陶瓷中空纤维膜在气体分离及固体氧化物燃料电池中的应用与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界,能源和环保已成为全世界共同关心的问题。由于在化工、冶金、能源、环保等领域具有巨大潜在应用价值,陶瓷膜材料的研究在最近几十年受到了学术界和工业界的关注。陶瓷中空纤维膜由于具有管径小、管壁薄、单位体积有效膜面积大等特点,近年来更是受到人们广泛研究。本论文主要对陶瓷中空纤维氧渗透和氢渗透膜的分离性能以及中空纤维管固体氧化物燃料电池的电学性能进行了研究。
     第一章是论文综述,首先简要介绍了膜的定义和分类;然后较全面阐述了陶瓷中空纤维膜的制备工艺和应用前景;最后着重论述了陶瓷中空纤维膜的研究现状和存在的问题。
     第二章制备出了Bi1.5Y0.3Sm0.2O3(BYS)-La0.8Sr0.2MnO3-δ(LSM)双相复合陶瓷中空纤维透氧膜并研究了其氧渗透性能。利用相转化/烧结技术制备的中空纤维膜具有非对称结构,靠近膜管内表面部分是指状孔结构,而靠近膜管外表面则是非常致密的结构。氧渗透测量给出膜管在中低温具有较高的氧渗透速率,在air/He梯度下,850℃时的氧渗透速率为3.9×10-7mol cm-2 s-1。研究表明中空纤维膜的氧渗透总流量随着膜管内吹扫气流量、纤维膜的长度和膜管外侧氧气来源气的氧分压的增加而增大。采用柱塞式流动模型和Wagner氧渗透理论我们还对双相复合中空纤维膜的氧渗透过程进行了模拟,模拟结果和实测的相符合。
     第三章研究了Ni-BaZr0.1Ce0.7Y0.2O3-δ金属陶瓷中空纤维膜的氢分离性能。NiO-BZCY复合粉体采用柠檬酸法一步制备,制备的NiO-BZCY纤维膜生坯在还原气氛中直接烧结形成Ni-BZCY金属陶瓷膜。所得的中空纤维膜具有“三明治”结构,靠近内外表面是指状孔结构而中间部分是致密层。中空纤维膜的氢渗透率随着管外H2和管内吹扫气流量的增加而增加。由于膜管内有BaCO3的形成,中空纤维膜的氢渗透率与较厚的片状膜相当,为了增加纤维膜的氢分离性能,必须抑制BaCO3的产生。
     第四章采用相转化法制备出了管径小于0.2 cm的中空纤维膜阳极支撑体,在靠近膜的内外表面具有指状孔结构,为气体传输提供了通道。通过真空辅助浸渍技术制备了约为12μm厚的电解质薄膜。烧结后的NiO-YSZ/YSZ中空纤维管的三点弯曲强度是118.3 MPa,但是氢气还原后机械强度要降低一半左右。当采用H2(~3%H2O)作为燃料气体时,微管电池在600℃,700℃和800℃的最大输出功率密度分别是124,287,377 mW cm-2,且开路电压都在1.01 V以上。由于具有很高的堆积密度,这种中空纤维管固体氧化物燃料电池具有很大的实际应用潜力。
     第五章以YSZ中空纤维膜为电解质,在膜管内表面沉积催化剂Ni作为阳极层并在外层涂阴极制备了电解质支撑的微管SOFC。通过降低YSZ纤维膜的预烧温度,可以抑制指状孔烧结成闭气孔,能更有效的在孔内沉积Ni。这样制备的阳极膜与电解质层结合非常紧密,可以大大降低离子界面电阻并防止了阳极在运行过程中的剥落。制备的电解质支撑的微管SOFC,在600℃,700℃和800℃时的最大功率密度分别是28,78,146 mW cm-2。电池的机械强度在测试过程中一直保持很高,这一特点使电解质支撑的中空纤维管SOFC在未来的实际应用中具有很大的优势。
     第六章对La2Cu1-xNixO4+δ(0≤x≤1)体系的低频内耗进行了研究。体系具有正交的K2NiF4结构,随着Ni含量的增加,晶胞参数中a,b轴伸长,c轴收缩,且额外氧含量δ呈线形增加。低频内耗研究表明,x≤0.005时,样品在200 K和250 K左右存在两个弛豫内耗峰,分别是由单个间隙氧和氧对跳跃引起的。0.015≤x≤1时,体系的低温内耗峰消失,只存在一个高温内耗峰;并且x<0.2时,峰高随着x的增加慢慢升高,而当x>0.2时,峰高随着x的继续增加急剧下降,说明此时间隙氧发生了从一维有序向三位有序的转变,并随着x的增加,三维有序化能力增强。此外,样品从正交向四方相的转变温度随着Ni的增加向低温移动。
     第七章对本论文的工作进行了总结,并对陶瓷中空纤维膜今后的研究工作进行了展望。
Today, energy and environmental protection have become issues of common concern around the world. Oxide ceramic membrane materials have attracted much attention for their great potential applications in the chemical, metallurgy, energy, environmental protection and other areas. As the ceramic hollow fiber membrane has a small diameter, a thin wall and very large effective membrane area per unit volume, it has been studied extensively in recent years. This thesis mainly investigates the permeation performance of the ceramic hollow fiber membranes for oxygen or hydrogen separation, and the electrochemical properties of hollow fiber solid oxide fuel cells.
     Chapter 1 is the literature review. It briefly describes the definition and classification of membranes, as well as the preparation and applications of ceramic hollow fiber membranes. The research progress and problems of ceramic hollow fiber membranes are also intensively discussed.
     In Chapter 2, dense dual phase composite Bi1.5Y0.3Sm0.2O3-La0.8Sr0.2MnO3-δhollow fiber membrane was fabricated by the combined phase inversion/sintering technique. The hollow fiber membrane possessed an asymmetric structure. A finger-like porous structure was present on the inner side and a denser structure on the outer side of the hollow fiber membrane. An oxygen permeation flux 3.9×10-7 mol cm-2 s-1 was obtained at 850℃under a gradient of air/helium. The oxygen permeation flux increases with the helium sweeping rate, the length of the hollow fiber and the oxygen partial pressure on the feed side increasing. The oxygen permeation process was simulated by a plug flow model in combination with the Wagner theory. The simulation results were in fair agreement with the measured permeation data.
     In Chapter 3, the hydrogen permeation performance of Ni-BaZr0.1Ce0.7Y0.2O3-δdual phase composite metal-ceramic hollow fiber membrane was investigated. NiO-BZCY composite powders were prepared by the nitrate-citric method with one step. The as-prepared NiO-BZCY hollow fiber precursors were sintered in reducing atmosphere to get Ni-BZCY metal ceramic membrane. The hollow fiber membrane has a "sandwich" structure:finger-like structures were formed near both the inner and outer walls, but a sponge-like layer occured at the center of the fiber. The hydrogen permeation flux of the hollow fiber membrane increases with the hydrogen flow rate on the feed side and the argon sweeping rate increasing. As formation of BaCO3 in the membrane, the hydrogen permeation flux of the hollow fiber membrane is not larger than that of disc-shaped membrane with relative high thickness. Therefore, in order to increase the fiber membrane separation performance, the formation of BaCO3 must be inhibited.
     In Chapter 4, an anode hollow fiber of diameter 1.7 mm has been successfully fabricated using the phase inversion technique. The Ni-YSZ anode layer possesses large finger-like pores on both sides of the hollow-fiber membrane, which provides a convenient channel for transporting the fuel gas to the electrolyte. A 12-μm-thick dense YSZ electrolyte membrane was successfully coated on the anode hollow-fiber by vacuum assisted coating and co-sintering method. The three-point bending strength of sintered NiO-YSZ/YSZ hollow fiber may reach up to 118.3 MPa. However, after reduction by hydrogen gas, the mechanical strength of the resulted Ni-YSZ/YSZ hollow fiber would be reduced noticeably. The open circuit voltage (OCV) values are greater than 1.01 V and the maximum power densities reach 124, 287,377 mW cm-2 at 600,700 and 800℃, respectively, using wet H2 (~3%H2O) as fuel and static air as oxidant gas. As a result of high packing densities, this kind of anode-supported hollow-fiber SOFCs has a high potential for practical applications.
     In Chapter 5, an YSZ hollow fiber used for electrolyte membrane of SOFC has been prepared by the phase inversion and sintering method. The nickel anode was deposited into the YSZ electrolyte membrane from nickel nitrate solution. Appropriate sintering temperature can make nickel deposited into the finger-like pores near inner surface of the YSZ electrolyte membrane more effectively. The anode adheres very well to the electrolyte membrane, which can significantly reduce the ionic resistance. The maximum power densities of 28,78, and 146 mW cm-2 are achieved at 600,700 and 800℃, respectively. With further optimization of the electrolyte and anode layers, more improvements on output power of SOFC may be expected. In addition, the YSZ electrolyte-supported hollow fiber SOFC shows a high mechanical strength throughout the measurement process, which is beneficial for practical applications in the future.
     In Chapter 6, the low-frequency internal friction Q-1 and relative shear modulus M of La2Cu1-xNixO4+δ(0≤x≤1) compounds were measured. La2Cu1-xNixO4+δcompounds have an orthorhombic K2NiF4 structure. The unit cell parameters a and b slightly increase, whereas it is contrary for c with the nickel content increasing and the excess oxygenδincreases from 0.0132 to 0.1250. For x<0.005, there are two relaxation internal friction peaks around 200 and 250 K, which is due to the hopping of single interstitial O atoms and O pairs, respectively. The peak at low temperature is invisible for 0.015≤x≤1 and the peak height at high temperature decreases suddenly with the nickel content increasing at x≈0.2 (δ≈0.046), indicating the existence 3D ordering of interstitial oxygen. Moreover, the temperatures of O-T phase transition for La2Cu1-xNixO4+δdecrease with increasing the nickel content.
     In Chapter 7, the researches presented in this dissertation are evaluated and future work concerning the development of ceramic hollow fiber membranes is discussed.
引文
[1]邵宗平,熊国兴,杨维慎.铋基混合导体透氧陶瓷膜的研究进展.无机材料学报,2001,16(1):23-31.
    [2]孟广耀,彭定坤.无机膜新的工业革命[.自然杂志,1996,18:151-156.
    [3]Davison, J. Performance and costs of power plants with capture and storage of CO2. Energy, 2007,32:1163-1176.
    [4]M. Mulder.膜技术基本原理.李琳译.北京:清华大学出版社,1999.
    [5]K. H. Lee, Y.M. Kim. Asymmetric hollow inorganic membranes. Key Engineering Materials, 1991,61/62:17-22.
    [6]J. Smid, C.G. Avci, V. Gilnay, R. A. Terpstra, J. P. G. M. Van Eijk. Preparation and characterization of microporous ceramic hollow fiber membranes. Journal of Membrane Science,1996,112:85-90.
    [7]徐南平,邢卫红,赵宜江.无机膜分离技术与应用.北京:化学工业出版社,2003.
    [8]陈勇,王从厚,吴鸣.气体分离技术与应用.北京:化学工业出版社,2004.
    [9]刘茉娥等.膜分离技术.北京:化学工业出版社,1998.
    [10]S. Liu, X. Tan, Z. Shao, J. C. Diniz da Costa. Ba0.5Sr0.5Co0.8Fe0.2O3-α ceramic hollow-fiber membranes for oxygen permeation. AIChE Journal,2006,52:3452-3461.
    [11]S. Loeb, S. Sourirajan. Seawater demineralization by means of an osmotic membrane. Advances in Chemistry Series,1963,38:117-132.
    [12]李旭祥.分离膜制备与应用.北京:化学工业出版社,2004.
    [13]胡晓宇,梁海先,肖长发.中空纤维膜制备方法研究进展.高科技纤维与应用,2009,34(1):38-45.
    [14]Benjamin F.K. Kingsbury, K. Li. A morphological study of ceramic hollow fibre membranes. Journal of Membrane Science,2009,328:134-140.
    [15]Wei Li, Ting-Fang Tian, Feng-Yuan Shi, Yue-Song Wang, and Chu-Sheng Chen. Ce0.8Sm0.2O2-δ-La0.8Sr0.2MnO3-δ Dual-Phase Composite Hollow Fiber Membrane for Oxygen Separation. Industrial and Engineering Chemistry Research,2009,48,5789-5793.
    [16]S. Mok, D.J. Worsfold, A.E. Fouda, T. Matsuura, S. Wang, K. Chan. Study on the effect of spinning conditions and surface treatment on the geometry and performance of polymeric hollow-fibre membranes. Journal of Membrane Science,1995,100:183-192.
    [17]Tai-Homg Young, Leo-Wang Chen. Pore formation mechanism of membranes from phase inversion process. Desalination,1995,103:233-247.
    [18]Jean-Franc,ois Blanco, Julie Sublet, Quang Trong Nguyen, Pierre Schaetzel. Formation and morphology studies of different polysulfones-based membranes made by wet phase inversion process. Journal of Membrane Science,2006,283:27-37.
    [19]Naitao Yang, Xiaoyao Tan, Zifeng Ma. A phase inversion/sintering process to fabricate nickel/yttria-stabilized zirconia hollow fibers as the anode support for micro-tubular solid oxide fuel cells. Journal of Power Sources,2008,183:14-19.
    [20]M. Khayet. The efects of air gap length on the internal and external morphology of hollow fiber membranes. Chemical Engineering Science,2003,58:3091-3104.
    [21]M. Khayet, M.C. Garcia-Payo, F.A. Qusay, K.C. Khulbe, C.Y. Feng, T. Matsuura. Effects of gas gap type on structural morphology and performance of hollow fibers. Journal of Membrane Science,2008,311:259-269.
    [22]K. Li, Xiaoyao Tan, Yutie Liu. Single-step fabrication of ceramic hollow fibers for oxygen Permeation. Journal of Membrane Science,2006,272:1-5.
    [23]Xiaoyao Tan, Yutie Liu, K. Li. Preparation of LSCF Ceramic Hollow-Fiber Membranes for Oxygen Production by a Phase-Inversion/Sintering Technique. Industrial and Engineering Chemistry Research,2009,44:61-66.
    [24]Z.S. Li. Investigation, of the dynamics membrane formation by of poly (ether sulfone) membrane formation by precipitation immersion, Journal of Polymer Science Part B: Polymer Physics,2005,43 (5):498-510.
    [25]S.A. McKelvey, W.J. Koros, Phase separation, vitrification, and the manifestation of macrovoids in polymeric asymmetric membranes, Journal of Membrane Science,1996,112 (1):29-39.
    [26]J. Barzin, B. Sadatnia, Theoretical phase diagram calculation and membrane morphology evaluation for water/solvent/polyethersulfone systems, Polymer,2007,48 (6):1620-1631.
    [27]J. Ren, Z. Li, F.S.Wong, Membrane structure control of BTDA-TDI/MDI (P84) copolyimide asymmetric membranes by wet-phase inversion process, Journal of Membrane Science,2004, 241 (2):305-314.
    [28]K.W. Lee, B.K. Seo, S.T. Nam, M.J. Han, Trade-off between thermodynamic enhancement and kinetic hindrance during phase inversion in the preparation of polysulfone membranes, Desalination,2003,159 (3):289-296.
    [29]M.R. Pekny, J. Zartman,W.B. Krantz, A.R. Greenberg, P. Todd, Flow-visualization during macrovoid pore formation in dry-cast cellulose acetate membranes, Journal of Membrane Science,2003,211(1):71-90.
    [30]M.A. Frommer, R.M. Messalem, Mechanism of membrane formation. VI. Convective flows
    and large void formation during membrane precipitation, Industrial and Engineering Chemistry Production Research Development,12 (4) (1973) 328-333.
    [31]Shaomin Liu, Xiaoyao Tan, K. Li, R. Hughes. Preparation and characterisation of SrCe0.95Yb0.0503-δ hollow fibre membranes. Journal of Membrane Science,2001,193: 249-260.
    [32]Shaomin Liu, K. Li, R. Hughes. Preparation of SrCe0.94Yb0.05O3-δ perovskite for use as a membrane material in hollow fibre fabrication, Materials Research Bulletin,2004,39: 119-133.
    [33]Yutie Liu, K. Li. Preparation of SrCe0.95Yb0.05O3-δ hollow fibre membranes:Study on sintering processes. Journal of Membrane Science,2005.259:47-54.
    [34]Chiao ChienWei, Oi Yee Chen, Y. Liu, K. Li, Ceramic asymmetric hollow fibre membranes—One step fabrication Process, Journal of Membrane Science,2008,320: 191-197.
    [35]Y. Liu, Oi Yee Chen, Chiao Chien Wei, K. Li. Preparation of yttria-stabilised zirconia (YSZ) hollow fibre membranes. Desalination,2006,199:360-362.
    [36]Lihong Liu, Xiaoyao Tan, Shaomin Liu. Yttria Stabilized Zirconia Hollow Fiber Membranes. Journal of the American Ceramic Society,2006,89 [3]:1156-1159.
    [37]Sirichai Koonaphapdeelert, K. Li. Preparation and characterization of hydrophobic ceramic hollow fibre membrane. Journal of Membrane Science,2007,291:70-76.
    [38]Chiao Chien Wei, K. Li. Yttria-Stabilized Zirconia (YSZ)-Based Hollow Fiber Solid Oxide Fuel Cells. Industrial and Engineering Chemistry Research,2008,47:1506-1512.
    [39]Dongliang Wang, K. Li, W.K. Teo, Preparation of annular hollow fibre membranes, Journal of Membrane Science 2000,166:31-39.
    [40]Chun Cao, Tai-Shung Chung, Shing Bor Chen, ZhengJun Dong, The study of elongation and shear rates in spinning process and its efect on gas separation performance of Poly(ether sulfone) (PES) hollow fiber membranes, Chemical Engineering Science,2004,59:1053-1062.
    [41]Dong Fei Li, Tai-Shung Chung, Rong Wang, Ye Liu, Fabrication of fluoropolyimide/polyethersulfone (PES) dual-layer asymmetric hollow fiber membranes for gas separation, Journal of Membrane Science,2002,198:211-223.
    [42]Natalia Widjojo, Shaohua David Zhang, Tai Shung Chung, Ye Liu, Enhanced gas separation performance of dual-layer hollow fiber membranes via substructure resistance reduction using mixed matrix materials, Journal of Membrane Science,2007,306:147-158.
    [43]T. He, M.H.V. Mulder, H. Strathmann, M. Wessling, Preparation of composite hollow fiber membranes:co-extrusion of hydrophilic coatings onto porous hydrophobic support structures, Journal of Membrane Science,2002,207:143-156.
    [44]Nicolas Droushiotis, Mohd Hafiz Dzarfan Othman, Uttam Doraswami, Zhentao Wu, Geoff Kelsall, Kang Li, Novel co-extruded electrolyte-anode hollow fibres for solid oxide fuel cells, Electrochemistry Communications,2009,11:1799-1802.
    [45]P. N. Dyer, R. E. Richards, S. L. Russek, D. M. Taylor. Ion transport membrane technology for oxygen separation and syngas production. Solid State Ionics,2000,134:21-33.
    [46]Z. P. Shao, H. Dong, G. X. Xiong, Y. Gong, W. S. Yang. Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion. Journal of Membrane Science,2001,183:181-192.
    [47]S. P.S Badwal, F. T. Ciacchi. Ceramic membrane technologies for oxygen separation. Advanced Materials,2001,13:993-995.
    [48]C. S. Chen, S. J. Feng, S. Ran, D. C. Zhu, W. Liu, H. J. M. Bouwmeester. Conversion of methane to syngas by a membrane-based oxidation-reforming process. Angewandte Chemie International Edition,2003,115:5354-5356.
    [49]H. J. M. Bouwmeester. Dense ceramic membranes for methane conversion. Catalysis Today, 2003,82:141-150.
    [50]H. Wang, S. Werth, T. Schiestel, J. Caro. Perovskite hollow-fiber membranes for the production of oxygen-enriched air. Angewandte Chemie International Edition,2005,44: 69Q6-6909.
    [51]R.V. Jasra, N.V. Choudary, S.G.T. Baht, Separation of gases by pressure swing adsorption, Separation Science and Technology,1991,26 (7):885-930.
    [52]H.J.M. Bouwmeester, A.J. Burggraaf, Dense ceramic membranes for oxygen separation, in: A.J. Burggraaf, L. Cot (Eds.), Fundamentals of Inorganic Membrane Science and Technology, Elsevier Science B.V.,1996.
    [53]林祖纕等.快离子导体:固体电解质.上海:上海科学技术出版社,1985.
    [54]李伟.陶瓷中空纤维氧分离膜研究:[博士].合肥:中国科学技术大学博士学位论文,2009.
    [55]J.A. Kilner. Fast oxygen transport in acceptor doped oxides. Solid State Ionics,2000,129: 13-23.
    [56]R.F. Klie, Y. Ito, S. Stemmer, N.D. Browning. Observation of oxygen vacancy ordering and segregation in Perovskite oxides. Ultramicroscopy,2001,86:289-302.
    [57]Y. Teraoka, H. M. Zhang, S. Furukawa, N.Yamazoe. Oxygen permeation through perovksite-type oxides. Chemistry Letters,1985,11:1743-1746.
    [58]Y. Teraoka, T. Nobunaga, N. Yamazoe. Effect of Cation Substitution on the Oxygen Semipermeability of Perovskite-type Oxides. Chemistry Letters,1988,3:503-506.
    [59]Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura, N. Yamazoe. Influence of Constituent Metal Cations in Substituted LaCoO3 on Mixed Conductivity and Oxygen Permeability. Solid State Ionics,1991,48:207-212.
    [60]H. U. Anderson. Review of p-type doped perovskite materials for SOFC and other applications. Solid State Ionics,1992,52:33-41.
    [61]Y. Nigara, J. Mizusaki, M. Ishigame. Measurement of oxygen permeability in CeO2 doped CSZ. Solid State Ionics,1995,79:208-214.
    [62]H. Arashi, and H. Naito. Oxygen permeability in ZrO2-TiO2-Y2O3 system, Solid State Ionics, 1992,53-56:431-435.
    [63]G. Z. Cao. Electrical conductivity and oxygen semipermeability of terbia and yttria stabilized zirconia, Journal of Applied Electrochemistry,1994,24:1222-1227.
    [64]L. Qiu, T. H. Lee, L. M. Liu, Y. L Yang and A. J. Jacobson. Oxygen permeation studies of SrCo0.8Fe0.2O3-δ. Solid State Ionics,1995,76:321-329.
    [65]N. Itoh. T. Kato, K. Uchida and K. Haraya, Preparation of pore-free disk of La1-xSrxCoO3 mixed conductor and its oxygen permeability, Journal of Membrane Science,1994,92: 239-246.
    [66]V. V. Kharton, E. N. Naumovich, A. A. Vecher and A. V. Nikolaev, Oxide ion conduction in solid solutions Ln1-xSrxCoO3-δ (Ln=La, Pr, Nd), Journal of Solid State Chemistry,1995,120: 128-136.
    [67]H. W. Brinkman, H. Kruidhof and A. J. Burggraaf, Mixed conducting yttrium-barium-cobalt-oxide for high oxygen permeation, Solid State Ionics,1994,68: 173-176.
    [68]N. Sakai, T. Horita, H. Yokokawa, M. Dokiya and t. Kawada, Oxygen permeation measurement of La1-xCaxCrO3-δ by using an electrochemical method, Solid State Ionics,1996, 86-88:1273-1276.
    [69]T. Kawada, T. Horita, N. Sakai, H. Yokokawa and M. Dokiya, Experimental determina-tion of oxygen permeation flux through bulk and grain boundary of La0.7Ca0.3CrO3, Solid State Ionics,1995,79:201-207.
    [70]H. Yokokawa, N. Sakai, T. Kawada, M Dokiya. Chemical thermodynamic considerations in sintering of LaCrO3-based perovskite, Journal of the Electrochemical Society,1991,138: 1018-1027.
    [71]H. Iwahara, T. Esaka, T. Mangahara. Mixed conduction and oxygen permeation in the substituted oxides for CaTiO3, Journal of Applied Electrochemistry,1988,18:173-177.
    [72]S. Xie, W. Liu, K. Wu, P. H. Yang, G. Y. Meng and C. S. Chen, Mixed oxygen ionic and electronic conduction in CaFe0.2Ti0.8O3:a combined oxygen permeation and electrical conductivity study, Solid State Ionics,1999,118:23-28.
    [73]Z.P. Shao, W.S. Yang, Y. Cong, H. Dong, J.H. Tong, G.X. Xiong, Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane, Journal of Membrane Science,2000,172:177-188.
    [74]S.M. Liu, G.R. Gavalas, Oxygen selective ceramic hollow fiber membranes, Journal of Membrane Science,2004,246:103-108.
    [75]B.C.H. Steele, Oxygen ion conductors and their technological applications, Materials Science and Engineering B,1992,13:79-87.
    [76]Licia Minervini, Robin W. Grimes, John A. Kilner, Kurt E. Sickafus. Oxygen migration in La2NiO4+δ. Journal of Materials Chemistry,2000,10:2349-2354.
    [77]M. Schroeder, M.-A. Dragan. Oxygen transport in La2-xSrxNiO4+δ.membrane permeation and defect chemical modeling. Journal of Membrane Science,2007,42:1972-1983.
    [78]V.V. Kharton, A.A. Yaremchenko, E.V. Tsipis, A.A. Valente, M.V. Patrakeev, A.L. Shaula, J.R. Frade, J. Rocha, Characterization of mixed-conducting La2Ni0.9Co0.1O4+δ membranes for dry methane oxidation. Applied Catalysis A:General,2004,261:25-35.
    [79]Cheng Li, Guiyu Yu, Nanru Yang. Supported dense oxygen permeating membrane of mixed conductor La2Ni0.8Fe0.204+δ prepared by sol-gel method. Separation and Purification Technology,2003,32:335-339.
    [80]Shogo Miyoshi, Tetsuro Furuno, Hiroshige Matsumoto, Tatsumi Ishihara. Conductivity and oxygen permeability of a novel oxide Pr2Ni0.8-xCu0.2FexO4 and its application to partial oxidation of CH4. Solid State Ionics,2006,177:2269-2273.
    [81]Tatsumi Ishihara, Shogo Miyoshi, Tetsuro Furuno, Oravan Sangoanruang, Hiroshige Matsumbto, Mixed conductivity and oxygen permeability of doped Pr2Ni04-based oxide, Solid State Ionics,2006,17,3087-3091.
    [82]C.S. Chen, W. Liu, S. Xie, G.G. Zhang, H. Liu, G.Y. Meng, D.K. Peng, A Novel Intermediate-Temperature Oxygen-Permeable Membrane Based on the High Tc Superconductor Bi2Sr2CaCu208. Advanced Materials,2000,15:1132-1134.
    [83]C.S. Chen, S. Ran, W. Liu, P.H. Yang, D.K. Peng, H.J.M. Boumeester, YBa2Cu3O6+δ as Oxygen Separation Membrane, Angew. Chim. Int. Ed.,2001,40:784-786.
    [84]T. J. Mazanec, T. L. Cable and J. G. Frye, Electrocatalytic cells for chemical reaction, Solid State Ionics,1992,53-56:111-118.
    [85]C. S. Chen, A. J. Burggraaf, Stabilized bismuth oxide-noble metal mixed conducting composites as high temperature oxygen separation membranes, Journal of Applied Electrochemistry,1999,29:355-360.
    [86]K. Wu, S. Xie, G. S. Jiang, W. Liu, C.S. Chen, Oxygen permeation through (Bi2O3)0.74(SrO)0.26-Ag (40%v/o) composite, Journal of Membrane Science,2001,188: 189-193.
    [87]Jinsoo Kim, Y. S. Lin. Synthesis and oxygen permeation properties of ceramic-metal dual-phase membranes. Journal of Membrane Science,2000,167:123-133.
    [88]K. Q. Huang, M. Schroeder, J.B. Goodenough, Oxygen permeation through composite oxide-ion and electronic conductors, Electrochemical and Solid-State Letters,1999,2: 375-378.
    [89]V.V. Kharton, A.V. Kovalevsky, A.P. Viskup, A.L. Shaula, F.M. Figueiredo, E.N. Naumovich, F.M.B. Marques, Oxygen transport in Ce0.8Gd0.2O2-δ-based composite membranes, Solid State Ionics,2003,160:247-258.
    [90]A.L. Shaula, V.V. Kharton, F.M.B. Marques, Phase interaction and oxygen transport in La0.8Sr0.2Fe0.8Co0.2O3-(La0.9Sr0.1)o.98Gao.8Mgo.203 composites, Journal of the European Ceramic Society,2004,24:2631-2639.
    [91]Wei Li, Jian-Jun Liu, Chu-Sheng Chen, Hollow fiber membrane of yttrium-stabilized zirconia and strontium-doped lanthanum manganite dual-phase composite for oxygen separation, Journal of Membrane Science,2009,340:266-271.
    [92]U. Nigge, H.-D. Wiemhofer, E.W.J. Romer, H.J.M. Bouwmeester, T.R. Schulte, Composites of Ceo.8Gd0.2O1.9 and Gdo.7Cao.3CoO3-δ as oxygen permeable membranes for exhaust gas sensors, Solid State Ionics,2002,146:163-174.
    [93]H. Takamura, K. Okumura, Y. Koshino, A. Kamegawa, M. Okada, Oxygen permeation properties of Ceria-Ferrite-Based composites, Journal of Electroceramics,2004,13: 613-618.
    [94]H. Takamura, T. Kobayashi, T. Kasahara, A. Kamegawa, M. Okada, Oxygen permeation and methane reforming properties of ceria-based composite membranes, Journal of Alloys and Compounds,2006,408-412:1084-1089.
    [95]Jianxin Yi, Yanbo Zuo, Wei Liu, Louis Winnubst, Chusheng Chen, Oxygen permeation through a Ce0.8Sm0.2O2-δLa0.8Sr0.2Cr3-δ dual-phase composite membrane, Journal of Membrane Science,2006,280:849-855.
    [96]Bo Wang, Min-chuan Zhan, De-chun Zhu, Chu-sheng Chen, Oxygen permeation and stability of Zr0.8Y0.2O0.9(?)La0.8Sr0.2CrO3-δ dual-phase composite, Journal of Solid State Electrochemistry,2006,10:625-628.
    [97]Christof Hamel, Andreas Seidel-Morgenstern, Thomas Schiestel, Steffen Werth, Haihui Wang, Cristina Tablet, Jurgen Caro, Experimental and Modeling Study of the O2-Enrichment by Perovskite Fibers, AIChE Journal,2006,52:3118-3125.
    [98]J. Haggin, Direct conversion of methane to fuels, chemicals still intensely sought, Chemical and Engineering News,1992,70:33-35.
    [99]T. Sundset, J. Sogge, T. Str(?)m, Evaluation of natural gas based synthesis gas production technologies, Catalysis Today,1994,21:269-278.
    [100]R. Bredesen, F. Mertins, T. Norby, Measurements of surface kinetics and chemical diffusion in dense oxygen selective membranes, Catalysis Today,2000,56:315-324.
    [101]U. Balachandran, J.T. Dusek, R.L. Mieville, Dense ceramic membranes for partial oxidation of methane to syngas, Applied Catalysis A,1995,133:19-29.
    [102]Subhash C Singhal, Kevin Kendall. High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, New York, Elsevier,2003.
    [103]J. Luyten, A. Buekenhoudt, W. Adriansens, J. Cooymans, H. Weyten, F. Servaes, R. Leysen. Preparation of LaSrCoFeO3-x membranes. Solid State Ionics,2000,135:637-642.
    [104]谭小耀,孟波,杨乃涛.陶瓷中空纤维透氧膜的制备与性能.无机材料学报,2006,21:245-249.
    [105]Zhigang Wang, Naitao Yang, Bo Meng, Xiaoyao Tan, Kang Li. Preparation and Oxygen Permeation Properties of Highly Asymmetric La0.6Sr0.4Co0.2Fe0.8O3-α Perovskite Hollow-Fiber Membranes. Industrial and Engineering Chemistry Research,2009,48: 510-516.
    [106]Hua Liu, Xiaoyao Tan, Zhaobao Pang, J.C. Diniz da Costa, Gao Qing Lu, Shaomin Liu, Novel dual structured mixed conducting ceramic hollow fibre membranes, Separation and Purification Technology,2008,63:243-247.
    [107]Hua Liu, Zhaobao Pang, Xiaoyao Tan, Z. Shao, J. Sunarso, R. Ding, S. Liu. Enhanced oxygen permeation through perovskite hollow fibre membranes by methane activation. Ceramics International,2008,35:1435-1439.
    [108]谭小耀,杨乃涛,孟波,孟秀霞.中空纤维陶瓷透氧膜反应器.山东理工大学学报(自然科学版),2006,20:1-4.
    [109]Xiaoyao Tan, Yutie Liu, and K. Li, Mixed Conducting Ceramic Hollow-Fiber Membranes for Air Separation, AIChE Journal,2005,51,1991-2000.
    [110]Xiaoyao Tan and K. Li. Oxygen Production Using Dense Ceramic Hollow Fiber Membrane Modules with Different Operating Modes. AIChE Journal,2007,53,838-845.
    [111]Xiaoyao Tan, Zhaobao Pang, K. Li. Oxygen production using La0.6Sr0.4Co0.2Fe0.8O3-α (LSCF) perovskite hollow fibre membrane modules. Journal of Membrane Science,2008, 310:550-556.
    [112]Alan Thursfield, Ian S. Metcalfe, Air separation using a catalytically modified mixed, conducting ceramic hollow fibre membrane module. Journal of Membrane Science,2007, 288:175-187.
    [113]Xiaoyao Tan and K. Li, Oxidative Coupling of Methane in a Perovskite Hollow-Fiber Membrane Reactor, Industrial and Engineering Chemistry Research,2006,45:142-149.
    [114]Xiaoyao Tan, K. Li, A. Thursfield, I.S. Metcalfe, Oxyfuel combustion using a catalytic ceramic membrane reactor, Catalysis Today,2008,131:292-304.
    [115]Xiaoyao Tan, Zhaobao Pang, Zi Gu, Shaomin Liu. Catalytic perovskite hollow fibre membrane reactors for methane oxidative coupling. Journal of Membrane Science,2007,302: 109-114.
    [116]Xiaoyao Tan, K. Li. Design of Mixed Conducting Ceramic Membranes/Reactors for the Partial Oxidation of Methane to Syngas. AIChE Journal,2009,55,2675-2685.
    [117]T. Schiestel, M. Kilgus, S. Peter, K.J. Caspary, H. Wang, J. Caro. Hollow fibre perovskite membranes for oxygen separation. Journal of Membrane Science,2005,258:1-4.
    [118]Cristina Tablet, Gerd Grubert, Haihui Wang, Thomas Schiestel, Michael Schroeder, Bernd Langanke, Jurgen Caro. Oxygen permeation study of perovskite hollow fiber membranes, Catalysis Today,2005,104:126-130.
    [119]Haihui Wang, Thomas Schiestel, Cristina Tablet, Michael Schroeder, Jurgen Caro. Mixed oxygen ion and electron conducting hollow fiber membranes for oxygen separation. Solid State Ionics,2006,177:2255-2259.
    [120]Haihui Wang, Cristina Tablet, Juergen Caro. Oxygen production at low temperature using dense perovskite hollow fiber membranes. Journal of Membrane Science,2008,322: 214-217.
    [121]Haihui Wang, Peter Kolsch, Thomas Schiestel, Cristina Tablet, Steffen Werth, Jurgen Caro. Production of high-purity oxygen by perovskite hollow fiber membranes swept with steam. Journal of Membrane Science,2006,284:5-8.
    [122]Haihui Wang, Cristina Tablet, Thomas Schiestel, Steffen Werth, Jurgen Caro. Partial oxidation of methane to syngas in a perovskite hollow fiber membrane reactor. Catalysis Communications,2006,7:907-912.
    [123]Haihui Wang, Armin Feldhoff, Jurgen Caro, Thomas Schiestel, Steffen Werth. Oxygen Selective Ceramic Hollow Fiber Membranes for Partial Oxidation of Methane. AIChE Journal,2009,55,2657-2664.
    [124]Alexandra Kleinert, Armin Feldhoff, Thomas Schiestel, Jurgen Caro. Novel hollow fibre membrane reactor for the partial oxidation of methane. Catalysis Today,2006,118:44-51.
    [125]Haihui Wang, Cristina Tablet, Thomas Schiestel, Jurgen Caro. Hollow fiber membrane reactors for the oxidative activation of ethane, Catalysis Today,2006,118:98-103.
    [126]Heqing Jiang, HaihuiWang, Fangyi Liang, SteffenWerth, Thomas Schiestel, Jurgen Caro. Direct Decomposition of Nitrous Oxide to Nitrogen by In Situ Oxygen Removal with a Perovskite Membrane. Angewandte Chemie International Edition,2009,48,1-5.
    [127]Heqing Jiang, Haihui Wang, Steffen Werth, Thomas Schiestel, Jurgen Caro. Simultaneous Production of Hydrogen and Synthesis Gas by Combining Water Splitting with Partial Oxidation of Methane in a Hollow-Fiber Membrane Reactor. Angewandte Chemie International Edition,2008,47:9341-9344.
    [128]A. Leo, S. Liu, J.C. Diniz da Costa, Z. Shao. Oxygen permeation through perovskite membranes and the improvement of oxygen flux by surface modification. Science and Technology of Advanced Materials,2006,7:819-825.
    [129]李伟,刘建军,左艳波,陈初升.(SrCo0.8Fe0.2O3-δ)0.9(SrZrO3)0.1中空纤维膜制备和氧分离性能研究.中国科学技术大学学报,2008,38:620-632.
    [130]Yutie Liu, Xiaoyao Tan, K. Li. SrCe0.95Yb0.05O3-α Hollow-Fiber Membrane and Its Property in Proton Conduction. AIChE Journal,2006,52:1577-1585.
    [131]Yutie Liu, Xiaoyao Tan, K. Li. SrCe0.95Yb0.05O3-α (SCYb) hollow fibre membrane: Preparation, characterization and performance. Journal of Membrane Science,2006,283: 380-385.
    [132]Yutie Liu, Xiaoyao Tan, K. Li. Nonoxidative Methane Coupling in a SrCe0.95Yb0.05O3-α (SCYb) Hollow Fiber Membrane Reactor. Industrial and Engineering Chemistry Research, 2006,45:3782-3790.
    [1]R.V. Jasra, N.V. Choudary, S.G.T. Baht, Separation of gases by pressure swing adsorption, Separation Science and Technology,1991,26 (7):885-930.
    [2]Y. Teraoka, H. M. Zhang, S. Furukawa, N. Yamazoe, Oxygen permation through perovskite-type oxides, Chemistry Letters,1985,14:1743-1746.
    [3]S.M. Liu, G.R. Gavalas, Oxygen selective ceramic hollow fiber membranes, Journal of Membrane Science,2004,246:103-108.
    [4]S. P.S Badwal, F. T. Ciacchi, Ceramic membrane technologies for oxygen separation. Advanced Materials,2001,13:993-995.
    [5]H. Wang, P. Kolsch, T. Schiestel, C. Tablet, S. Werth and J. Caro, Production of high-purity oxygen by perovskite hollow fiber membranes swept with steam, Journal of Membrane Science,2006,284:5-8.
    [6]U. Balachandran, J.T. Dusek, R.L. Mieville, Dense ceramic membranes for partial oxidation of methane to syngas, Applied Catalysis A,1995,133:19-29.
    [7]T. J. Mazanec, T. L. Cable and J. G. Frye, Electrocatalytic cells for chemical reaction, Solid State Ionics,1992,53-56:111-118.
    [8]H. J. M. Bouwmeester, Dense ceramic membranes for methane conversion. Catalysis Today, 2003,82:141-150.
    [9]Christof Hamel, Andreas Seidel-Morgenstern, Thomas Schiestel, Steffen Werth, Haihui Wang, Cristina Tablet, Jurgen Caro, Experimental and Modeling Study of the O2-Enrichment by Perovskite Fibers, AIChE Journal,2006,52:3118-3125.
    [10]J. Luyten, A. Buekenhoudt, W. Adriansens, J. Cooymans, H. Weyten, F. Servaes, R. Leysen, Preparation of LaSrCoFeO3-x membranes, Solid State Ionics,2000,135:637-642.
    [11]T. Schiestel, M. Kilgus, S. Peter, K.J. Caspary, H. Wang, J. Caro, Hollow fibre perovskite membranes for oxygen separation, Journal of Membrane Science,2005,258:1-4.
    [12]Xiaoyao Tan, Zhaobao Pang, K. Li. Oxygen production using La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) perovskite hollow fiber membrane modules. Journal of Membrane Science,2008,310: 550-556.
    [13]Z.P. Shao, W.S. Yang, Y. Cong, H. Dong, J.H. Tong, G.X. Xiong, Investigation of the permeation behavior and stability of a Bao.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane, Journal of Membrane Science,2000,172:177-188.
    [14]S. Liu, X. Tan, Z. Shao, J. C. Diniz da Costa, Ba0.5Sr0.5Co0.8Fe0.2O3-δ ceramic hollow-fiber membranes for oxygen permeation, AIChE Journal,2006,52:3452-3461.
    [15]L. Qiu, T.H. Lee, L.-M. Liu, Y.L. Yang and A.J. Jacobson, Oxygen permeation studies of SrCo0.8Fe0.2O3-δ, Solid State Ionics,1995,76:321-329.
    [16]Bo Wang, Jianxin Yi, Louis Winnubst, Chusheng Chena. Stability and oxygen permeation behavior of Ce0.8Sm0.2O2-δ-La0.8Sr0.2CrO3-δ composite membrane under large oxygen partial pressure gradients, Journal of Membrane Science,2006,286:22-25.
    [17]Wei Li, Jian-Jun Liu, Chu-Sheng Chen, Hollow fiber membrane of yttrium-stabilized zirconia and strontium-doped lanthanum manganite dual-phase composite for oxygen separation, Journal of Membrane Science,2009,340:266-271.
    [18]Wei Li, Ting-Fang Tian, Feng-Yuan Shi, Yue-Song Wang, and Chu-Sheng Chen, Ce0.8Sm0.2O2-δ-La0.8Sr0.2MnO3-δ Dual-Phase Composite Hollow Fiber Membrane for Oxygen Separation. Industrial and Engineering Chemistry Research,2009,48,5789-5793.
    [19]J.C. Boivin and G. Mairesse, Recent Material Developments in Fast Oxide Ion conductors, Chemistry of Materials,1998,10:2870-2888.
    [20]J. Kim and Y.S. Lin, Synthesis and oxygen permeation properties ceramic-metal dual-phase membranes, Journal of Membrane Science,2000,167:123-133.
    [21]C.S. Chen, H. Kruidhof, H.J.M. Bouwmeester, H. Verweij and A.J. Burggraaf, Oxygen permeation through oxygen ion oxide-noble metal dual phase composites, Solid State Ionics, 1996,86-88:569-572.
    [22]A. Atkinson, S. Barnett, R. J. Gorte, J.T.S. Irvine, A. J. Mcevoy, M. Mogensen, S. C. Singhal, J.Vohs, Advanced anodes for high-temperature fuel cells, Nature Materials,2004,3: 17-27.
    [23]Bernard A. Boukamp, The amazing perovskite anode, Nature Materials,2003,2:294-296.
    [24]X. Wu, C. Yang, C. Chen and W. Liu, Oxygen permeation through a Bi1.5Y0.3Sm0.2O3-La0.8Sr0.2MnO3-δ dual-phase composite membrane, Proc.9th Int. conf. on Inorganic Membranes, Lillehammer-Norway,2006.
    [25]B. F.K. Kingsbury and K. Li, A morphological study of ceramic hollow fiber membranes, Journal of Membrane Science,2009,328:134-140.
    [26]李伟.陶瓷中空纤维氧分离膜研究:[博士].合肥:中国科学技术大学博士学位论文,2009.
    [27]李伟,刘建军,左艳波,陈初升.(SrCo0.8Fe0.2O3-δ)0.9(SrZrO3)0.1中空纤维膜制备和氧分离性能研究.中国科学技术大学学报,2008,38:620-632.
    [1]Sushil Adhikari and Sandun Fernando, Hydrogen membrane separation techniques, Industrial and Engineering Chemistry Research,2006,45:875-881.
    [2]M. Conte, A. Iacobazzi, M. Ronchetti, R. Vellone, Hydrogen economy for a sustainable development:state-of-the-art and technological perspectives, Journal of Power Sources,100 (2001) 171-187.
    [3]D. Kennedy, The Hydrogen Solution, science,305 (2004) 917.
    [4]J. A. Turner, Sustainable Hydrogen Production, Science,305 (2004) 972-974.
    [5]J. A. Ritter, A. D. Ebner, State-of-the-art adsorption and membrane separation processes for hydrogen production in the chemical and petrochemical industries, Separation Science and Technology,2007,42:1123-1193.
    [6]S. Sircar, T. C. Golden, Purification of hydrogen by pressure swing adsorption. Separation Science and Technology,2000,35,667-687.
    [7]A. B. Hinchliffe, K. E. Porter, A comparison of membrane separation and distillation. Chemical Engineering Research and Design,2000,78,255-268.
    [8]H. Iwahara, Y. Asakura, K. Katahira, M. Tanaka, Prospect of hydrogen technology using proton-conducting ceramics, Solid State Ionics,2004,168:299-310.
    [9]R. V. Siriwardane, J. A. Poston Jr., E. P. Fisher, T. H. Lee, S E. Dorris, U. Balachandran, Characterization of ceramic hydrogen separation membranes with varying nickel concentrations, Applied Surface Science,2000,167:34-50.
    [10]Gong Zhang, Stephen Dorris, Uthamalingam Balachandran, and Meilin Liu, Effect of Pd coating on hydrogen permeation of Ni-barium cerate mixed conductor, Electrochemical and Solid-State Letters,2002,5:J5-J7.
    [11]Gong Zhang, Stephen Dorris, Uthamalingam Balachandran,'and Meilin Liu, Interfacial resistances of Ni-BCY mixed-conducting membranes for hydrogen separation, Solid State Ionics,2003,159:121-134.
    [12]S. V. Bhide, A. V. Virkar, Stability of BaCeO3-based proton conductors in water-containing atmospheres, Journal of the Electrochemical Society,1999,146:2038-2044.
    [13]C. W. Tanner, A. V. Virkar, Instability of BaCeO3 in H2O-Containing atmospheres, Journal of The Electrochemical Society,1996,143:1386-1389.
    [14]Atsuko Tomita, Kiyoka Tsunekawa, Takashi Hibino, Shinya Teranishi, Yuki Tachi, Mitsuru Sano, Chemical and redox stabilities of a solid oxide fuel cell with BaCe0.8Y0.2O3-a
    functioning as an electrolyte and as an anode, Solid State Ionics,2006,177:2951-2956.
    [15]N. Zakowsky, S. Williamson, J. T. S. Irvine, Elaboration of CO2 tolerance limits of BaCe0.9Y0.1O3-δ electrolytes for fuel cells and other applications, Solid State Ionics,2005, 176:3019-3026.
    [16]K. D. Kreuer, Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides, Solid State Ionics 1999,125:285-302.
    [17]T. Schober, H. G. Bohn, Water vapor solubility and electrochemical characterization of the high temperature proton conductor BaZr0.9Y0.1O2.95, Solid State Ionics 2000,127:351-360.
    [18]Chendong Zuo, T. H. Lee, S.-J. Song, L. Chen, S. E. Dorris, U. Balachandran, and Meilin Liu, Hydrogen permeation and chemical stability of cermet [Ni-Ba(Zr0.8-xCexY0.2)O3] membranes, Electrochemical and Solid State Letters,2005,8:J35-J37.
    [19]C. D. Zuo, S. E. Dorris, U. Balachandran, M. L. Liu, Effect of Zr-doping on the chemical stability and hydrogen permeation of the Ni-BaCe0.8Y0.2O3-α mixed protonic-electronic conductor, Chemistry of Materials,2006,18:4647-4650.
    [20]C. D. Zuo, T. H. Lee, S. E. Dorris, U. Balachandran, M. L. Liu, Composite Ni-Ba(Zr0.1Ce0.7Y0.2)O3 membrane for hydrogen separation", Journal of Power Sources, 2006,159:1291-1295.
    [21]杨静,方曙民,吴修胜,陈初升,刘卫,Ni-BaCe0.9Y0.1O3-δ金属陶瓷的氢渗透性能研究,无机材料学报,2007,22,1423-1426.
    [22]Shumin Fang, Lei Bi, XiushengWu, Haiying Gao, Chusheng Chen,Wei Liu, Chemical stability and hydrogen permeation performance of Ni-BaZr0.1Ce0.7Y0.2O3-δ in an H2S-containing atmosphere, Journal of Power Sources,2008,183:126-132.
    [23]Shumin Fang, Lei Bi, Chunli Yang, Litao Yan, Chusheng Chen,Wei Liu, H2S poisoning and regeneration of Ni-BaZr0.1Ce0.7Y0.2O3-δ at intermediate temperature, Journal of Alloys and Compounds,2009,475:935-939.
    [24]Xiaoyao Tan, Yutie Liu, and K. Li, Mixed Conducting Ceramic Hollow-Fiber Membranes for Air Separation, AIChE Journal,2005,51,1991-2000.
    [25]T. Schiestel, M. Kilgus, S. Peter, K.J. Caspary, H. Wang, J. Caro, Hollow fibre perovskite membranes for oxygen separation, Journal of Membrane Science,2005,258:1-4.
    [26]Shaomin Liu, George R. Gavalas, Oxygen selective ceramic hollow fiber membranes, Journal of Membrane Science,2005,246:103-108.
    [27]Yutie Liu, Xiaoyao Tan, K. Li. SrCe0.95Yb0.05O3-α Hollow-Fiber Membrane and Its Property in Proton Conduction. AIChE Journal,2006,52:1577-1585.
    [28]B. F.K. Kingsbury and K. Li, A morphological study of ceramic hollow fiber membranes, Journal of Membrane Science,2009,328:134-140.
    [1]Steele B C H, Heinzel A. Materials for fuel-cell technologies. Nature,2001,414(15): 345-352.
    [2]Hibino T, Hashimoto A, Inoue T, Tokuno J, Yoshida S, Sano M. Low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures. Science,2000,288(16):2031-2033.
    [3]Shao Z P, Haile S M. A high-performance cathode for the next generation of solid-oxide fuel. Nature,2004,431(9):170-173.
    [4]Zhan Z L, Barnett S A. An octane-fueled solid oxide fuel cell. Science,2005,308:844-847.
    [5]Toshio Suzuki, Toshiaki Yamaguchi, Yoshinobu Fujishiro, Masanobu Awano. Fabrication and characterization of micro tubular SOFCs for operation in the intermediate temperature. Journal of Power Sources,2006,160:73-77.
    [6]A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine, A. J. Mcevoy, M. Mogensen, Advanced anodes for high-temperature fuel cells, Nature Materials,2004,3:17-27.
    [7]Sammes N M, Du Y, Bove R. Design and fabrication of a 100 W anode supported micro-tubular SOFC stack. Journal of Power Sources,2005,145:428-434.
    [8]Raymond J. Gorte, Seungdoo Park, John M. Vohs, and Conghua Wang, Anodes for Direct Oxidation of Dry Hydrocarbons in a Solid-Oxide Fuel Cell, Advanced Materials,2000,12: 1465-1469.
    [9]Shanwen Tao, John T. S. Irvine, John A. Kilner, An Efficient Solid Oxide Fuel Cell Based upon Single-Phase Perovskites, Advanced Materials,2005,17:1734-1737.
    [10]N.Q. Minh, T. Takahashi. Science and Technology of Ceramic Fuel Cells. Amsterdam, Elsevier,1995.
    [11]Shanwen Tao, John T. S. Irvine, A redox-stable efficient anode for solid-oxide fuel cells, Nature Materials,2003,2:320-323.
    [12]Jiao Ding, Jiang Liu, An anode-supported solid oxide fuel cell with spray-coated yttria-stabilized zirconia (YSZ) electrolyte film, Solid State Ionics,2008,179:1246-1249.
    [13]Bernard A. Boukamp, The amazing perovskite anode, Nature Materials,2003,2:294-296.
    [14]周利,程谟杰,衣宝廉.管型固体氧化物燃料电池技术进展.电池,2005,35(1):63-65.
    [15]Y. Liu, S. I. Hashimoto, H. Nishino, K. Takei, M. Mori, T. Suzuki, Y. Funahashi, Fabrication and characterization of micro-tubular cathode-supported SOFC for intermediate temperature operation, Journal of Power Sources,2007,174:95-102.
    [16]Ali Volkan Akkaya, Electrochemical model for performance analysis of a tubular SOFC, International Journal of Energy Research,2007,31:79-98.
    [17]Junxi Jia, Renqiu Jiang, Shengqiang Shen, Abuliti Abudula, Effect of Operation Parameters on Performance of Tubular Solid Oxide Fuel Cell, Environmental and Energy Engineering, 2008,54:554-564.
    [18]Ota T, Kayama M, Wen C J, Yamada K, Takahashi H. Object-based modeling of SOFC system:Dynamic behavior of micro-tube SOFC. Journal of Power Sources,2003,118: 430-439.
    [19]Sammes N M, Du Y, Bove R. Design and fabrication of a 100 W anode supported micro-tubular SOFC stack. Journal of Power Sources,2005,145:428-434.
    [20]Suzuki T, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M. Fabrication and characterization of micro tubular SOFCs for advanced ceramic reactors. Journal of Alloys and Compounds, 2008,451:632-635.
    [21]Liu Y, Mori M, Funahashi Y, Fujishiro Y, Hirano A. Development of micro-tubular SOFCs with an improved performance via nano-Ag impregnation for intermediate temperature operation. Electrochemistry Communications,2007,9:1918-1923.
    [22]S. C. Singhal, K. Kendall, High temperature solid oxide fuel cells:fundamentals, design and applications, Elsevier, New York,2003, pp.219.
    [23]Toshiaki Yamaguchi, Sota Shimizu, Toshio Suzuki, Yoshinobu Fujishiro, Masanobu Awano, Fabrication and evaluation of cathode-supported small scale SOFCs, Materials Letters,2008, 62:1518-1520.
    [24]Y. Funahashi, T. Shimamori, T. Suzuki, Y. Fujishiro, M. Awano, Fabrication and characterization of components for cube shaped micro tubular SOFC bundle, Journal of Power Sources,2007,163:731-736.
    [25]Chiao Chien Wei and K. Li. Yttria-Stabilized Zirconia (YSZ)-Based Hollow Fiber Solid Oxide Fuel Cells. Industrial and Engineering Chemistry Research,47 (2008) 1506-1512.
    [26]Naitao Yanga, Xiaoyao Tan, Zifeng Maa. A phase inversion/sintering process to fabricate nickel/yttria-stabilized zirconia hollow fibers as the anode support for micro-tubular solid oxide fuel cells. Journal of Power Sources,2008,183:14-19.
    [27]Changrong Xia, Meilin Liu, Novel Cathodes for Low-Temperature Solid Oxide Fuel Cells, Advanced Materials,2002,14:521-523.
    [28]T. Suzuki, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, M. Awano, Anode-supported micro tubular SOFCs for advanced ceramic reactor system, Journal of Power Sources,2007,171: 92-95.
    [1]Steele B C H, Heinzel A. Materials for fuel-cell technologies. Nature,2001,414(15): 345-352.
    [2]Hibino T, Hashimoto A, Inoue T, Tokuno J, Yoshida S, Sano M. Low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures. Science,2000,288(16):2031-2033.
    [3]Shao Z P, Haile S M. A high-performance cathode for the next generation of solid-oxide fuel. Nature,2004,431(9):170-173.
    [4]Zhan Z L, Barnett S A. An octane-fueled solid oxide fuel cell. Science,2005,308:844-847.
    [5]A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine, A. J. Mcevoy, M. Mogensen, Advanced anodes for high-temperature fuel cells, Nature Materials,2004,3:17-27.
    [6]Raymond J. Gorte, Seungdoo Park, John M. Vohs, and Conghua Wang, Anodes for Direct Oxidation of Dry Hydrocarbons in a Solid-Oxide Fuel Cell, Advanced Materials,2000,12: 1465-1469.
    [7]Shanwen Tao, John T. S. Irvine, John A. Kilner, An Efficient Solid Oxide Fuel Cell Based upon Single-Phase Perovskites, Advanced Materials,2005,17:1734-1737.
    [8]N.Q. Minh, T. Takahashi. Science and Technology of Ceramic Fuel Cells. Amsterdam, Elsevier,1995.
    [9]Shanwen Tao, John T. S. Irvine, A redox-stable efficient anode for solid-oxide fuel cells, Nature Materials,2003,2:320-323.
    [10]Bernard A. Boukamp, The amazing perovskite anode, Nature Materials,2003,2:294-296.
    [11]周利,程谟杰,衣宝廉.管型固体氧化物燃料电池技术进展.电池,2005,35(1):63-65.
    [12]Ali Volkan Akkaya, Electrochemical model for performance analysis of a tubular SOFC, International Journal of Energy Research,2007,31:79-98.
    [13]Junxi Jia, Renqiu Jiang, Shengqiang Shen, Abuliti Abudula, Effect of Operation Parameters on Performance of Tubular Solid Oxide Fuel Cell, Environmental and Energy Engineering, 2008,54:554-564.
    [14]Toshio Suzuki, Toshiaki Yamaguchi, Yoshinobu Fujishiro, Masanobu Awano. Fabrication and characterization of micro tubular SOFCs for operation in the intermediate temperature. Journal of Power Sources,2006,160:73-77.
    [15]Sammes N M, Du Y, Bove R. Design and fabrication of a 100 W anode supported micro-tubular SOFC stack. Journal of Power Sources,2005,145:428-434.
    [16]Subhash C Singhal, Kevin Kendall. High Temperature Solid Oxide Fuel Cells:Fundamentals,
    Design and Applications, New York, Elsevier,2003.
    [17]Minh N. Q. Ceramic fuel-cells. Journal of the American Ceramic Society,1993,76(3): 563-588.
    [18]A. Wood, M. Pastula, D. Waldbillig, and D. G. Ivey. Initial Testing of Solutions to Redox Problems with Anode-Supported SOFC. Journal of The Electrochemical Society,2006,153 (10):A1929-A1934.
    [19]Sammes, N. M.; Du, Y. The Mechanical Properties of Tubular Solid Oxide Fuel Cells. J. Mater. Sci.2003,38,4811.
    [20]Osamu Yamamoto. Solid Oxide Fuel Cells:Fundamental Aspects and Prospects. Electrochimica Acta,2000,45:2423-2435.
    [21]Yingyi Huang, John M. Vohs, and Raymond J. Gorte, Fabrication of Sr-Doped LaFeO3 YSZ Composite Cathodes. Journal of the Electrochemical Society,2004,151:A646-A651.
    [22]F. T. Ciacchi, S. P. S. Badwal and V. Zelizko. Tubular Zirconia-Yttria Electrolyte Membrane Technology for Oxygen Separation. Solid State Ionics,2002,152-153:763-768.
    [23]J. Staniforth, K. Kendall. Biogas Powering a Small Tubular Solid Oxide Fuel Cell. Journal of Power Sources,1998,71:275-277.
    [24]Lihong Liu, Xiaoyao Tan and Shaomin Liu. Yttria Stabilized Zirconia Hollow Fiber Membranes. Journal of the American Ceramic Society,2006,89:1156-1159.
    [25]Y. Liu, Oi Yee Chen, Chiao Chien Wei, K. Li. Preparation of Yttria-Stabilised Zirconia (YSZ) Hollow Fibre Membranes. Desalination 2006,199:360-362.
    [26]Coe, N. J., Kendall, K., Kilbride, I., Prica, M. Improving Electrode Contact in a Small Diameter Tubular SOFC. British Ceramic Processings,1996,56:163-170.
    [27]谭小耀,尹卫宁,孟波,孟秀霞,杨乃涛,马紫峰,微管式固体氧化物燃料电池电解质膜的制备,中国科学B辑:化学,2008,38(6):475-478.
    [28]Chiao Chien Wei and K. Li. Yttria-Stabilized Zirconia (YSZ)-Based Hollow Fiber Solid Oxide Fuel Cells. Industrial and Engineering Chemistry Research,47 (2008) 1506-1512.
    [29]Naitao Yanga, Xiaoyao Tan, Zifeng Maa. A phase inversion/sintering process to fabricate nickel/yttria-stabilized zirconia hollow fibers as the anode support for micro-tubular solid oxide fuel cells. Journal of Power Sources,2008,183:14-19.
    [30]Young T-H, Chen L-W. Pore formation mechanism of membranes from phase inversion process. Desalination,1995,103:233-247.
    [31]M. Khayet. The efects of air gap length on the internal and external morphology of hollow fiber membranes. Chemical Engineering Science,2003,58:3091-3104.
    [32]D. W. Dees, T. D. Claar, T. E. Easier, D. C. Fee, and F. C. Mrazek, Conductivity of Porous Ni/ZrO2-Y2O3 Cermets. Journal of the Electrochemical Society,1987,134,2141-2146.
    [33]Tatsuya Kawada, Natsuko Sakai, Harumi Yokokawa, and Masayuki Dokiya. Characteristics of Slurry-Coated Nickel Zirconia Cermet Anodes for Solid Oxide Fuel Cells. Journal of the Electrochemical Society,1990,137:3042-3047.
    [1]W. Paulus, A. Cousson, G. Dhalenne, J. Berthon, A. Revcolevschi, S. Hosoya, W. Treutmann, G. Heger, R. Le Toquin. Neutron diffraction studies of stoichiometricand oxygen intercalated La2Ni04 single crystals. Solid State Sciences,2002,4:565-573.
    [2]王世兴,刘卫,张立德.高Tc氧化物La2CuO4+δ低频弛豫内耗峰的激活能研究.低温物理学报,1999,21(2):88-92.
    [3]刘卫,刘奕,文亦汀.La2CuO4+δ氧化物的低频弛豫内耗峰的研究,科学通报,1994,39(3):222-226.
    [4]Toru kyomen,Masaharu Oguni and Kenzo Kitayama. Phase separation,oxygen composition and a glass transition due to freezing-in of the oxygen rearrangement in La2NiO4.094 single crystals. Physical Review B,1995,52(5):3177-3183.
    [5]张华力,刘卫,苏金瑞.La2NiO4.147体系相变的低频内耗.金属学报,2003,69(11):1157-1159.
    [6]A. Aguadero, M. Perez, J. A. Alonso and L.Daza. Neutron powder diffraction study of the influence of high oxygen pressure treatments on La2NiO4+δ and structural analysis of La2Ni1-xCuxO4+δ (0≤x≤1)Journal of Power Sources 2005,151:52-56.
    [7]Licia Minervini, Robin W. Grimes, John A. Kilnera and Kurt E. Sickafus. Oxygen migration in La2NiO4+δ. Jouranl Of materials chemistry,2000,10:2349-2354.
    [8]F. Cordero, C. R. Grandini, R. Cantelli. Structure, mobility and clustering of interstitial O in La2CuO4+δin the limit of small δ. Physica C,1998,305:251-261.
    [9]F. C. Chou, D. C. Johnston. Phase separation and oxygen diffusion in electrochenmically oxidized La2CuO4+δ:A static magnetic susceptibility study.Physical Review B,1996,54(1): 572-583.
    [10]Cheng Li, Guiyu Yu, Nanru Yang, Supported dense oxygen permeating membrane of mixed conductor La2Ni0.8Fe0.2O4+δ prepared by sol-gel method. Separation and Purification Technology,2003,32:335-339.
    [11]A. S. Nowick, and B. S. Berry, Anelastic Relaxtion in Crystalline Solids. Academic Press, New York,1972.
    [12]王业宁,沈惠敏,金属物理学,(第十编内耗与超声衰减),科学出版社,北京,1999.
    [13]G. Cannelli, R. Cantelli, F. Cordero, F. Trequattrini, C. R. Grandini, M. Ferretti. Thermally activated dynamics in La2CuO4+δ:tilts of the CuO6 octahedra and interstitial O. Physica C, 1997,282-287:1457-1458.
    [14]F. Cordero, C. R. Grandini, G. Cannelli, R. Cantelli, F. Trequattrini, M. Ferretti. Thermally activated dynamics of the tilts of the CuO6 octahedra, hopping of interstitial O, and possible instability towards the LTT phase in La2CuO4+δ. PhysicalReview B,1998,57 (14): 8580-8589.
    [15]H. L. Zhang, X. S. Wu, C. S. Chen, and W. Liu. Excess oxygen ordering in the La2NiO4+δ system studied by low-frequency internal friction. Physical Review B,2005,71:064422.
    [16]曹学强,钟子宜,曾跃.离子取代对La2CuO4结构的影响.湖南师范大学自然科学学报,1997,20(4):45-51.
    [17]E. Takayama-Muromachi and David E. Rice. Oxygen deficienty in the superconducing oxides (La1-xMx)2CuO4(M=Sr,Ba).Physica C,1991,177:195-206.
    [18]J. L. Routbort, S. J. Rothman. Oxygen diffusion in cuprate superconductors. Journal of Appllied Physics,1994,76 (10):5615-5628.
    [19]J. D. Jorgensen, B. Dabrowski, S. Pei, D. G. Hinks, L. Soderholm, B. Morosin, J. E. Schirber, E. L. Venturini, D. S. Ginley. Superconducting phase of La2CuO4+δ:A superconducting composition resulting from phase separation. Physical Revivew B,1988,38:11337-11345.
    [20]M. S. slam, M. Leslie, S. M. Tomlinson and C. R. A. Catlon. Computer modeling studies of defects and valence states in La2Cu04. Journal of Physics C,1988,21:L109-L117.
    [21]F. Cordero, R. Cantelli. Interstitial O and O vacancies in La2CuO4+δ during high-temperature treatments. Physica C,1999,312:213-224.
    [22]C. Chaillout, J. Chenavas, S. W. Cheong, Z. Fisk, M. Marezio and B. Morosin. Two-phase structural refinement of La2CuO4.032 at 15 K. Physica C,1990,170:87-94.
    [23]J. D. Jorgensen, H.-B. Schuttler, D. G. Hinks, D. W. Capone Ⅱ, K. Zhang, and M. B. Brodsky. Lattice instability and high-Tc superconductivity in La2-xBaxCuO4. Physical Review Letters,1987,58:1024-1027.
    [24]Zenji Hiroi, Takeshi Obata, Mikio Takano, Yoshichika Bando, Yasuo Takeda, Osamu Yamamoto, Ordering of interstitial oxygen atoms in La2NiO4+δ observed by transmission electron microscopy. Physical Review B,41 (1990) 11665-11668.
    [25]J. M. Tranquada, Y. Kong, J. E. Lorenzo, D. J. Buttrey, D. E. Rice, V. Sachan, Oxygen intercalation stage ordering, and phase separation in La2NiO4+δ with 0.05≤δ≤0.11. Physical Review B,1994,50:6340-6351.
    [26]J. M. Tranquada, J. E. Lorenzo, D. J. Buttrey and V. Sachan. Cooperative ordering of holes and spins in La2NiO4.125. Physical Review B,1995,52:3581-3595.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700