基于cDNA微阵列技术Ⅱ、Ⅲ期肠癌转移相关基因的筛选、鉴定及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:基因CXCL10、TCF7L1、TMEMl6J及SLC17A9在Ⅱ、Ⅲ期肠癌中的表达、异常甲基化及预后相关研究
     目的:利用全基因组表达谱芯片技术筛选出与Ⅱ、Ⅲ期大肠癌复发、转移相关基因,在此基础上采用单盲筛选的方法进一步确定四个基因-CXCL10、TCF7L1、TMEM16J和SLC17A9进行深入研究。本实验的目的是在Ⅱ、Ⅲ期结直肠癌组织及肠癌细胞株中检测这些基因的表达、甲基化状态及探讨其潜在的临床应用价值。
     方法:利用Real time PCR(qPCR)及RT-PCR技术检测64例(36例复发、28例未复发)Ⅱ、Ⅲ期肠癌冰冻组织及6株肠癌细胞四种基因的mRNA表达水平,同时,采用免疫组织化学法及Western blot等分子生物学技术检测118例(78例复发、40例未复发)Ⅱ、Ⅲ期结直肠癌石蜡包埋组织样本及6株肠癌细胞四种基因的蛋白质表达水平,并与患者的临床病例特征及预后随访资料相结合,检测基因表达与肿瘤临床病理指标的相关性及进行预后生存分析。此外,我们对47例(23例复发、24例未复发)冰冻Ⅱ、Ⅲ期肠癌组织运用BSP及MSP技术进行TCF7L1启动子区域CpG岛的甲基化检测,用以探讨其表观遗传学调控机制。
     结果:在64例(36例复发、28例未复发)Ⅱ、Ⅲ期肠癌冰冻组织标本中CXCL10、TMEM16J和SLC17A9等三个基因在未复发人群的mRNA表达水平显著高于复发人群(P<0.05),而基因TCF7L1的结果却与之相反,呈现复发组高水平表达(P<0.05),在蛋白质水平的检测中,我们也得到了相同的结果。此外,6株肠癌细胞的mRNA及蛋白质检测也获得了同样的结果。在随后进行的基因表达与各临床病理学指标的相关性研究中我们发现,CXCL10的蛋白表达与患者的性别、年龄及肿瘤的组织分级关系密切(P<0.05);TCF7L1的蛋白表达与组织学分级和肿瘤侵袭深度相关(P<0.05);而基因TMEM16J和SLC17A9的mRNA表达水平与肿瘤的TNM分期联系紧密(P<0.05)。结合患者预后随访资料进行的生存分析结果显示,高表达TCF7L1、低表达CXCL10、TMEM16J或SLC17A9的患者其无复发生存期明显较对应的人群短(P<0.05)。而在对TCF7L1基因启动子区域CpG岛的甲基化检测中我们发现,其启动子区的甲基化是TCF7L1表达调控机制中的频发事件,而异常的低甲基化可能是导致TCF7L1表达升高的主要机制之一。
     结论:我们的研究结果表明,CXCL10、TCF7L1、TMEM16 J和SLC17A9四种基因均可能是具有评估Ⅱ、Ⅲ期肠癌患者预后转归价值的潜在性标志物,其表达水平往往能够预示肿瘤的复发及转移,而对于癌基因TCF7L1,启动子区的甲基化可能是其正常的表观遗传学调控机制之一,异常的低甲基化状态可能与肿瘤的复发、转移相关。
     第二部分:Ⅱ、Ⅲ期肠癌转移相关基因TMEM16J和SLC17A9的功能研究
     目的:通过前述研究我们已经验证基因TMEM16J和SLC17A9的表达与Ⅱ、Ⅲ期肠癌患者的复发显著相关,当前关于这两类基因的功能,尤其研究其在肿瘤组织中的作用的报道相对较少,本研究的目的在于深入探讨TMEM16J和SLC17A9在结直肠癌发生、发展等病理生理过程中所起的生物学作用。
     方法:我们提取肠癌组织标本的总RNA为模板,通过RT-PCR获取全长目的基因,经限制性内切酶酶切后与质粒pcDNA3.1(+)连接构建重组体,进行测序以确保目的基因无突变,然后将重组质粒导入6株肠癌细胞株(SW480、Caco-2、HCT116、SW620、LoVo和Colo205),对转染细胞进行RNA提取后,qPCR进行mRNA水平验证,证明TMEM16J及SLC17A9表达水平对比未转染细胞显著升高。对转染重组质粒的细胞株进行软琼脂集落形成试验、生长曲线、细胞周期、凋亡检测以及细胞侵袭、粘附等多种肿瘤体外生物学行为观测。此外,我们通过将转染重组质粒、空载体的两种肠癌细胞株分别注射于裸鼠皮下,建立动物模型进行在体内肿瘤的生长和侵袭情况的观察。
     结果:通过qPCR及测序检验证实我们成功将无任何点突变的基因TMEM16J及SLC17A9重组质粒导入到肠癌细胞株,并进行稳定传代,软琼脂集落形成试验结果显示,转染TMEM16J及SLC17A9重组体的细胞株其平均集落形成率明显低于转染空载体的细胞株,而且细胞形成的大集落较空载体组少、克隆形成时间较后者晚、克隆存活时间较后者明显缩短。在对转染细胞生长曲线的观测中我们发现,转染TMEM16J及SLC17A9的细胞生长明显减慢。通过流式细胞仪对转染细胞进行的细胞周期及凋亡检测分析显示,转染TMEM16J及SLC17A9的细胞处于S+G2+M增殖期的细胞数明显低于未转染TMEM16J及SLC17A9的细胞,且S期细胞减少,而凋亡细胞比例明显高于后者。在细胞侵袭及粘附实验中我们发现转染TMEM16J及SLC17A9的细胞粘附能力明显升高而侵袭能力显著下降。此外,动物模型观察证实了转染TMEM16J及SLC17A9的细胞所形成的肿瘤原发灶大小均明显少于未转染TMEM16J及SLC17A9的细胞。
     结论:研究结果表明,TMEM16J及SLC17A9基因能够抑制肠癌细胞的生长及增殖,降低癌细胞侵袭能力,从而在生物学功能上支持了其作为潜在性肿瘤复发标志物运用于临床检测的可能。
Part I:The expression, hypomethylation and prognostic significance of CXCL10, TCF7L1, TMEM16J and SLC17A9 in stageⅡandⅢcolorectal cancer
     Objectives:In previous study, we have identified 4 genes that differently expressed in colorectal cancer (CRC) tissues with recurrence and those without recurrence using gene expression profiling assays. This study was aimed to investigate the relationship between the expression of 4 genes and their methylation status, and their potential roles in predicting prognosis of patients with stageⅡandⅢcolorectal cancer.
     Methods:To examine mRNA expression of 4 genes, real-time quantitative polymerase chain reaction (qPCR) and reverse transcriptase PCR was performed in 36 colorectal cancer tissues with recurrence and 28 without recurrence, and in 3 CRC-metastasis-derived cell lines (SW620, LoVo, Colo205) and 3 primary-CRC-derived ones (SW480, Caco-2, HCT116). Furthermore, protein was evaluated using immunostaining in 118 paraffin-embedded specimens and Western blot in 6 colorectal cancer cell lines, and the correlations between clinicopathologic factors and disease-free survival time and gene expression were analyzed. In addition, the methylation status of the CpG islands in TCF7L1 promoter was also detected by Bisulfite genomic sequencing (BGS) and methylation-specific polymerase chain reaction (MSP).
     Results:CXCL10, TMEM16J and SLC17A9 mRNA was down-regulated in both CRC tissues with recurrence and metastasis-derived cell lines but TCF7L1 mRNA was up-regulated. The expression level of TCF7L1 was unrelated with gender, age, tumor grade, lymphvascular or perineural invasion and other parameters. However, it was positively related to disease-free survival time, histological type and depth of invasion (P=0.002,0.038,0.020). The expression level of TMEM16J and SLC17A9 were positively related to TNM stage. CXCL10 expression was significantly associated with gender, age and tumor grade. Moreover, lower CXCL10, TMEM16J and SLC17A9 and higher TCF7L1 expression indicated poorer survival rate, respectively (P<0.05, log-rank test). Multivariate analysis also showed they were independent prognosticators in CRC. Moreover, it was found that up-expression of TCF7L1 is significantly associated with its promoter CpG island hypomethylation.
     Conclusion:These findings indicate that up-regulation of TCF7L1 causing by hypomethylation or down-expression of any one of CXCL10, TMEM16J or SLC17A9 might play an important role in metastasis and predict poor prognosis of patients with stageⅡandⅢCRC patients.
     Chinese Library Classification:R73
     Part 2:Study on biological functions of human TMEM16J and SLC17A9 genes
     Objectives:In foregoing study, we have validated the expression TMEM16J and SLC17A9 genes were significantly associated with recurrence of stageⅡandⅢcolorectal cancer. Currently, the data concerning the biological functions of both genes were relatively insufficient, especially in cancer. This study was aimed to further investigate the role of TMEM16J and SLC17A9 genes in tumorigenesis of colorectal cancer.
     Methods:we designed to determine the impact of over-expression of TMEM16J and SLC17A9 by stable transfection of pcDNA3-gene expression vector on cell growth, cell cycle, apoptosis, cell adhesion and migration as well as invasion in human clorectal cancer lines (SW620, LoVo, HCT116, Caco-2). In addition, to further examine the effects of TMEM16J and SLC17A9 over-expression on tumor growth and metastasis, we performed the in vivo assay using an orthotopic xenograft tumor model in the athymic mice. We examined the primary tumor growth and the metastasis.
     Results:Over-expression of TMEM16J and SLC17A9 prolong cell doubling time or inhibit growth of colorectal cancer cells lines, including SW620, HCT116, LoVo and Caco-2. This inhibition of cell growth was associated with the regulation of cell cycle, increasing of apoptosis. Over-expression of TMEM16J and SLC17A9 elevated cellular capability of adhesion and reduced capability of invasion and migration in LoVo and HCT116. Additionally, the volume of tumor in nude mice was dramatically decreased by TMEM16J and SLC17A9 over-expression especially in LoVo cells (P<0.05).
     Conclusion:These findings indicate that the expression of TMEM16J and SLC17A9 decreased in human colorectal cancer cells as invasive and metastatic potential increased, indicating possible involvement of TMEM16J and SLC17A9 in invasive and metastatic phenotypes of colorectal cancer cells. TMEM16J and SLC17A9 have extensive effects on colorectal cancer cells in vitro and in vivo by inhibiting cell growth, redistributing cell cycle, promoting apoptosis, reducing invasion in vitro and metastasis in vivo. Both of them are new anti-oncogenes.
引文
1. Cserni G. Nodal staging of colorectal carcinomas and sentinel nodes. J Clin Pathol 2003;56:327-335.
    2. de Gramont A, Tournigand C, Andre'T, et al. Adjuvant therapy of stage Ⅱ and Ⅲ colon cancer. Semin Oncol 2007; 34:S37-S40.
    3. Hardcastle JD, Chamberlain JO, Robinson MH, et al. Randomised controlled trial of faecal-occult-blood screening for colorectal cancer. Lancet 1996; 348: 1472-1477.
    4. Kronborg O, Fenger C, Olsen J, et al. Randomised study of screening for colorectal cancer with faecal-occult-blood test. Lancet 1996; 348:1467-1471.
    5. Compton C, Fenoglio-Preiser CM, Pettigrew N, et al. American joint committee on cancer prognostic factors consensus conference-colorectal working group. Cancer 2000; 88:1739-1757.
    6. van de Vijver MJ, He YD, van't Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002; 347:1999-2009.
    1. Weitz J, Koch M, Debus J, et al. Colorectal cancer. Lancet 2005; 365:153-165.
    2. Cserni G. Nodal staging of colorectal carcinomas and sentinel nodes. J Clin Pathol 2003; 56:327-335.
    3. de Gramont A, Tournigand C, Andre'T, et al. Adjuvant therapy of stage Ⅱ and Ⅲ colon cancer. Semin Oncol 2007; 34:S37-S40.
    4. Carmeliet P. Angiogenesis in life, disease and medicine. Nature 2005; 438:932-936.
    5. Singh UP, Singh S, Iqbal N, et al. IFN-g-inducible chemokines enhance adaptive immunity and colitis. J Interferon Cytokine Res 2003; 23:591-600.
    6. Lazzeri E, Romagnani P. CXCR3-binding chemokines:novel multifunctional therapeutic targets. Curr Drug Targets Immune Endocr Metab Disord 2005; 5: 109-118.
    7. Sgadari C, Angiolillo AL, Cherney BW, et al. Interferon-inducible protein-10 identified as a mediator of tumor necrosis in vivo. Proc Natl Acad Sci USA 1996; 93:13791-13796.
    8. Kanegane C, Sgadari C, Kanegane H, et al Contribution of the CXC chemokines IP-10 and Mig to the antitumor effects of IL-12. J Leukoc Biol 64:384-392 9. Sato E, Fujimoto J, Toyoki H, Sakaguchi H, Alam SM, Jahan I, Tamaya T (2007) Expression of IP-10 related to angiogenesis in uterine cervical cancers. Br J Cancer 1998; 96:1735-1739.
    10. Biragyn A, Tani K, Grimm MC, et al. Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity. Nat Biotechnol 1999; 17:253-258.
    11. Narvaiza I, Mazzolini G, Barajas M, et al. Intratumoral coinjection of two adenoviruses, one encoding the chemokine IFN-gamma-inducible protein-10 and another encoding IL-12, results in marked antitumoral synergy. J Immunol 2000; 164:3112-3122.
    12. Feldman AL, Friedl J, Lans TE, et al. Retroviral gene transfer of interferon-inducible protein 10 inhibits growth of human melanoma xenografts. Int J Cancer 2002; 99:149-153.
    13. Maru SV, Holloway KA, Flynn G, et al. Chemokine production and chemokine receptor expression by human glioma cells:role of CXCL10 in tumour cell proliferation. J Neuroimmunol 2008; 199:35-45.
    14. Datta D, Flaxenburg JA, Laxmanan S, et al. Ras-induced modulation of CXCL10 and its receptor splice variant CXCR3-B in MDA-MB-435 and MCF-7 cells: relevance for the development of human breast cancer. Cancer Res 2006,66: 9509-9518.
    15. Giese NA, Raykov Z, DeMartino L, et al. Suppression of metastatic hemangiosarcoma by a parvovirus MVMp vector transducing the IP-10 chemokine into immunocompetent mice. Cancer Gene Ther 2002; 9:432-442.
    16. Keyser J, Schultz J, Ladell K, et al. IP-10-encoding plasmid DNA therapy exhibits anti-tumor and anti-metastatic efficiency. Exp Dermatol 2004; 13:380-390.
    17. Reckamp KL, Figlin RA, Moldawer N,et al. Expression of CXCR3 on mononuclear cells and CXCR3 ligands in patients with metastatic renal cell carcinoma in response to systemic IL-2 therapy. J Immunother 2007; 30: 417-424.
    18. Mendiratta SK, Quezada A, Matar M, et al. Combination of interleukin 12 and interferon a gene therapy induces a synergistic antitumor response against colon and renal cell carcinoma. Hum Gene Ther 2000; 11:1851-1862.
    19. Zilocchi C, Stoppacciaro A, Chiodoni C, et al. Interferon g-independent rejection of interleukin 12-transduced carcinoma cells requires CD4? T cells and granulocyte/macrophage colony-stimulating factor. J Exp Med 1998; 188: 133-143.
    20. Li G, Tian L, Hou JM,et al. Improved therapeutic effectiveness by combining recombinant CXC chemokine ligand 10 with cisplatin in solid tumors. Clin Cancer Res 2005; 11:4217-4224.
    21. Yao L, Pike SE, Setsuda J, et al. Effective targeting of tumor vasculature by the angiogenesis inhibitors vasostatin and interleukin-12. Blood 2000; 6:1900-1905.
    22. Zipin-Roitman A, Meshel T, Sagi-Assif O, et al. CXCL10 promotes invasion related properties in human colorectal carcinoma cells. Cancer Res 2007; 67: 3396-3405.
    23. Naschberger E, Croner RS, Merkel S, et al. Angiostatic immune reaction in colorectal carcinoma:impact on survival and perspectives for antiangiogenic therapy. Int J Cancer 2008; 123:2120-2129.
    24. Bertagnolli MM. Chemoprevention of colorectal cancer with cyclooxygenase-2 inhibitors:two steps forward, one step back. Lancet Oncol 2007; 8:439-443.
    25. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420:860-867.
    26. Albini A, Sporn MB. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 2007; 7:139-147.
    27. de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 2006; 6:24-37.
    28. Greten FR, Eckmann L, Greten TF, et al. IKK beta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004; 118: 285-296.
    29. Pardoll D. T cells and tumours. Nature 2001; 411:1010-1012.
    30. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004; 4:71-78.
    31. Folkman J. Tumor angiogenesis:therapeutic implications. N Engl J Med 1971; 285:1182-1186.
    32. Folkman J. Angiogenesis. Annu Rev Med 2006; 57:1-18.
    33. Hurwitz H, Fehrenbacher L, Novotny W,et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350:2335-2342.
    34. Sato E, Fujimoto J, Toyoki H, et al. Expression of IP-10 related to angiogenesis in uterine cervical cancers. Br J Cancer 2007; 96:1735-1739.
    35. Greene FL, Page DL, Fleming ID, et al. AJCC cancer staging manual,6th edn. Springer, New York,2002.
    36. Trarbach T, Kubicka S, Hacker U, et al. Adjuvant therapy of colon carcinoma. Onkologie 2008;31:19-23.
    37. De Dosso S, Sessa C, Saletti P. Adjuvant therapy for colon cancer:present and perspectives. Cancer Treat Rev 2009; 35:160-166.
    38. Murre C, McCaw PS, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 1989; 56:777-783.
    39. Chakraborty T, Brennan TJ, Li L, et al. Inefficient homooligomerization contributes to the dependence of myogenin on E2A products for efficient DNA binding. Mol Cell Biol 1991; 11:3633-3641.
    40. Lassar AB, Buskin JN, Lockshon D, et al. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 1989; 58:823-831.
    41.Murre C, McCaw PS, Vaessin H, et al. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 1989 58:537-544.
    42. Shen CP, Kadesch T. Mol Cell Biol 1995; 15:4518-4524.
    43. Sun XH, Baltimore D. An inhibitory domain of E12 transcription factor prevents DNA binding in E12 homodimers but not in E12 heterodimers. Cell 1991; 64: 459-470.
    44. Asirvatham AJ, Carey JP, Chaudhary J. ID1-, ID2-, and ID3-regulated gene expression in E2A positive or negative prostate cancer cells. Prostate 2007; 67: 1411-1420.
    45. Sagara N, Katoh M. Mitomycin C resistance induced by TCF-3 overexpression in gastric cancer cell line MKN28 is associated with DT-diaphorase down-regulation. Cancer Res 2000; 60:5959-5962.
    46. Krishnamachary B, Zagzag D, Nagasawa H, et al. Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF7L1, ZFHX1A, and ZFHX1B. Cancer Res 2006; 66:2725-2731.
    47. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2:442-454.
    48. Huber O, Korn R, McLaughlin J, et al. Nuclear localization of beta-catenin by interaction with transcription factor LEF-1. Mech Dev 1996; 59:3-10.
    49. Molenaar M, van de Wetering M, Oosterwegel M, et al. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 1996; 86:391-399.
    50. Papkoff J, Rubinfeld B, Schryver B,et al. Wnt-1 regulates free pools of catenins and stabilizes APC-catenin complexes. Mol Cell Biol 1996; 16:2128-2134.
    51. Porfiri E, Rubinfeld B, Albert I, et al. Induction of a beta-catenin-LEF-1 complex by wnt-1 and transforming mutants of beta-catenin. Oncogene 1997; 15: 2833-2839.
    52. Zhai Y, Wu R, Schwartz DR, et al. Role of beta-catenin/T-cell factor-regulated genes in ovarian endometrioid adenocarcinomas. Am J Pathol 2002; 160: 1229-1238.
    53. Schwartz DR, Wu R, Kardia SL, et al. Novel candidate targets of beta-catenin/T-cell factor signaling identified by gene expression profiling of ovarian endometrioid adenocarcinomas. Cancer Res 2003; 63:2913-2922.
    54. Hirohashi S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 1998; 153:333-339.
    55. Mareel M, Boterberg T, Noe V, et al. E-cadherin/catenin/cytoskeleton complex:a regulator of cancer invasion. J Cell Physiol 1997; 173:271-274.
    56. Becker KF, Atkinson MJ, Reich U, et al. E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res 1994; 54:3845-3852.
    57. Berx G, Becker KF, Hofler H, et al. Mutations of the human E-cadherin (CDH1) gene. Hum Mutat 1998:12:226-237.
    58. Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 2002;3:155-166.
    59. Laux H, Tomer R, Mader MT, et al. Tumor-associated E-cadherin mutations do not induce Wnt target gene expression, but affect E-cadherin repressors. Lab Invest 2004; 84:1372-1386.
    1. Katoh M, Katoh M. FLJ10261 gene, located within the CCND1-EMS1 locus on human chromosome 11q13, encodes the eight-transmembrane protein homologous to C12orf3, C11orf25 and FLJ34272 gene products. Int J Oncol 2003; 22: 1375-1381.
    2. West RB, Corless CL, Chen X, et al. The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status. Am J Pathol 2004; 165:107-113.
    3. Huang X, Godfrey TE, Gooding WE, et al. Comprehensive genome and transcriptome analysis of the 11q13 amplicon in human oral cancer and synteny to the 7F5 amplicon in murine oral carcinoma. Genes Chromosomes Cancer 2006; 45:1058-1069.
    4. Bera TK, Das S, Maeda H, et al. NGEP, a gene encoding a membrane protein detected only in prostate cancer and normal prostate. Proc Natl Acad Sci U S A 2004; 101:3059-3064.
    5. Katoh M, Katoh M. GDD1 is identical to TMEM16E, a member of the TMEM16 family. Am J Hum Genet 2004; 75:927-928.
    6. Kiessling A, Weigle B, Fuessel S. D-TMPP:a novel androgen-regulated gene preferentially expressed in prostate and prostate cancer that is the first characterized member of an eukaryotic gene family. Prostate 2005; 64:387-400.
    7. Rock JR, Harfe BD. Expression of TMEM16 paralogs during murine embryogenesis. Dev Dynamics 2008; 237:2566-2574.
    8. Tsutsumi S, Kamata N, Vokes TJ, et al. The novel gene encoding a putative transmembrane protein is mutated in gnathodiaphyseal dysplasia (GDD). Am J Hum Genet 2004; 74:1255-1261.
    9. Galindo BE, Vacquier VD. Phylogeny of the TMEM16 protein family:some members are overexpressed in cancer. Int J Mol Med 2005; 16:919-924.
    10. Entian KD, Schuster T, Hegemann JH. Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach. Mol Gen Genet 1999; 262:683-702.
    11. Kramer J, Hawley RS. The spindleassociated transmembrane protein Axs identifies a new family of transmembrane proteins in eukaryotes. Cell Cycle 2003; 2:174-176.
    12. Juschke C, Ferring D, Jansen RP. A novel transport pathway for a yeast plasma membrane protein encoded by a localized mRNA. Curr Biol 2004; 14:406-411.
    13. Kramer J, Hawley RS. The spindleassociated transmembrane protein Axs identifies a new family of transmembrane proteins in eukaryotes. Cell Cycle 2003; 2:174-176.
    14. Mizuta K, Tsutsumi S, Inoue H, et al. Molecular characterization of GDD1/TMEM16E, the gene product responsible for autosomal dominant gnathodiaphyseal dysplasia. Biochem Biophys Res Commun 2007; 357:126-132.
    15.Hecht J, Seitz V, Urban M. Detection of novel skeletogenesis target genes by comprehensive analysis of a Runx2(-/-) mouse model. Gene Expr Patterns 2007; 7: 102-112.
    16. Rock JR, Lopez MC, Baker HV, et al. Identification of genes expressed in the mouse limb using a novel ZPA microarray approach. Gene Expr Patterns 2007; 8: 19-26.
    17. Fuchs E, Raghavan S. Getting under the skin of epidermal morphogenesis. Nat Rev Genet 2002; 3:199-209.
    18. Sto"hr H, Heisig JB, Benz PM. TMEM16B, A Novel Protein with Calcium-Dependent Chloride Channel Activity, Associates with a Presynaptic Protein Complex in Photoreceptor Terminals. The Journal of Neuroscience 2009. 29:6809-6818.
    19. Maycox PR, Hell JW, Jahn R. Amino acid neurotransmission:Spotlight on synaptic vesicles. Trends Neurosci 1990; 13:83-87.
    20. Schuldiner S, Shirvan A, LinialM. Vesicular neurotransmitter transporters:From bacteria to humans. Physiol Rev 1995; 75:369-392.
    21. Parsons SM. Transport mechanisms in acetylcholine and monoamine storage. FASEB J 2000; 14:2423-2434.
    22. Gasnier B. The SLC32 transporter, a key protein for the synaptic release of inhibitory amino acids. Pflu" gers Arch 2004; 447:756-759.
    23. Reimer RJ, Edwards RH. Organic anion transport is the primary function of the SLC17/type I phosphate transporter family. Pflu" gers Arch 2004; 447:629-635.
    24. Fremeau RT, Voglmaier S, Seal RP, et al. VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 2004; 27:98-103.
    25. Moriyama Y, Yamamoto A. Glutamatergic chemical transmission:Look! Here, there, and anywhere. J Biochem 2004; 135:155-163.
    26. Johnson RG. Accumulation of biological amines into chromaffin granules:A model for hormone and neurotransmitter transport. Physiol Rev 1988; 68: 232-307.
    27. Zimmermann H. ATP and acetylcholine, equalbrethren. Neuro chem Int 2008; 52: 634-648.
    28. Lazarowski E. Regulated release of nucleotides and UDP sugars from astrocytoma cells. Novartis Found Symp 2006; 276:73-84, discussion 84-90.
    29. Pankratov Y, Lalo U, Verkhrasky A, et al. Vesicular release of ATP at central synapses. Pflu" gers Arch 2006; 452:589-597.
    30. Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 2007; 87:659-797.
    31. Aberer W, Kostron H, Huber E, et al. A characterization of the nucleotide uptake of chromaffin granules of bovine adrenal medulla. Biochem J 1978; 172: 353-360.
    32. Luqmani YA. Nucleotide uptake by isolated cholinergic synaptic vesicles: Evidence for a carrier of adenosine 5-triphosphate. Neuroscience 1981; 6: 1011-1021.
    33. Weber A, Winkler H. Specificity and mechanism of nucleotide uptake by adrenal chromaffin granules. Neuroscience 1981; 6:2269-2276.
    34. Bankston LA, Guidotti G. Characterization of ATP transport into chromaffin granule ghosts:Synergy of ATP and serotonin accumulation in chromaffin granule ghosts. J Biol Chem 1996; 271:17132-17138.
    35. Gualix J, Abal M, Pintor J, et al. Nucleotide vesicular transporter of bovine chromaffin granules:Evidence for mnemonic regulation. J Biol Chem 1996; 271: 1957-1965.
    36. Gualix J, Pintor J, Miras-Portugal MT. Characterization of nucleotide transport into rat brain synaptic vesicles. J Neurochem 1999; 73:1098-1104.
    37. Zalk R, Shoshan-BarmatzV. Characterization of DIDS-sensitive ATP accumulation in brain synaptic vesicles. FEBS Lett 2006; 580:5894-5898.
    38. Sawada K, Echigo N, Juge N, et al. Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci U S A 2008; 105:5683-5686.
    39. Sreedharan S, Shaik-Jafar HA, Olszewski PK, et al. Glutamate, aspartate and nucleotide transporters in the SLC17 family form four main phylogenetic clusters: evolution and tissue expression. BMC Genomics 2010; 11:17.
    1. Weitz J, Koch M, Debus J, et al. Colorectal cancer. Lancet 2005; 365:153-165.
    2. Cserni G. Nodal staging of colorectal carcinomas and sentinel nodes. J Clin Pathol 2003;56:327-335.
    3. de Gramont A, Tournigand C, Andre'T, et al. Adjuvant therapy of stage II and III colon cancer. Semin Oncol 2007; 34:S37-S40.
    4. Ogino S, Goel A. Molecular classification and correlates in colorectal cancer. J Mol Diagn 2008;10:13-27.
    5. Rubenstein K. (2007) Disease-related biomarkers:their potential in patient screening, prognosis, and stratification, Insight Pharma Reports, Needham, MA, USA
    6. Kim SY, Hahn WC. Cancer genomics:integrating form and function. Carcinogenesis 2007; 28:1387-1392.
    7. Faca V, Krasnoselsky A. Hanash S. Innovative proteomic approaches for cancer biomarker discovery. BioTechniques 2007; 43:279-285.
    8. Duffy MJ, van Dalen A, Haglund C, et al. Tumour markers in colorectal cancer: European Group on Tumour Markers (EGTM) guidelines for clinical use. Eur J Cancer 2007; 43:1348-1360.
    9. Huang CS, Lal SK, Farraye FA. Colorectal cancer screening in average risk individuals. Cancer Causes Control 2005; 16:171-188.
    10. Mandel JS, Bond JH, Church TR, et al. Reducing mortality from colorectal cancer by screening for fecal occult blood. Minnesota Colon Cancer Control Study. N Engl J Med 1993; 328:1365-1371.
    11. Hardcastle JD, Chamberlain JO, Robinson MH, et al. Randomised controlled trial of faecal-occult-blood screening for colorectal cancer. Lancet 1996; 348: 1472-1477.
    12. Loktionov A, O'Neill IK, Silvester KR, et al. Quantitation of DNA from exfoliated colonocytes isolated from human stool surface as a novel noninvasive screening test for colorectal cancer. Clin Cancer Res 1998; 4:337-342.
    13. Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006; 441:424-430.
    14. Fearo, ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61:759-767.
    15. Losi L, Roncucci L, di Gregorio C, et al. K-ras and p53 mutations in human colorectal aberrant crypt foci. J Pathol 1996; 178:259-263.
    16. Shivapurkar N, Huang L, Ruggeri B, et al. K-ras and p53 mutations in aberrant crypt foci and colonic tumors from colon cancer patients. Cancer Lett 1997; 115: 39-46.
    17. Smith AJ, Stern HS, Penner M, et al. Somatic APC and K-ras codon 12 mutations in aberrant crypt foci from human colons. Cancer Res 1994; 54:5527-5530.
    18. Iacopetta B. TP53 mutation in colorectal cancer. Hum Mutat 2003; 21:271-276.
    19. Hart MJ, de los Santos R, Albert IN, et al. Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol 1998; 8:573-581.
    20. Srivastava S, Verma M, Henson DE. Biomarkers for early detection of colon cancer. Clin Cancer Res 2001; 7:1118-1126.
    21. Ahlquist DA, Skoletsky JE, Boynton KA, et al. Colorectal cancer screening by detection of altered human DNA in stool:feasibility of a multitarget assay panel. Gastroenterology 2000; 119:1219-1227.
    22. Dietmaier W, Wallinger S, Bocker T, et al. Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res 1997; 57:4749-4756.
    23. Ribic CM, Sargent DJ, Moore MJ, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 2003; 349:247-257.
    24. Esteller M, Levine R, Baylin SB, et al. MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene 1998; 17:2413-2417.
    25. Albaugh GP, Iyengar V, Lohani A, et al. Isolation of exfoliated colonic epithelial cells, a novel, non-invasive approach to the study of cellular markers. Int J Cancer 1992; 52:347-350.
    26. Boynton KA, Summerhayes IC, Ahlquist DA, et al. DNA integrity as a potential marker for stool-based detection of colorectal cancer. Clin Chem 2003; 49: 1058-1065.
    27. Imperiale TF, Ransohoff DF, Itzkowitz SH, et al. Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population. N Engl J Med 2004; 351:2704-2714.
    28. Bates J. (2008) Cancer biomarkers:adoption is driving growth, Insight Pharma Reports, Needham, MA, USA
    29. Duffy MJ. Carcinoembryonic antigen as a marker for colorectal cancer:is it clinically useful? Clin Chem 2001; 47:624-630.
    30. Duffy MJ, van Dalen A, Haglund C, et al. Clinical utility of biochemical markers in colorectal cancer:European Group on Tumour Markers (EGTM) guidelines. Eur J Cancer 2003; 39:718-727.
    31. Magnani JL, Nilsson B, Brockhaus M, et al. A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II. J Biol Chem 1982; 257:14365-14369.
    32. Duffy MJ. CA 19-9 as a marker for gastrointestinal cancers:a review. Ann Clin Biochem 1998; 35:364-370.
    33. Hundt S, Haug U, Brenner H. Blood markers for early detection of colorectal cancer:a systematic review. Cancer Epidemiol Biomarkers Prev 2007; 16: 1935-1953.
    34. Holten-Andersen MN, Murphy G, Nielsen HJ, et al. Quantitation of TIMP-1 in plasma of healthy blood donors and patients with advanced cancer. Br J Cancer 1999; 80:495-503.
    35. Sorensen NM, Schrohl AS, Jensen V, et al. Comparative studies of tissue inhibitor of metalloproteinases-1 in plasma, serum and tumour tissue extracts from patients with primary colorectal cancer. Scand J Gastroenterol 2008; 43:186-191.
    36. Holten-Andersen MN, Fenger C, Nielsen HJ, et al. Plasma TIMP-1 in patients with colorectal adenomas:a prospective study. Eur J Cancer 2004; 40:2159-2164.
    37. Holten-Andersen M, Christensen IJ, Nilbert M, et al. Association between preoperative plasma levels of tissue inhibitor of metalloproteinases 1 and rectal cancer patient survival. a validation study. Eur J Cancer 2004; 40:64-72.
    38. Holten-Andersen MN, Stephens RW, Nielsen HJ, et al. High preoperative plasma tissue inhibitor of metalloproteinase-1 levels are associated with short survival of patients with colorectal cancer. Clin Cancer Res 2000; 6:4292-4299.
    39. diaDexus Inc. (2007) Clinical application of diaDexus diagnostics in colorectal cancer http://www.diadexus.com/products/research/oncoogy_diagnostics.php
    40. Roessler M, Rollinger W, Palme S, et al. Identification of nicotinamide N-methyltransferase as a novel serum tumor marker for colorectal cancer. Clin Cancer Res 2005; 11:6550-6557.
    41. Roessler M, Rollinger W, Mantovani-Endl, L, et al. Identification of PSME3 as a novel serum tumor marker for colorectal cancer by combining two-dimensional polyacrylamide gel electrophoresis with a strictly mass spectrometry-based approach for data analysis. Mol Cell Proteomics 2006; 5:2092-2101.
    42. Volmer MW, Stuhler K, Zapatka M, et al. Differential proteome analysis of conditioned media to detect Smad4 regulated secreted biomarkers in colon cancer. Proteomics 2005; 5:2587-2601.
    43. Chang JW, Kang UB, Kim DH, et al. Identification of circulating endorepellin LG3 fragment:Potential use as a serological biomarker for breast cancer. Proteomics Clin Appl 2008; 2:23-32.
    44. Wu CC, Chen HC, Chen SJ, et al. Identification of collapsin response mediator protein-2 as a potential marker of colorectal carcinoma by comparative analysis of cancer cell secretomes. Proteomics 2008; 8:316-332.
    45. Engwegen JY, Gast MC, Schellens JH. Clinical proteomics:searching for better tumour markers with SELDI-TOF mass spectrometry. Trends Pharmacol Sci 2006; 27:251-259.
    46. Ward DG, Suggett N, Cheng Y, et al. Identification of serum biomarkers for colon cancer by proteomic analysis. Br J Cancer 2006; 94:1898-1905.
    47. Habermann JK, Roblick UJ, Luke BT, et al. Increased serum levels of complement C3a anaphylatoxin indicate the presence of colorectal tumors. Gastroenterology 2006; 131:1020-1029.
    48. Albrethsen J, Bogebo R, Gammeltoft S, et al. Upregulated expression of human neutrophil peptides 1,2 and 3 (HNP 1-3) in colon cancer serum and tumours:a biomarker study. BMC Cancer 2005; 5:8.
    49. Melle C, Ernst G, Schimmel B, et al. Discovery and identification of alpha-defensins as low abundant, tumor-derived serum markers in colorectal cancer. Gastroenterology 2005; 129:66-73.
    50. Lee H, Rhee H, Kang HJ, et al. Macrophage migration inhibitory factor may be used as an early diagnostic marker in colorectal carcinomas. Am J Clin Pathol 2008; 129:772-779.
    51. Mroczko B, Groblewska M, Wereszczynska-Siemiatkowska U, et al. Serum macrophage-colony stimulating factor levels in colorectal cancer patients correlate with lymph node metastasis and poor prognosis. Clin Chim Acta 2007; 380: 208-212.
    52. Mroczko B, Groblewska M, Wereszczynska-Siemiatkowska U, et al. The diagnostic value of G-CSF measurement in the sera of colorectal cancer and adenoma patients. Clin Chim Acta 2006; 371:143-147.
    53. Soroush AR, Zadeh HM, Moemeni M, et al. Plasma prolactin in patients with colorectal cancer. BMC Cancer 2004; 4:97.
    54. Schneider J, Bitterlich N, Schulze G. Improved sensitivity in the diagnosis of gastro-intestinal tumors by fuzzy logic-based tumor marker profiles including the tumor M2-PK. Anticancer Res 2005; 25:1507-1515.
    55. Zhang B, Chen JY, Chen DD,et al. Tumor type M2 pyruvate kinase expression in gastric cancer, colorectal cancer and controls. World J Gastroenterol 2004; 10: 1643-1646.
    56. Zhu J, Yao X. Use of DNA methylation for cancer detection and molecular classification. J Biochem Mol Biol 2007; 40:135-141.
    57. Lofton-Day C, Model F, Devos T, et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem 2008; 54:414-423.
    58. Liew CC, Ma J, Tang HC, et al. The peripheral blood transcriptome dynamically reflects system wide biology:a potential diagnostic tool. J Lab Clin Med 2006; 147:126-132.
    59. Han M, Liew CT, Zhang HW, et al. Novel blood-based, five-gene biomarker set for the detection of colorectal cancer. Clin Cancer Res 2008; 14:455-460.
    60. Brunagel G, Vietmeier BN, Bauer AJ, et al. Identification of nuclear matrix protein alterations associated with human colon cancer. Cancer Res 2002; 62: 2437-2442.
    61. Leman ES, Schoen RE, Magheli A, et al. Evaluation of colon cancer-specific antigen 2 as a potential serum marker for colorectal cancer. Clin Cancer Res 2008; 14:1349-1354.
    62. Hurst NG, Stocken DD, Wilson S, et al. Elevated serum matrix metalloproteinase 9 (MMP-9) concentration predicts the presence of colorectal neoplasia in symptomatic patients. Br J Cancer 2007; 97:971-977.
    63. Maurel J, Nadal C, Garcia-Albeniz X, et al. Serum matrix metalloproteinase 7 levels identifies poor prognosis advanced colorectal cancer patients. Int J Cancer 2007; 121:1066-1071.
    64. Saito N, Kameoka S. Serum laminin is an independent prognostic factor in colorectal cancer. Int J Colorectal Dis 2005; 20:238-244.
    65. Di Nicolantonio F, Martini M, Molinari F, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 2008; 26:5705-5712/
    66. Sartore-Bianchi A, Martini M, Molinari F, et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res 2009; 69:1851-1857.
    67.Prenen H, De Schutter J, Jacobs B, et al. PIK3CA mutations are not a major determinant of resistance to the epidermal growth factor receptor inhibitor cetuximab in metastatic colorectal cancer. Clin Cancer Res 2009; 15:3184-3188.
    68. Sturm I, Kohne CH, Wolff G, et al. Analysis of the p53/BAX pathway in colorectal cancer:low BAX is a negative prognostic factor in patients with resected liver metastases. J Clin Oncol 1999; 17:1364-1374.
    69. Krajewski S, Tanaka S, Takayama S, Set al. Investigation of the subcellular distribution of the bcl-2 oncoprotein:residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 1993; 53: 4701-4714.
    70. Stewart BW. Mechanisms of apoptosis:integration of genetic, biochemical, and cellular indicators. J Natl Cancer Inst 1994; 86:1286-1296.
    71. Sinicrope FA, Ruan SB, Cleary KR, et al. bcl-2 and p53 oncoprotein expression during colorectal tumorigenesis. Cancer Res 1995; 55:237-241.
    72. Bronner MP, Culin C, Reed JC, et al. The bcl-2 protooncogene and the gastrointestinal epithelial tumor progression model. Am J Pathol 1995; 146:20-26.
    73. Huerta S, Goulet EJ, Livingston EH. Colon cancer and apoptosis. Am J Surg 2006; 191:517-526.
    74. Ofner D, Riehemann K. Maier H, et al. Immunohistochemically detectable bcl-2 expression in colorectal carcinoma:correlation with tumour stage and patient survival. Br J Cancer 1995; 72:981-985.
    75. Leahy DT, Mulcahy HE, O'Donoghue DP, et al. bcl-2 protein expression is associated with better prognosis in colorectal cancer. Histopathology 1999; 35: 360-367.
    76. Torsello A, Garufi C, Cosimelli M, et al. on behalf of the Colorectal Disease Management Team, Regina Elena Cancer Institute, Rome, Italy. P53 and bcl-2 in colorectal cancer arising in patients under 40 years of age:Distribution and prognostic relevance. Eur J Cancer 2008; 44:1217-1222.
    77. Tollenaar RA, van Krieken JH, van Slooten HJ, et al. Immunohistochemical detection of p53 and Bcl-2 in colorectal carcinoma:no evidence for prognostic significance. Br J Cancer 1998; 77:1842-1847.
    78. Baretton GB, Diebold J, Christoforis G, et al. Apoptosis and immunohistochemical bcl-2 expression in colorectal adenomas and carcinomas. Aspects of carcinogenesis and prognostic significance. Cancer 1996; 77:255-264.
    79. Kaklamanis L, Savage A, Whitehouse R, et al. Bcl-2 protein expression: association with p53 and prognosis in colorectal cancer. Br J Cancer 1998; 77: 1864-1869.
    80. Schneider HJ, Sampson SA, Cunningham D, et al. Bcl-2 expression and response to chemotherapy in colorectal adenocarcinomas. Br J Cancer 1997; 75:427-431.
    81. Laurent P, Xavier D, Jean FS, et al. Loss of Bcl-2 expression in colon cancer:A prognostic factor for recurrence in stage II colon cancer. Surg Oncol 2009; 18: 357-365.
    82. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol.2001; 2:127-137.
    83. Scaltriti M, Baselga J. The epidermal growth factor receptor pathway:a model for targeted therapy. Clin Cancer Res 2006; 12:5268-5272.
    84. Harari PM. Epidermal growth factor receptor inhibition strategies in oncology. Endocr Relat Cancer 2004; 11:689-708.
    85. Nicholson RI, Gee JM, Harper ME. EGFR and cancer prognosis. Eur J Cancer. 2001;37:S9-S15.
    86. Mackenzie MJ, Hirte HW, Glenwood G, et al. A phase Ⅱ trial of ZD1839 (Iressa) 750 mg per day, an oral epidermal growth factor receptor-tyrosine kinase inhibitor, in patients with metastatic colorectal cancer. Invest New Drugs 2005; 23:165-170.
    87. Santoro A, Comandone A, Rimassa L, et al. A phase Ⅱ randomized multicenter trial of gefi tinib plus FOLFIRI and FOLFIRI alone in patients with metastatic colorectal cancer. Ann Oncol.2008; 19:1888-1893.
    88. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004; 351:337-345.
    89. Sobrero AF, Maurel J, Fehrenbacher L, et al. EPIC:phase Ⅲ trial of cetuximab plus irinotecan after fl uoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. J Clin Oncol 2008; 26:2311-2319.
    90. Van Cutsem E, Nowacki M, Lang I, et al. Randomized phase Ⅲ study of irinotecan and 5-FU/FA with or without cetuximab in the fi rst-line treatment of patients with metastatic colorectal cancer (mCRC):the CRYSTAL trial. J Clin Oncol 2007; 25.
    91. Bokemeyer C, Bondarenko I, Makhson A, et al. Cetuximab plus 5-FU/FA/ oxaliplatin (FOLFOX-4) versus FOLFOX-4 in the fi rst-line treatment of metastatic colorectal cancer (mCRC):OPUS, a randomized phase Ⅱ study. J Clin Oncol 2007; 25.
    92. Saltz LB, Meropol NJ, Loehrer PJ, et al. Phase Ⅱ trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 2004; 22:1201-1208.
    93. Jonker DJ, O'Callaghan CJ, Karapetis CS, et al. Cetuximab for the treatment of colorectal cancer. N Engl J Med 2007; 357:2040-2048.
    94. Van Cutsem E, Peeters M, Siena S, et al. Open-label phase Ⅲ trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol. 2007;25:1658-1664.
    95. Peeters M, Wilson G, Ducreux M, et al. Phase Ⅲ study (20050181) of panitumumab (pmab) with FOLFIRI versus FOLFIRI alone as second-line treatment (tx) in patients (pts) with metastatic colorectal cancer (mCRC):pooled safety results. J Clin Oncol.2008; 26:suppl.
    96. Siena S, Tabernero J, Burkes RL, et al. Phase Ⅲ study (PRIME/20050203) of panitumumab (pmab) with FOLFOX compared with FOLFOX alone in patients (pts) with previously untreated metastatic colorectal cancer (mCRC):pooled safety data. J Clin Oncol 2008; 26:(suppl.
    97. Hecht JR, Mitchell E, Chidiac T, et al. A randomized phase ⅢB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 2009; 27: 672-680.
    98. Tol J, Koopman M, Cats A, et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 2009; 360:563-572.
    99. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1:27-31.
    100. Ellis LM. Angiogenesis and its role in colorectal tumor and metastasis formation. Semin Oncol 2004; 3:3-9.
    101. Ellis LM. Epidermal growth factor receptor in tumor angiogenesis. Hematol Oncol Clin North Am 2004; 18:1007-1021.
    102. Ciardiello F, Troiani T, Bianco R, et al. Interaction between the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor (VEGF) pathways:a rational approach for multi-target anticancer therapy. Ann Oncol 2006; 17:ⅶ109-ⅶ114.
    103. Ciardiello F, Bianco R, Caputo R, et al. Antitumor activity of ZD6474, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, in human cancer cells with acquired resistance to antiepidermal growth factor receptor therapy. Clin Cancer Res 2004; 10:784-793.
    104. Tortora G, Ciardiello F, Gasparini G. Combined targeting of EGFRdependent and VEGF-dependent pathways:rationale, preclinical studies and clinical applications. Nat Clin Pract Oncol 2008; 5:521-530.
    105. Bianco R, Rosa R, Damiano V, et al. Vascular endothelial growth factor receptor-1 contributes to resistance to anti-epidermal growth factor receptor drugs in human cancer cells. Clin Cancer Res 2008; 14:5069-5080.
    106. Vallbohmer D, Zhang W, Gordon M, et al. Molecular determinants of cetuximab effi cacy. J Clin Oncol 2005; 23:3536-3544.
    107. Nagashima F, Zhang W, Gordon M, et al. EGFR, Cox-2, and EGF polymorphisms associated with progression-free survival of EGFR-expressing metastatic colorectal cancer patients treated with single-agent cetuximab. J Clin Oncol 2007; 25.
    108. Wang XQ, Li H, Van Putten V, et al. Oncogenic K-Ras regulates proliferation and cell junctions in lung epithelial cells through induction of cyclooxygenase-2 and activation of metalloproteinase-9. Mol Biol Cell 2009; 20:791-800.
    109. Smakman N, Kranenburg O, Vogten JM, et al. Cyclooxygenase-2 is a target of KRASD12, which facilitates the outgrowth of murine C26 colorectal liver metastases. Clin Cancer Res 2005; 11:41-48.
    110. Pai R, Soreghan B, Szabo IL, et al. Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med 2002; 8:289-293.
    111. Scartozzi M, Bearzi I, Pierantoni C, et al. Nuclear factor-kB tumor expression predicts response and survival in irinotecan-refractory metastatic colorectal cancer treated with cetuximab-irinotecan therapy. J Clin Oncol 2007; 25:3930-3935.
    112. Zhang W, Gordon M, Schultheis AM, et al. FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab. J Clin Oncol 2007; 25:3712-3718.
    113. Bibeau F, Lopez-Crapez E, Di Fiore F, et al. Impact of Fc{gamma}RⅡa-Fc{gamma}RⅢa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J Clin Oncol 2009; 27:1122-1129.
    114. Negri F, Musolino A, Naldi N, et al. Immunoglobulin G fragment C receptor polymorphisms and clinical outcome of EGFR-expressing metastatic colorectal cancer patients treated with cetuximab-based therapy. Abstract presented at:14th ECCO; September 23-27,2007; Barcelona, Spain. Eur J Cancer.2007; 5:96.
    115. Lopez-Albaitero A, Ferris RL. Immune activation by epidermal growth factor receptor specifi c monoclonal antibody therapy for head and neck cancer. Arch Otolaryngol Head Neck Surg.2007; 133:1277-1281.
    116. Oden-Gangloff A, Di Fiore F, Bibeau F, et al. TP53 mutations predict disease control in metastatic colorectal cancer treated with cetuximabbased chemotherapy. Br J Cancer 2009; 100:1330-1335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700