083-2088.
    [9] Kirschhock C E A, Ravishankar R, Jacobs P A, et al., Aggregation mechanism of nanoslabs with zeolite MFI-type structure, Journal of Physical Chemistry B, 1999. 103(50): 11021-11027.
    [10] Kirschhock C E A, Ravishankar R, Van Looveren L, et al., Mechanism of transformation of precursors into nanoslabs in the early stages of MFI and MEL zeolite formation from TPAOH-TEOS-H2O and TBAOH-TEOS-H2O mixtures, Journal of Physical Chemistry B, 1999. 103(24): 4972-4978.
    [11] Kirschhock C E A, Ravishankar R, Verspeurt F, et al., Identification of precursor species in the formation of MFI zeolite in the TPAOH-TEOS-H2O system, Journal of Physical Chemistry B, 1999. 103(24): 4965-4971.
    [12] Ravishankar R, Kirschhock C E A, Knops-Gerrits P P, et al., Characterization of nanosized material extracted from clear suspensions for MFI zeolite synthesis, Journal of Physical Chemistry B, 1999. 103(24): 4960-4964.
    [13] Davis T M, Drews T O, Ramanan H, et al., Mechanistic principles of nanoparticle evolution to zeolite crystals, Nature Materials, 2006. 5(5): 400-408.
    [14] McDaniel C V, US Patent, 3, 639, 099, 1972.
    [15]李守贵. Y型沸石和L型沸石液相成核的研究.长春:吉林大学化学系, 1987.
    [16] Jacobs P A, Derouane E G, and Weitkamp J, Evidence for X-ray-amorphous zeolites, J. C. S. Chem. Comm., 1981: 591.
    [17] Rimer J D, Vlachos D G, and Lobo R F, Evolution of self-assembled silica-tetrapropylammonium nanoparticles at elevated temperatures, Journal of Physical Chemistry B, 2005. 109(26): 12762-12771.
    [18] Fedeyko J M, Egolf-Fox H, Fickel D W, et al., Initial Stages of Self-Organization of Silica?Alumina Gels in Zeolite Synthesis, Langmuir, 2007. 23(8): 4532-4540.
    [19] Guth J L, Caullet P, Jacques P, et al., Bull. Soc. Chim. Fr., 1980. 3-4: 121.
    [20] Roozeboom F, Robson H E, and Chan S S, Laser raman study on the crystallization of zeolites A, X and Y, Zeolites, 1983. 3(4): 321-328.
    [21] McKeown D A, Galeener F L, and Brown Jr G E, Raman studies of Al coordination in silica-rich sodium aluminosilicate glasses and some relatedminerals, Journal of Non-Crystalline Solids, 1984. 68(2-3): 361-378.
    [22] Flanigen E M, Khatami H, and Szymansk H A, in Adv. Chem. Ser., E.M. Flanigen and L.B. Sand, Editors. 1971, American Chemistry Society: Washington, D.C. p. 201-228.
    [23]徐如人,庞文琴,等,分子筛与多孔材料化学. 2004,北京:科学出版社.
    [24] Engelhardt G, Hoebbel D, Tarmak M, et al., 29Si-NMR-Untersuchungen zur Anionenstruktur von Kristallinen Tetramethylammonium-alumosilicaten und -alumosilicatl?sungen, Zeitschrift für anorganische und allgemeine Chemie, 1982. 484(1): 22-32.
    [25] Fyfe C A, Thomas J M, Klinowski J, et al., Magic-Angle-Spinning NMR (MAS-NMR) Spectroscopy and the Structure of Zeolites, Angewandte Chemie International Edition in English, 1983. 22(4): 259-275.
    [26] Lippmaa E, Maegi M, Samoson A, et al., Investigation of the structure of zeolites by solid-state high-resolution silicon-29 NMR spectroscopy, Journal of the American Chemical Society, 1981. 103(17): 4992-4996.
    [27] Lippmaa E, Maegi M, Samoson A, et al., Structural studies of silicates by solid-state high-resolution silicon-29 NMR, Journal of the American Chemical Society, 1980. 102(15): 4889-4893.
    [28] Mueller D, Hoebbel D, and Gessner W, 27Al NMR studies of aluminosilicate solutions. Influences of the second coordination sphere on the shielding of aluminium, Chemical Physics Letters, 1981. 84(1): 25-29.
    [1] Harris W and CB S, Total hip and total knee replacement (Part II), N Engl J Med, 1990. 323: 801-807.
    [2] Costerton J W, Cheng K J, Greesey G G, et al., Bacterial biofilms in nature and disease, Ann Rev Microbiol, 1987. 41: 435-464.
    [3] Lewis K, Riddle of Biofilm Resistance, Antimicrob. Agents Chemother., 2001. 45(4): 999-1007.
    [4] Zhao L Z, Chu P K, Zhang Y M, et al., Antibacterial Coatings on Titanium Implants, Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2009. 91B(1): 470-480.
    [5] Richard JW, Spencer BA, McCoy LF, et al., Acticoat versus silverlon: the truth, J Burns Surg Wound Care, 2002. 1: 11-20.
    [6] Castellano JJ, Shafii SM, Ko F, et al., Comparative evaluation of silver-containing antimicrobial dressings and drugs, Int Wound J, 2007. 4(2): 114–122.
    [7] Klasen H J, Historical review of the use of silver in the treatment of burns. I. Early uses, Burns, 2000. 26(2): 117-130.
    [8] Kumar R and Munstedt H, Silver ion release from antimicrobial polyamide/silver composites, Biomaterials, 2005. 26(14): 2081-2088.
    [9] Feng Q L, Wu J, Chen G Q, et al., A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, Journal of Biomedical Materials Research, 2000. 52(4): 662-668.
    [10] Thurman RB and CP. G, The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses, CRC Crit Rev Environ Cont, 1989. 18: 295-315.
    [11] Chen W, Liu Y, Courtney H S, et al., In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating, Biomaterials, 2006. 27(32): 5512-5517.
    [12] Wan Y Z, Raman S, He F, et al., Surface modification of medical metals by ion implantation of silver and copper, Vacuum, 2007. 81(9): 1114-1118.
    [13] Gosheger G, Hardes J, Ahrens H, et al., Silver-coated megaendoprostheses in a rabbit model - an analysis of the infection rate and toxicological side effects, Biomaterials, 2004. 25(24): 5547-5556.
    [14] Ewald A, Gluckermann S K, Thull R, et al., Antimicrobial titanium/silver PVD coatings on titanium, Biomedical Engineering Online, 2006. 5: -.
    [15] Rivera-Garza M, Olguin M T, Garcia-Sosa I, et al., Silver supported on natural Mexican zeolite as an antibacterial material, Microporous and Mesoporous Materials, 2000. 39(3): 431-444.
    [16] Matsumura Y, Yoshikata K, Kunisaki S, et al., Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate, Applied and Environmental Microbiology, 2003. 69(7): 4278-4281.
    [17] Danilczuk M, Dlugopolska K, Ruman T, et al., Molecular Sieves in Medicine, Mini-Reviews in Medicinal Chemistry, 2008. 8(13): 1407-1417.
    [18] Platas-Iglesias C, Vander Elst L, Zhou W Z, et al., Zeolite GdNaY nanoparticles with very high relaxivity for application as contrast agents in magnetic resonance imaging, Chemistry-a European Journal, 2002. 8(22): 5121-5131.
    [19] Maeda T and Nose Y, A new antibacterial agent: Antibacterial zeolite, Artificial Organs, 1999. 23(2): 129-130.
    [20] Bedi R S, Beving D E, Zanello L P, et al., Biocompatibility of corrosion-resistant zeolite coatings for titanium alloy biomedical implants, Acta Biomaterialia, 2009. 5(8): 3265-3271.
    [21]徐如人,庞文琴,等,分子筛与多孔材料化学. 2004,北京:科学出版社.
    [22] Breck D W, Ion Exchange Reactions in Zeolites, in Zeolite Molecular Sieves. 1974, John Wiley & Sons, Inc.: New York. p. 529–592.
    [23] Uchida T, Maru N, and M. F, Anti-bacterial zeolite bal- looncatheter and its potential for urinary tract infection control, Acta Urologica Japanica, 1992. 38:937-978.
    [24] Nikawa H, Yamamoto T, Hamada T, et al., Antifungal effect of zeolite-incorporated tissue conditioner against Candida albicans growth and/or acid production, J Oral Rehabil, 1997. 24: 350–357.
    [25] Kawahara K, Tsuruda K, Morishita M, et al., Antibacterial effect of silver–zeolite on oral bacteria under anaerobic conditions, Dent Mater, 2000. 16: 452–455.
    [26] Barry J E and Trogolo J A, United States Patent, 1999.
    [27] van den Berg A W C, Gora L, Jansen J C, et al., Zeolite A membranes synthesized on a UV-irradiated TiO2 coated metal support: the high pervaporation performance, Journal of Membrane Science, 2003. 224(1-2): 29-37.
    [28]马斌荣,医学统计学. 2004,北京:人民卫生出版社.
    [29] Anderson J M, Inflammatory response to implants., ASAIO Trans, 1988. 34: 101-107.
    [30] Langer R and Vacanti J, Tissue engineering., Science, 1993. 260: 920-926.
    [31] Legeay G, Poncin-Epaillard F, and Arciola C R, New surfaces with hydrophilic/hydrophobic characteristics in relation to (no)bioadhesion, International Journal of Artificial Organs, 2006. 29(4): 453-461.
    [32] Hermann M, Vaudaux PE, and Pittet D, Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material, J Infect Dis, 1988. 158: 693-710.
    [33] Vaudaux P, Pittet D, Haeberli A, et al., Host factors selectively increase staphylococcal adherence on inserted catheters: a role for fibronectin and fibrinogen or fibrin, J Infect Dis, 1989. 160: 865-875.
    [34] Sherertz RJ, Carruth A, Hampton AA, et al., Efficacy of antibiotic-coated catheters in preventing subcutaneous Staphylococcus aureus infection in rabbits, J Infect Dis, 1993. 167: 98-106.
    [35] Ai H, Lvov Y M, Mills D K, et al., Coating and selective deposition ofnanofilm on silicone rubber for cell adhesion and growth, Cell Biochemistry and Biophysics, 2003. 38(2): 103-114.
    [36] McDonnell A M P, Beving D, Wang A J, et al., Hydrophilic and antimicrobial zeolite coatings for gravity-independent water separation, Advanced Functional Materials, 2005. 15(2): 336-340.
    [1] Ohmori M and Matijevic E, Preparation and properties of uniform coated colloidal particles. VII. Silica on hematite, Journal of Colloid and Interface Science, 1992. 150(2): 594-598.
    [2] Ohmori M and Matijevic E, Preparation and Properties of Uniform Coated Inorganic Colloidal Particles: 8. Silica on Iron, Journal of Colloid and Interface Science, 1993. 160(2): 288-292.
    [3] Pekarek K J, Jacob J S, and Mathiowitz E, Double-walled polymer microspheres for controlled drug release, Nature, 1994. 367(6460): 258-260.
    [4] Walsh D and Mann S, Fabrication of hollow porous shells of calcium carbonate from self-organizing media, Nature, 1995. 377(6547): 320-323.
    [5] Schacht S, Huo Q, Voigt-Martin I G, et al., Oil-Water Interface Templating of Mesoporous Macroscale Structures, Science, 1996. 273(5276): 768-771.
    [6] Caruso F, Caruso R A, ouml, et al., Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating, Science, 1998. 282(5391): 1111-1114.
    [7] Caruso F, Nanoengineering of Particle Surfaces, Advanced Materials, 2001. 13(1): 11-22.
    [8] Schmidt H T and Ostafin A E, Liposome Directed Growth of Calcium Phosphate Nanoshells, Advanced Materials, 2002. 14(7): 532-535.
    [9] Chen J, Saeki F, Wiley B J, et al., Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents, Nano Letters, 2005. 5(3): 473-477.
    [10] Arnal P M, Comotti M, and Schüth F, High-Temperature-Stable Catalysts by Hollow Sphere Encapsulation13, Angewandte Chemie International Edition, 2006. 45(48): 8224-8227.
    [11] Mulvaney P, Giersig M, Ung T, et al., Direct observation of chemical reactions in silica-coated gold and silver nanoparticles, Advanced Materials, 1997. 9(7): 570-575.
    [12] He J, Liu Z, Yoneyama Y, et al., Multiple-Functional Capsule Catalysts: A Tailor-Made Confined Reaction Environment for the Direct Synthesis of Middle Isoparaffins from Syngas, Chemistry - A European Journal, 2006. 12(32): 8296-8304.
    [13] Hickey N, Arneodo Larochette P, Gentilini C, et al., Monolayer Protected Gold Nanoparticles on Ceria for an Efficient CO Oxidation Catalyst, Chemistry of Materials, 2007. 19(4): 650-651.
    [14] Valdés-Solís T, Valle-Vigón P, Sevilla M, et al., Encapsulation of nanosized catalysts in the hollow core of a mesoporous carbon capsule, Journal of Catalysis, 2007. 251(1): 239-243.
    [15] Nakashima T and Kimizuka N, Interfacial Synthesis of Hollow TiO2 Microspheres in Ionic Liquids, Journal of the American Chemical Society, 2003. 125(21): 6386-6387.
    [16] Kim S-W, Kim M, Lee W Y, et al., Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions, Journal of the American Chemical Society, 2002. 124(26): 7642-7643.
    [17] Velikov K P and van Blaaderen A, Synthesis and Characterization of Monodisperse Core?Shell Colloidal Spheres of Zinc Sulfide and Silica, Langmuir, 2001. 17(16): 4779-4786.
    [18] Breen M L, Dinsmore A D, Pink R H, et al., Sonochemically Produced ZnS-Coated Polystyrene Core?Shell Particles for Use in Photonic Crystals, Langmuir, 2001. 17(3): 903-907.
    [19] Gratton S E A, Ropp P A, Pohlhaus P D, et al., The effect of particle design on cellular internalization pathways, Proceedings of the National Academy of Sciences, 2008. 105(33): 11613-11618.
    [20] Lee Jin S, Kim Jae H, Lee Young J, et al., Manual Assembly of Microcrystal Monolayers on Substrates, Angewandte Chemie International Edition, 2007. 46(17): 3087-3090.
    [21] Wang H, Brandl D W, Le F, et al., Nanorice: A Hybrid Plasmonic Nanostructure,Nano Letters, 2006. 6(4): 827-832.
    [22] Lou X W, Yuan C, and Archer L A, Double-Walled SnO2 Nano-Cocoons with Movable Magnetic Cores, Advanced Materials, 2007. 19(20): 3328-3332.
    [23] Qi L, Li J, and Ma J, Biomimetic Morphogenesis of Calcium Carbonate in Mixed Solutions of Surfactants and Double-Hydrophilic Block Copolymers, Advanced Materials, 2002. 14(4): 300-303.
    [24] Yao J, Li D, Zhang X, et al., Cubes of Zeolite A with an Amorphous Core13, Angewandte Chemie International Edition, 2008. 47(44): 8397-8399.
    [25] Dong L, Chu Y, Zhuo Y, et al., Two-minute synthesis of PbS nanocubes with high yield and good dispersibility at room temperature, Nanotechnology, 2009(12): 125301.
    [26] Han Y-S, Jeong G-Y, Lee S-Y, et al., Synthesis of cubic type hollow silica particles, Materials Letters, 2009. 63(15): 1278-1280.
    [27] Shigina L N and Andreev V M, Tsvetn. Met., 1964. 37: 48.
    [28] Knyazev E A, Tsvetn. Met., 1963. 36: 63.
    [29] van de Water L G A, van der Waal J C, Jansen J C, et al., Improved catalytic activity upon Ge incorporation into ZSM-5 zeolites, Journal of Catalysis, 2004. 223(1): 170-178.
    [30] Mizrahi V, Lemaire P J, Erdogan T, et al., Ultraviolet laser fabrication of ultrastrong optical fiber gratings and of germania-doped channel waveguides, Applied Physics Letters, 1993. 63(13): 1727-1729.
    [31] Wu X C, Song W H, Zhao B, et al., Preparation and photoluminescence properties of crystalline GeO2 nanowires, Chemical Physics Letters, 2001. 349(3-4): 210-214.
    [32] Rimer J D, Roth D D, Vlachos D G, et al., Self-Assembly and Phase Behavior of Germanium Oxide Nanoparticles in Basic Aqueous Solutions, Langmuir, 2007. 23(5): 2784-2791.
    [33] Davis T M, Snyder M A, and Tsapatsis M, Germania Nanoparticles and Nanocrystals at Room Temperature in Water and Aqueous Lysine Sols, Langmuir, 2007. 23(25): 12469-12472.
    [34] Dong L H, Chu Y, Zhuo Y J, et al., Two-minute synthesis of PbS nanocubes with high yield and good dispersibility at room temperature, Nanotechnology, 2009. 20(12): 125301.
    [35] Han Y S, Jeong G Y, Lee S Y, et al., Synthesis of cubic type hollow silica particles, Materials Letters, 2009. 63(15): 1278-1280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700