卵泡抑素相关蛋白抑制血管内皮细胞凋亡的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究背景与目的
     血管内皮细胞(vascular endothelial cell, VEC)是循环血液与血管平滑肌间的机械屏障。VEC的功能相当广泛,除起转运屏障作用外,还具有分泌功能,可以合成分泌多种物质,对调节血管紧张度、血液流通、细胞生成、炎症反应、免疫等功能具有重要作用。多种因素可通过不同机制与途径损伤血管内皮细胞,使内皮屏障作用减弱,血中脂蛋白过多地进入动脉壁沉积下来,被清道夫细胞吞噬形成泡沫细胞;内皮细胞受损后,炎细胞、血小板的粘附与内容物的释放又加重了内皮细胞损伤,从而逐渐形成粥样硬化斑块,因此寻找一种应用方便、专一性强、来源丰富、效果良好的VEC保护剂也越来越引起人们的重视。
     本课题以血管内皮细胞为靶细胞,以卵泡抑素相关蛋白(Follistatin Related Protein, FRP)为主要研究对象,以Western Blot、Si-RNA、Rt-PCR、ChIP assay等实验技术为研究手段,重点探讨FRP对VEC的保护作用,力求阐明该蛋白对VEC的抗凋亡机制及其在动脉粥样硬化中的病理意义。
     二、材料与方法
     1、根据验证样性的基因编码序列获得FRP编码区cDNA连接于表达载体pET32a,构建表达重组子,转化入Origami (DE3), 1mM IPTG诱导蛋白表达,使用Ni-NTA His Band Resins, Sephacryl S-100纯化蛋白,肠激酶酶切融合蛋白并鉴定。
     2、分离脐带静脉血管内皮细胞,并用含有胎牛血清的1640完全培养基进行细胞培养,每2-3天换液一次,定期进行消化传代。
     3、将C段带有FLAG标签的FRP基因片段连接到pcDNA 4/TO上,先后将pcDNA 6/TR和pcDNA4/T0/FRP-FLAG转染至内皮细胞系EAHY926中,用blasticidin和zeocin筛选稳定转染的单克隆细胞。
     4、制备ApoE基因敲除小鼠为背景的FRP转基因动物,ApoE基因缺陷小鼠与ApoE基因缺陷FRP转基因小鼠,构建动脉粥样硬化动物模型。
     5、通过PI-Annexin-V双染后流式细胞仪分析,研究FRP重组蛋白FRP抗ox-LDL诱导的细胞凋亡维持HUVEC的细胞活性。
     6、通过rt-PCR WesternBlot等方法检测FRP下游抗凋亡蛋白。
     三、结果
     1.给予ApoE缺失小鼠及ApoE基因缺陷-FRP转基因小鼠喂养12周。TUNEL提示ApoE缺失小鼠动脉粥样硬化斑块形成后血管内皮细胞凋亡增加;ApoE基因缺陷-FRP转基因小鼠TUNEL染色显示凋亡的内皮细胞显著少于ApoE组。用oxLDL的终浓度依次为0ug/ml、10ug/ml、20ug/ml、30ug/ml、50ug/ml(0ug/ml oxLDL作为对照组)处理HUVECs直接影响FRP的表达,结果发现处理后HUVECs的FRP表达量与oxLDL的浓度呈反比。
     2.细菌可溶性的蛋白经Ni-His band及Sephadex Sephacryl S-100纯化酶切蛋白后,得到目的蛋白。
     3.用浓度为50μg/ml的ox-LDL处理HUVECs,与对照组相比细胞变圆,贴壁细胞减少。100ng/ml的FRP重组蛋白可以抗ox-LDL诱导的细胞凋亡。MTT检测提示,随着ox-LDL浓度的增加,内皮细胞的存活能力逐渐降低;不同浓度的FRP和ox-LDL对内皮细胞进行处理时,发现FRP可以抵抗ox-LDL诱导的内皮细胞凋亡,当FRP浓度为100ng/ml时有显著性差异。FRP浓度大于80ng/ml时可显著提高细胞活性。FACS提示FRP可显著降低凋亡早期annexin V阳性细胞数。
     4.按如下方法处理细胞24小时:1、空白对照组+50μg/ml LDL.2、+50μg/mloxLDL.3、+50μg/ml oxLDL+50ng/ml FRP.4、+50μg/ml oxLDL+75ng/ml FRP.5、+50μg/ml oxLDL+100ng/ml FRP。实验发现,FRP可以上调磷酸化Akt的表达,从而激活磷酸化Akt的下游基因——磷酸化Bad的表达。然而,Akt的表达量并未随着FRP的表达量而改变, Bcl2的表达量随着FRP浓度的增高而显著性增加。
     5.利用转染Bcl2 siRNA的方法抑制Bcl2的蛋白表达,可使Bcl2蛋白表达量降低约50%(Scramble RNA组为对照组)。用FRP诱导Bcl2表达发现Bcl2 siRNA组与对照组相比Bcl2的表达量无明显增加。在Scramble RNA组中可以观察到FRP对ox-LDL诱导的HUVEC凋亡仍有保护作用,而在Bcl2 siRNA组,FRP的保护作用丧失。
     四、结论
     本次课题体内和体外实验都证实了ox-LDL通过抑制内皮细胞中FRP的蛋白表达从而诱导内皮细胞凋亡;同时发现,FRP是通过转录水平上调Bcl2的蛋白表达从而抑制ox-LDL诱导内皮细胞凋亡,发挥其抗内皮细胞凋亡、延缓动脉粥样硬化发展的功能。
●Background and objective
     Vascular endothelial cell (VECs) are mechanical barrier between circulating blood and vascular smooth muscles. VEC has multiple functions;not only plays a vital role in isolation, but also has secretory function. VEC could synthesis and secrete of a variety of cytokines,regulating vascular tone, blood circulation, cell proliferation, inflammation, immune response and so on. In the progression of atherosclerosis, many deleterious factors directly damage endothelial barrier through different mechanisms. After VEC damaged, inflammatory cells, platelet adhesion and the release of the factors also increased the endothelial cell injury, which gradually formed atherosclerotic plaques. Amongst these factors, oxidated LDL leads to macrophage migration, foam cell formation and plaque progression. So maintain the cell viability of VEC is pivotal in prevent and treatment of atherosclerotic diseases.
     In present study, we used follistatin related protein as a protective factor aginst ox-LDL induced endothelial damage. Then we identified the anti apoptosis pathway of FRP by the methods of Western Blot, Si-RNA, Rt-PCR, ChIP assay etc, try to find another protective factor in future atherosclerosis treatment.
     ●Material and Methods
     1. Invitro expressed the coden sequence of the target gene by vector pET32a in EColi Origami (DE3). The most cell expressed recombinant protein induced by 1 mM IPTG. Total cell protein was extracted purified by Ni-NTA and Sephacryl S-100. Then the fusion protein was cleaved by enterokinase. Then the protein went on electrophoresis on 12%SDS-PAGE, identified by CBB stain.
     2. Seperated Human Umbilical Vein Endothelial Cells(HUVECs), and cultured in RPMI 1640 supplement with 10% fetal bovine serum (FBS) and antibiotic.
     3. Whole length of FRP cDNA with signal peptide and C-terminal FLAG sequence was cloned into pcDNA 4/TO. EAHY926 were transfected with pcDNA 6/TR and pcDNA4/TO/FRP-FLAG and then selected by blasticidin and zeocin to generate stably transfected cells.
     4. Investigate FRP functions in atherosclerosis animal mode. Setup ApoE gene difficient background FRP transgenic mice. Then feed ApoE difficient mice and ApoE difficient FRP transgenic mice with high fat food. 5. Study the recombinant FRP anti ox-LDL-induced HUVEC apoptosis function by PI-Annexin V stain by fluorescence activated cell sorting. 6. Explore the down stream anti apoptosis protein regulated by FRP by means of rt-PCR and western blot.
     ●Results
     1. After extraction and purification the FRP was verified.
     2. The ApoE deficient mice were feed with high cholesterol diet (1.0% cholesterol) for 12 weeks. TUNEL stain indicated the apoptosis cells in the endothelium of ApoE difficient mice but has significant low number in ApoE-FRP-mice. With Ong oxLDL,50ng/ml oxLDL to HUVECs for 24h, experiments showed that FRP protein levels in ox-LDL treated HUVECs were decreased in dose response manner.
     3. When HUVECs were treated with 50ug/ml ox-LDL, the cell became round and de-adhesion from culture plates. 100ng/ml The recombined FRP can keep the cells from ox-LDL induced floating. The MTT assays showed that the cell viability was decreased along with the increased concentration of ox-LDL. The recombined FRP, concentration at 100ng/ml, can ameliorate ox-LDL damage. The cell viabilities were significantly increase when FRP were administrated in cells when FRP concentration above 80ng/ml. The FACS analysis showed FRP significantly decreased annexin V positive cells.
     4. HUVECs were cultured and made quiescent for 12h, then in the presence of 50ug/ml ox-LDL and different concentrations of FRP(50ng/ml, 75ng/ml, 100ng/ml) for 24h:1. Control group treated with Ong ox-LDL (add 50ug/ml LDL as control).2:ox-LDL group, treated with 50ug/ml ox-LDL.3,4,5:FRP protect groups. The cells were challenged with 50ug/ml ox-LDL and protect with 50ug/ml FRP (group 3),75ng/ml FRP (group 4) or 100ng/ml FRP (group 5). In our cells model, FRP promote Akt phosphorylation. Phosphorylated Bad, the down stream target of phosphorylated Akt, was also activated. However the expression levels of total Akt was not alternated. The Bad partner protein, Bcl2, expression level was significantly elevated along with the FRP concentration.
     5. We used Bcl2 siRNA knocked down Bcl2, expression. The Bcl2, protein level decreased about 50%. FRP's protection effects were abolished by Bcl2 siRNA. When we use FRP to induce Bcl2 expression, the Bcl2 protein level cannot increase significantly in siRNA groups. The FRP still can protect HUVECs from ox-LDL induced damage in scramble nucleotide group. Nevertheless in Bcl2 siRNA groups, FRP lost the protective effect.
     ●Conclusions
     In present study, we have demonstrated that ox-LDL induce endothelial cell apoptosis in vitro and in vivo which leads to endothelial cells apoptosis; reintroduce FRP inhibits ox-LDL induced endothelial cell apoptosis thought up regulate Bcl2 expression at the transcriptional level.
引文
1. Lusis AJ. Atherosclerosis. Nature.2000;407:233-241.
    2. Sima AV, Stancu CS, Simionescu M. Vascular endothelium in atherosclerosis. Cell Tissue Res.2009; 335:191-203.
    3. Vannini N, Pfeffer U, Lorusso G, Noonan DM, Albini A. Endothelial cell aging and apoptosis in prevention and disease:E-selectin expression and modulation as a model. Curr Pharm Des.2008:14:221-225.
    4. Chlenski A, Liu S, Baker LJ, Yang Q, Tian Y, Salwen HR, Cohn SL. Neuroblastoma angiogenesis is inhibited with a folded synthetic molecule corresponding to the epidermal growth factor-like module of the follistatin domain of SPARC. Cancer Res.2004:64:7420-7425.
    5. Sage EH, Reed M, Funk SE, Truong T, Steadele M, Puolakkainen P, Maurice DH, Bassuk JA. Cleavage of the matricellular protein SPARC by matrix metalloproteinase 3 produces polypeptides that influence angiogenesis.J Biol Chem. 2003:278:37849-37857.
    6. Wang H, Fertala A, Ratner BD, Sage EH, Jiang S. Identifying the SPARC binding sites on collagen I and procollagen I by atomic force microscopy. Anal Chem. 2005:77:6765-6771.
    7. Liu S, Wang L, Wang W, Lin J, Han J, Sun H, Guo H, Sun R, Wu Q. TSC-36/FRP inhibits vascular smooth muscle cell proliferation and migration. Exp Mol Pathol. 2006:80:132-140.
    8. Hambrock HO, Kaufmann B, Muller S, Hanisch FG, Nose K, Paulsson M, Maurer P, Hartmann U. Structural characterization of TSC-36/Flik:analysis of two charge isoforms. J Biol Chem.2004;279:11727-11735.
    9. Oshima Y, Ouchi N, Sato K, Izumiya Y, Pimentel DR, Walsh K. Follistatin-like 1 is an Akt-regulated cardioprotective factor that is secreted by the heart. Circulation.2008; 117:3099-3108.
    10. Lara-Pezzi E, Felkin LE, Birks EJ, Sarathchandra P, Panse KD, George R, Hall JL, Yacoub MH, Rosenthal N, Barton PJ. Expression of follistatin-related genes is altered in heart failure. Endocrinology.2008;149:5822-5827.
    11. Ouchi N, Oshima Y, Ohashi K, Higuchi A, Ikegami C, Izumiya Y, Walsh K. Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric oxide synthesis-dependent mechanism. J Biol Chew.2008.
    12. Chan QK, Ngan HY, Ip PP, Liu VW, Xue WC, Cheung AN. Tumor suppressor effect of follistatin-like 1 in ovarian and endometrial carcinogenesis-a differential expression and functional analysis. Carcinogenesis.2008.
    13. Ehara Y, Sakurai D, Tsuchiya N, Nakano K, Tanaka Y, Yamaguchi A, Tokunaga K. Follistatin-related protein gene (FRP) is expressed in the synovial tissues of rheumatoid arthritis, but its polymorphisms are not associated with genetic susceptibility. Clin Exp Rheuwatol.2004;22:707-712.
    14. Clutter SD, Wilson DC, Marinov AD, Hirsch R. Follistatin-like protein 1 promotes arthritis by up-regulating IFN-gamma. J Immunol.2009;182:234-239.
    15. Kawabata D, Tanaka M, Fujii T, Umehara H, Fujita Y, Yoshifuji H, Mimori T, Ozaki S. Ameliorative effects of follistatin-related protein/TSC-36/FSTL1 on joint inflammation in a mouse model of arthritis. Arthritis Rheum.2004;50:660-668.
    16. Tanaka M, Ozaki S, Kawabata D, Kishimura M, Osakada F, Okubo M, Murakami M, Nakao K, Mimori T. Potential preventive effects of follistatin-related protein/TSC-36 on joint destruction and antagonistic modulation of its autoantibodies in rheumatoid arthritis. Int Immunol.2003;15:71-77.
    17. Le Luduec JB, Condamine T, Louvet C, Thebault P, Heslan JM, Heslan M, Chiffoleau E, Cuturi MC. An immunomodulatory role for follistatin-like 1 in heart allograft transplantation. Am J Transplant.2008;8:2297-2306.
    18. Baron S, Escande A, Alberola G, Bystricky K, Balaguer P, Richard-Foy H. Estrogen receptor alpha and the activating protein-1 complex cooperate during insulin-like growth factor-I-induced transcriptional activation of the pS2/TFFl gene. J Biol Chem.2007; 282:11732-11741.
    19. Javelaud D, Mauviel A. Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta:implications for carcinogenesis. Oncogene.2005; 24:5742-5750.
    20. Lim KH, Ancrile BB, Kashatus DF, Counter CM. Tumour maintenance is mediated by eNOS. Nature.2008;452:646-649.
    21. Adams D, Larman B, Oxburgh L. Developmental expression of mouse Follistatin-like 1 (Fstll):Dynamic regulation during organogenesis of the kidney and lung. Gene Expr Patterns.2007;7:491-500.
    22. Kyriakides TR, Bornstein P. Matricellular proteins as modulators of wound healing and the foreign body response. Thromb Haemost.2003;90:986-992.
    23. Ambros V. The functions of animal microRNAs. Nature.2004;431:350-355.
    24. Rosenberg MI, Georges SA, Asawachaicharn A, Analau E, Tapscott SJ. MyoD inhibits Fstll and Utrn expression by inducing transcription of miR-206. J Cell Biol. 2006:175:77-85.
    25. Ouchi N, Oshima Y, Ohashi K, Higuchi A, Ikegami C, Izumiya Y, Walsh K. Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J Biol Chem.2008;283:32802-32811.
    26. Holvoet P, Jenny NS, Schreiner PJ, Tracy RP, Jacobs DR. The relationship between oxidized LDL and other cardiovascular risk factors and subclinical CVD in different ethnic groups:the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis.2007;194:245-252.
    27. Puddu GM, Cravero E, Arnone G, Muscari A, Puddu P. Molecular aspects of atherogenesis:new insights and unsolved questions. J Biomed Sci. 2005:12:839-853.
    28. Affara M, Dunmore B, Savoie C, Imoto S, Tamada Y, Araki H, Charnock-Jones DS, Miyano S, Print C. Understanding endothelial cell apoptosis:what can the transcriptome, glycome and proteome reveal? Philos Trans R Soc Lond B Biol Sci. 2007:362:1469-1487.
    29. Geng YJ. Molecular signal transduction in vascular cell apoptosis. Cell Res. 2001;11:253-264.
    30. Mashimo J, Maniwa R, Sugino H, Nose K. Decrease in the expression of a novel TGF betal-inducible and ras-recision gene, TSC-36, in human cancer cells. Cancer Lett.1997:113:213-219.
    31. Yan Q, Sage EH. SPARC, a matricellular glycoprotein with important biological functions. J Histochem Cytochem.1999; 47:1495-1506.
    32. Wang Q, Keutmann HT, Schneyer AL, Sluss PM. Analysis of human follistatin structure:identification of two discontinuous N-terminal sequences coding for activin A binding and structural consequences of activin binding to native proteins. Endocrinology.2000; 141:3183-3193.
    33. Watanabe T, Pakala R, Katagiri T, Benedict CR. Mildly oxidized low-density lipoprotein acts synergistically with angiotensin II in inducing vascular smooth muscle cell proliferation. J Hypertens.2001; 19:1065-1073.
    34. Cheng J, Zhang J, Merched A, Zhang L, Zhang P, Truong L, Boriek AM, Du J. Mechanical stretch inhibits oxidized low density lipoprotein-induced apoptosis in vascular smooth muscle cells by up-regulating integrin alphavbeta3 and stablization of PINCH-1. J Biol Chew.2007;282:34268-34275.
    35. Widera C, Horn-Wichmann R, Kempf T, Bethmann K, Fiedler B, Sharma S, Lichtinghagen R, Leitolf H, Ivandic B, Katus HA, Giannitsis E, Wollert KC. Circulating Concentrations of Follistatin-Like 1 in Healthy Individuals and Patients with Acute Coronary Syndrome as Assessed by an Immunoluminometric Sandwich Assay. Clin Chem.2009.
    36. Somanath PR, Razorenova OV, Chen J, Byzova TV. Aktl in endothelial cell and angiogenesis. Cell Cycle.2006;5:512-518.
    37. Miyamae T, Marinov AD, Sowders D, Wilson DC, Devlin J, Boudreau R, Robbins P, Hirsch R. Follistatin-like protein-1 is a novel proinflammatory molecule.J Immunol.2006; 177:4758-4762.
    38. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene.1999; 18:6853-6866.
    1. Lusis, A.J., Atherosclerosis. Nature,2000.407(6801):p.233-41.
    2. Sima, A. V., C. S. Stancu, and M. Simionescu, Vascular endothelium in atherosclerosis. Cell Tissue Res,2009.335(1):p.191-203.
    3. Vannini, N., U. Pfeffer, G.Lorusso, et al., Endothelial cell aging and apoptosis in prevention and disease:E-selectin expression and modulation as a model. Curr Pharm Des,2008.14(3):p.221-5.
    4. Chlenski, A., S. Liu, L. J. Baker, et al., Neuroblastoma angiogenesis is inhibited with a folded synthetic molecule corresponding to the epidermal growth factor-like module of the follistatin domain of SPARC. Cancer Res, 2004.64(20):p.7420-5.
    5. Sage, E. H., M. Reed, S. E. Funk, et al., Cleavage of the matricellular protein SPARC by matrix metalloproteinase 3 produces polypeptides that influence angiogenesis. J Biol Chem,2003.278(39):p.37849-57.
    6. Wang, H., A. Fertala, B. D. Ratner, et al., Identifying the SPARC binding sites on collagen I and procollagen I by atomic force microscopy. Anal Chem,2005.77(21):p.6765-71.
    7. Liu, S., L. Wang, W. Wang, et al., TSC-36/FRP inhibits vascular smooth muscle cell proliferation and migration. Exp Mol Pathol,2006.80(2): p.132-40.
    8. Hambrock, H.0., B. Kaufmann, S. Muller, et al,, Structural characterization of TSC-36/Flik:analysis of two charge iso forms. J Biol Chem,2004.279(12):p.11727-35.
    9. Oshima, Y., N. Ouchi, K. Sato, et al., Follistatin-like 1 is an Akt-regulated cardioprotective factor that is secreted by the heart. Circulation,2008.117(24):p.3099-108.
    10. Lara-Pezzi, E., L. E. Felkin, E. J. Birks, et al., Expression of follistatin-related genes is altered in heart failure. Endocrinology, 2008.149(11):p.5822-7.
    11. Ouchi, N., Y. Oshima, K. Ohashi, et al., Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function andrevascularization in ischemic tissue through a nitric oxide synthesis-dependent mechanism. J Biol Chem,2008.
    12. Chan, Q. K., H. Y. Ngan, P.P. Ip, et al., Tumor suppressor effect of follistatin-like 1 in ovarian and endometrial carcinogenesis-a differential expression and functional analysis. Carcinogenesis,2008.
    13. Ehara, Y., D. Sakurai, N. Tsuchiya, et al., Follistatin-related protein gene (FRP) is expressed in the synovial tissues of rheumatoid arthritis, but its polymorphisms are not associated with genetic susceptibility. Clin Exp Rheumatol,2004.22(6):p.707-12.
    14. Clutter, S. D., D. C. Wilson, A. D. Marinov, et al., Follistatin-like pro tein 1 promotes arthri tis by up-regulating IFN-gamma. J Immunol,2009. 182(1):p.234-9.
    15. Kawabata, D., M. Tanaka, T. Fujii, et al., Ameliorative effects of follistatin-related protein/TSC-36/FSTL1 on joint inflammation in a mouse model of arthritis. Arthritis Rheum,2004.50(2):p.660-8.
    16. Tanaka, M., S. Ozaki, D. Kawabata, et al., Potential preventive effects of follistatin-related protein/TSC-36 on joint destruction and antagonistic modulation of its autoantibodies in rheumatoid arthritis. Int Immunol,2003.15(1):p.71-7.
    17. Le Luduec, J. B., T. Condamine, C. Louvet, et al., An immunomodulatory role for follistatin-like 1 in heart allograft transplantation. Am J Transplant,2008.8(11):p.2297-306.
    18. Baron, S., A. Escande, G. Alberola, et al., Estrogen receptor alpha and the activating protein-1 complex cooperate during insulin-like growth factor-Ⅰ-induced transcriptional activation of the pS2/TFFl gene. J Biol Chem,2007.282(16):p.11732-41.
    19. Javelaud, D. and A. Mauviel, Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta:implications for carcinogenesis. Oncogene,2005.24(37): p.5742-50.
    20. Lim, K. H., B. B. Ancrile, D. F. Kashatus, et al., Tumour maintenance is mediated by eNOS. Nature,2008.452(7187):p.646-9.
    21. Adams, D., B. Larman, and L. Oxburgh, Developmental expression of mouse Follistatin-like 1 (Fstl1):Dynamic regulation during organogenesis of the kidney and lung. Gene Expr Patterns,2007.7 (4):p.491-500.
    22. Kyriakides, T. R. and P. Bornstein, Matricellular proteins as modulators of wound healing and the foreign body response. Thromb Haemost,2003. 90(6):p.986-92.
    23. Ambros, V., The functions of animal microRNAs. Nature,2004.431(7006): p.350-5.
    24. Rosenberg, M. I., S. A. Georges, A. Asawachaicharn, et al., MyoD inhibits Fst11 and Utrn expression by inducing transcription of miR-206. J Cell Biol,2006.175(1):p.77-85.
    25. Ouchi, N., Y. Oshima, K. Ohashi, et al., Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J Biol Chem,2008.283(47):p.32802-11.
    26. Holvoet, P., N. S. Jenny, P. J. Schreiner, et al., The relationship between oxidized LDL and other cardiovascular risk factors and subclinical CVD in different ethnic groups:the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis,2007.194(1):p.245-52.
    27. Puddu, G. M., E. Cravero, G. Arnone, et al., Molecular aspects of atherogenesis:new insights and unsolved questions. J Biomed Sci,2005. 12(6):p.839-53.
    28. Affara, M., B. Dunmore, C. Savoie, et al., Understanding endothelial cell apoptosis:what can the transcriptome, glycome and proteome reveal? Philos Trans R Soc Lond B Biol Sci,2007.362(1484):p.1469-87.
    29. Geng, Y. J., Molecular signal transduction in vascular cell apoptosis. Cell Res,2001.11(4):p.253-64.
    30. Mashimo, J., R. Maniwa, H. Sugino, et al., Decrease in the expression of a novel TGF betal-inducible and ras-recision gene, TSC-36, in human cancer cells. Cancer Lett,1997.113(1-2):p.213-9.
    31. Yan, Q. and E. H. Sage, SPARC, a matricellular glycoprotein with important biological functions. J Histochem Cytochem,1999.47(12):p.1495-506.
    32. Wang, Q., H. T. Keutmann, A. L. Schneyer, et al., Analysis of human follistatin structure:identification of two discontinuous N-terminal sequences coding for activin A binding and structural consequences of activin binding to native proteins. Endocrinology,2000.141(9):p. 3183-93.
    33. Watanabe, T., R. Pakala, T. Katagiri, et al., Mildly oxidized low-density lipoprotein acts synergistically with angiotensin Ⅱ in inducing vascular smooth muscle cell proliferation. J Hypertens,2001.19(6):p. 1065-73.
    34. Cheng, J., J. Zhang, A. Merched, et al., Mechanical stretch inhibits oxidized low density lipoprotein-induced apoptosis in vascular smooth muscle cells by up-regulating integrin alphavbeta3 and stablization of PINCH-1. J Biol Chem,2007.282(47):p.34268-75.
    35. Widera, C., R. Horn-Wichmann, T. Kempf, et al., Circulating Concentrations of Follistatin-Like 1 in Healthy Individuals and Patients with Acute Coronary Syndrome as Assessed by an Immunoluminometric Sandwich Assay. Clin Chem,2009.
    36. Somanath, P. R.,0. V. Razorenova, J. Chen, et al., Aktl in endothelial cell and angiogenesis. Cell Cycle,2006.5(5):p.512-8.
    37. Miyamae, T., A. D. Marinov, D. Sowders, et al., Follistatin-like protein-1 is a novel proinflammatory molecule. J Immunol,2006.177(7):p.4758-62.
    38. Pahl, H. L., Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene,1999.18(49):p.6853-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700