藤黄绿菌素的降解特性与缓释制剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物农药藤黄绿菌素(Pyoluteorin,Plt)具有抑制细菌、真菌以及除草的功能,特别是抑制卵菌属真菌具有很强的活性,具有广阔的应用前景。但在生物防治过程中发现,Plt自身化学结构并不稳定,在贮存和大田使用过程中易被降解,影响其防治效果和推广使用。因此研究Plt的降解机理,并寻求延长防治效果的有效方式,是十分必要的。本论文从降解原理和应用方法两个方面着手,对Plt的降解机理和缓释制剂进行了研究,最终目的是寻找延长Plt有效防治时间的方式。
     在降解原理的研究方面,从本实验室所保藏的M18(rsmA-)菌株出发,发酵制备Plt样品。并对Plt降解溶液进行分析,基于HPLC、LC/MS以及核磁共振分析,对Plt降解产物进行了分析及判定,并推测出Plt的降解机理及降解途径:Plt首先失去吡咯环4号位上的Cl,然后在该C位上甲基化,并进一步分解成农药中间体2,6-二羟基苯甲酸和脯氨酸衍生物,最终环状结构分裂生成无紫外吸收的未知物。
     在应用方法的研究方面,借鉴了应用于医药的纳米材料,以改良农药剂型本身为切入点,从农药缓释剂型角度出发,运用HOM(直接模板)法及EISA(挥发性诱导自组装)法一步合成载有Plt的纳米介孔二氧化硅。通过改变载药量、表面活性剂的类型及浓度、反应溶剂系统等手段对Plt-SiO2的释药影响进行了研究。最后摸索出一个缓释效果较好的合成配方:使用HOM法,质量比为m(Plt:Brij56:TMOS:HCl(aq))=0.04:1.4 : 2:1,能够达到持续缓释的效果,28天释放率达到85.13(±2.03)%,通过生化稳定性实验证实,该制剂有效延长了Plt的抑菌效果。基于小角衍射、电子透镜图像及氮吸附解析实验对其进行结构表征,测定为内部具有高度有序的三维六面体立方相结构介孔材料,排布均匀的纳米级管道是载药的通道。
     本论文首次对新型农药Plt的降解产物进行分析,推测出Plt在紫外光下的降解途径,为提高Plt的生物防治效果打下了理论基础。并首次通过对纳米介孔二氧化硅这种农药新剂型的探索,研究提高生物农药在田间应用效力的方式,为新型农药Plt的应用奠定良好基础。
Pyoluteorin (Plt) is a biological pesticide in weeding and inhibiting the growth of bacteria and fungi, especially Oomycetes. However, the instability of its chemical structure easily leads to degradation of Plt during storage and field application, which greatly limits its utilities. So it’s essential to study the mechanism of Plt degradation, or find an effective way to prolonging its biological effects. To address this purpose, the following research was designed in two parts.
     First, study the degradation mechanism. Plt samples with high purity (99.3%) were purified from M18 (rsmA-) bacterial strain. And then, degradated the Plt sample in pure water under ultraviolet light. Analyze the degraded products by HPLC, LC/MS, and NMR, we hypothesize possible degradation products, and base on these products we hypothesize a possible mechanisms and pathways of Plt degradation.
     Sencond, look for new applications. According to researches in clinical drug discovery and pesticide improvement, the“slow-release formulation of Plt-SiO2”(nanophase material of silicon dioxide loading Plt drugs) was synthesized by HOM and EISA methods. Several conditions (including drug loading, surfactant, solvent, etc) were optimized, and the final experimental formula was m(Plt:Brij56:TMOS:HC(laq))=0.04:1.4 : 2:1, synthesizing by HOM method. This formula can continuously release 85.13(±2.03)%of Plt in 28 days. The structure of the formula was further characterized using small-angle diffraction (XRD), TEM imaging, and N2 adsorption-desorption isotherms.
     This is the first report to study the Plt degradation pathways by analyzing the degraded products from purified Plt in several precise methods. And also this is the first report to study the synthesis of slow-release Plt formulations using nanophase materials. It is important to the further study on storage and field application of Plt.
引文
[1]张兴,马志卿,李广泽等。生物农药评述[J],西北农林科技大学学报(自然科学版), 2002,30(2):142-148
    [2]牛军玲,贾素云,张正国.生物农药发展趋势的研究[J],山西化工, 2005, 25 (1):5~7.
    [3]秦学峰,孔凡彬.生物农药的应用现状及前景[J],安徽农业科学, 2006, 34 (16):4024~4027.
    [4]邹芳慧,陈志强,任卫东.面向二十一世纪的生物农药[J],化学工程师, 2003, 99 (6):44~45.
    [5]姚海荣,刘秋祥,扬春梅等.生物农药的应用现状及发展前景[J],农村实用科技息,2007,9:40.
    [6]张锡贞,张红雨,生物农药的应用与研发现状[J],山东理工大学学报(自然科学版),2004,18(1):96-100.
    [7] Mannion, A.M.. Agriculture, environment and biotechnology[J]. Agriculture Ecosystems and Environments. 1995, (53):31-45.
    [8]庾莉萍.生物农药推广应用现状及促进措施[J],农药研究与应用, 2007, 11(4):38~40.
    [9]邓洪渊,孙雪文,谭红。生物农药的研究和应用进展[J],世界科技研究与发展,2005,27(1):76-80
    [10]纪明山,谷祖敏,张杨。生物农药研究与应用现状及发展前景[J],沈阳农业大学学报,2006,37 (4):545-550
    [11] McManus, P.S., Stockwell, V.O., Sundin, G.W., et al, Antibiotic use in plant agriculture[J]. Annu Rev Phytopathol. 2002, (40):443-465.
    [12]杨智健.一株酚嗪-1-羧酸(PCA)降解菌的分离、鉴定及其降解特性研究[硕士论文].上海:上海交通大学. 2007.
    [13]陈快快.鞘氨醇单胞菌DP58降解吩嗪-1-羧酸(PCA)的特性研究和产物鉴定[硕士论文].上海:上海交通大学. 2008.
    [14] Martina MB, Pereza JA, Degradation of a four-pesticide mixture by combined photo-Fentonand biological oxidation, water Research, 2008,(11):87-89
    [15] Burrows HD, Canle ML, Santaballa JA, Steenken S, Reaction pathways and mechanisms of photodegradation of pesticides, J Phototoch photobio ,2002(67):71–108
    [16] Lu JH, Wu LS, Julie N, Ben F and Gan JY, Degradation of pesticides in nursery recycling pond waters, J Agri Food Chem ,2006(54):2658-2663
    [17] Stokes JB,Redfern RE, Effect of sunlight on azadirachtin: antifeeding potency. J. Environ. Sci. Health 1982(17):57-65
    [18] Satoshi H, Aiko S and Hisao H, Environmental remediation by an integrated microave/UV illumination method. Environ. Sci. Technol , 2003(37):5813-5822
    [19]李学德,花日茂,岳永德等.百菌清(chlorothalonil)在水中的光化学降解,应用生态学报,2006,17(6):1091-1094
    [20] Petruta O, Tatiana O, The photocatalytic degradation of dichlorvos under solar irradiation, Journal of Photoch Photobio A ,2008 ,(199):8-13
    [21] Jesus SA, Maria PM, Maria TM, Kinetic study of the degradation of ethiofencarb in aqueous solutions, Pest Manag Sci ,1997,(50):187-194
    [22] Van PR, Schippers B, Lipopolysaccharides of plant-growth promoting Pseudomonas sp.strain WCS417r induce resistance in carnation to fusarium wilt.Netherlands. J Plant Pathol ,1992(98):129-139
    [23]杨成对,宋莉晖,多杀菌素及其光照降解产物分析,高等学校化学学报,2007,(11):2056-2059
    [24] Alexander M, Biodegradation: problems of molecular recalcitrance and microbial fallibility. Advan. Appl. Microbiol , 1965,(7):35-80
    [25]王秋芬,宋湛谦,闫新华,生物农药印楝素的热稳定性研究,河南农业科学,2004,(5):28-32
    [26] Ferrer DB, Stability of pesticides stored on polymeric solid-phase extraction cartriges, J Chromatogr A, 1997,(77)8:161-170
    [27] Bollen WB, Interactions between pesticides and soil microorganisms. Ann. Rev. Microbiol 1961,(15):69-92
    [28] Dana BB, Biomonitoring of exposure to pesticides, J Chem Health Safety 2007,15(6):20-29
    [29] Jose A, Sanchez P, Menta BM, A two-stage scheme for pesticide degradation: Integration of photocatalysis and biological oxidation, J Biotech 2008(1):674-675
    [30] Lartiges SB, Garrigues, PP, Degradation kinetics of organophosphorus and organonitrogen pesticides in different waters under various environmental conditions. Enviro Sci Technol 1995,29:1246-54
    [31] Sunny YS, Michael TW, Hydrolysis of azadirachtin in buffered and natural waters, J Agric Food Chem. 1996,44:1160-1163
    [32] Sun JS, Sun SP, Fan MH, A kinetic study on the degradation of p-nitroaniline by fenton oxidation process, J Hazard Mater ,2007,148:172-177
    [33] Bender C L, Rangaswamy V, Loper J E. Polyketide production byplant-associated pseudomonads[J]. Annu Rev Phytopathol, 1999,37: 175-196.
    [34] Maurhofer M, Keel C, Schnider U, et al. Influence of enhanced antibi-otic production in Pseudomonas fluorescens strain CHA0 on its dis-ease suppressive capacity[J]. Phytopathology, 1992, 82: 190-195.
    [35] Takeda R. Pseudomonas pigments: I. Pyoluterin, a new chlorine-containing pigment produced by Pseudomonas aeruginosa[J]. Hako Kogaku Zasshi, 1958, 36: 281-90.
    [36] Huang X Q. Identification and characterization of pyoluteorin bio-synthetic gene cluster, regulatory gene pltZ and its ABC transport gene cluster in Pseudomonas sp. M18(PhD Dissertation)[D]. Shanghai: university of Shanghai Jiao Tong, 2004.
    [37] Ohmori T, Hagiwara S I, Minoda Y, et al. Production of pyoluteorinand its derivatives from n-paraffin by Pseudomonas aeruginosa S10B2[J]. Agric Biol Chem, 1978, 42: 2031-2036.
    [38] Keel C., Weller D.M., Natsch A.. Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Appl Environ Microbiol, 1996, 62:552-563
    [39] Maurhofer M, Keel C, Défago G, et al. Pyoluteorin production by Pseudomonas fluorescens strain CHA0 is involved in the suppression of Pythium damping-off of cress but not cucumber[J]. European J Plant Pathol, 1994, 100: 221-232.
    [40] Kenny, Peter T M, Hajime, et al. Symbiotic microorganisms of insects: a potential new source for biologically active substances[J]. Pestic Sci,1989, 27(2): 117-131.
    [41] Mikuriya, Takahiro, Akihiro, et al. Production of plant hormone and antifungal antibioticsby Pseudomonas fluorescens S543 grown on ethanol[J]. Hiroshima Daigaku Seibutsu Seisangakubu Kiyo, 2001, 40:33-43.
    [42] Hu H B, Xu Y Q, Zhang X H, et al. Isolation and Characterization ofa new Fluorescent pseudomonas strain that produces both phenazine 1-carboxylic acid and pyoluteorin[J]. J Microbiol Biotechnol, 2005,15(1): 86-90.
    [43] Nowak-Thompson B, Chancey N, Loper J E, et al. Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5[J]. J Bacteriol, 1999, 181: 2166-2174.
    [44] Nowak-Thompson B, Gould S J, Loper J E, et al. Identification and structural analysis of the genes encoding the polyketide syntheses required for pyoluteorin biosynthesis in Pseudomonas fluorescens Pf-5[J]. Gene, 1997, 204: 17-24.
    [45] Cuppels D A, Howell C R, Stothers J B, et al. Biosynthesis of pyoluteorin: a mixed polyketide-tricarboxylic acid cycle origin demonstrated by [1,2-13C2]acetate incorporation[J]. Z Naturforsch Sect C Biosci, 1986,41: 532-536.
    [46] Thomas M G, Birlart M D, Walsh C T. Conversion of L-Proline to Pyrrolyl-2-Carboxyl-S-PCP during Undercylprodigiosin and Pyoluteorin Biosynthesis[J]. Chemistry & Biology, 2002, 9: 171-184.
    [47] Brodhagen M, Henkels M D, Loper J E. Positive Autoregulation and Signaling Properties of Pyoluteorin, an Antibiotic Produced by the Biological Control Organism Pseudomonas fluorescens Pf-5[J]. Appl Environ Microbiol, 2004, 70(3): 1758-1766.
    [48] Huang X Q, Zhu D H, Xu Y Q, et al. Identification and characterization of pltZ, a gene involved in the repression of pyoluteorin biosynthesis in Pseudomonas sp. M18[J]. FEMS Microbiology Letters, 2004,232: 197-202.
    [49] Ge Y H, Huang X Q, Xu Y Q, et al. Phenazine-1-carboxylic acid is negatively regulated and pyoluteorin positively regulated by gacA in Pseudomonas sp. M18[J]. FEMS Microbiology Letters, 2004, 237:41-47.
    [50] Wang Z, He X, Xu Y Q, et al. Differential effect of temperature on Plt and PCA synthesis in a rsmA inactivated mutant strain of Pseudomonas sp. M-18[J]. Sheng Wu Gong Cheng Xue Bao, 2005, 21(1): 118-122.
    [51] Brodhagen M, Henkels M D, Loper J E. Regulation of pyoluteorin production inPseudomonas fluorescens Pf-5 includes positive auto-regulation and repression by 2,4-diacetylphloroglucinol and pyrrolnitrin[J]. Phytopathol, 2003, 93: 11.
    [52] Duffy B K, Defago G. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol Strains[J]. Appl Environ Microbiol, 1999, 65(6): 2429-2438.
    [53] Yuan Z, Cang S, Yoshimoto A, et al. High production of pyoluteorin and 2,4-diacetylphloroglucinol by Pseudomonas fluorescens S272 grown on ethanol as a sole carbon source[J]. J Ferm Bioengi, 1998, 86(6): 559-563.
    [54] Kraus J, Loper J E. Characterization of a genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5[J]. Appl Environ Microbiol, 1995, 61: 849-854.
    [55]许煜泉,唐玮宁,徐悌惟,等.筛选假单胞菌株M18防治大棚黄瓜枯萎病害[J].上海交通大学学报, 1999, 33(2): 210-213.
    [56]凌世海.我国农药加工工业现状和发展建议[J].农药, 1999,38(10): 19-24.[4]
    [57]华乃震.水基性农药剂型和表面活性剂进展[C]//中国十五农药助剂发展战略研讨会学术报告汇编.南京:中国化工学会专业委员会和中国石化集团金陵石化公司化工二厂, 2000: 6-9.
    [58]武志杰,陈利军.缓释/控释肥料:原理与应用[M].北京:科学出版社,2003.
    [59] ]蒋新国,王孝俊,朱海芳,等.海藻酸钠的分子量与缓释作用[J].药学学报,1994,29(4) :306-310.
    [60]祝志峰,卓仁禧.淀粉囊化农药控释缓释技术[J].高分子通报,2003,(2):8-14.
    [61]王永健,张政朴,何炳林.环糊精聚合物的高分子效应[J].化学进展,2000,12(3) :318-324.
    [62]宋健,陈磊,李效军.微胶囊化技术及应用[M].北京:化学工业出版社,2001.
    [63]华乃震.草甘膦活性和助剂[J].农药, 2002, 41(2): 1-5.
    [64] Fukuchi. Insecticidal or miticidal combinations containing chlorfenapyr: US, 6337345[P]. 2000-01-08.
    [65]刘玮,彭运卿.农药新剂型—缓释微胶囊应用现状及其所致农药中毒「J].职业医学,1995,22(2) :42-
    [66] IUPAC Manual of Symbols and Terminology.Pure Appl.Chem[S],1972,31,578
    [67] Vartuli J.C.,Kresge C.T.,Leonowicz M.E., etc. Synthesis of mesoporous materials: liquid-crystal templating versus intercalation of layered silicates, Chem.Mater[J]. 1994,6,2070-2077
    [68] Firouzi A.,Kumar D.,Bull L.M.,etc.Cooperative organization of inorganic-surfactant and biomimetic assemblies,Science,[J]1995,267,1138-1143
    [69] Chen C.Y.,Burkett S.L.,Li H.X.,Studies on mesoporous materials.II.synthesis mechanism of MCM-41,Microporous Mater[J].1993,2,27-34
    [70] Holland T., Isbester P.K.,.Blanford C.F, Munson E.J, Stein A., J.Am.Chem. Soc.1997, 119,6796-6803.
    [71] Q.Huo,D.I.Margolese,G.D.Stucky,Chem.Mater[J].1996,8,1147-1160.
    [72] Huo Q.S.,Margolese D.I.,Ciesla U.,etc.Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays,Chem.Mater[J].1994,6,1176-1191
    [73] Che S., Liu Z., Ohsuma T., Sakamoto K., Terasaki O., Tatsumi T. Nature,2004,429,281-284.
    [74] Tanev,P.T.;Pinnavaia,T.J.Science 1995,267,865-867.
    [75] El-Safty, S.A., Evans, J. Formation of highly ordered mesoporous silica materials adopting lyotropic liquid crystal mesophases. Journal of Materials Chemistry, 2002.12 (1):117-123.
    [76] El-Safty, S.A., Hanaoka, T. Monolithic nanostructured silicate family templated by lyotropic liquid-crystalline nonionic surfactant mesophases,Chemistry of Materials,2003,15 (15): 2892-2902
    [77] V.-Regi M.,Ramila A.,Real R.P.,etc.A new property of MCM-41: drug delivery system,Chem.Mater[J].2001,13,308-311.
    [78] V.Regi M.,Doadrio J.C.,Doadrio A.L.,etc.Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin,Solid States Ionics,2004,172,435-439
    [79] Horcajada P.,Ramila A.,Pariente J.P.,etc.Influence of pore size of MCM-41 matrices on drug rate,Microporous Mesoporous Mater[J].2004,68,105-109
    [80] Horcajada P.,Ramila A.,Ferey G.,etc.Influence of superficial organic modification of MCM-41 on drug delivery rate,Solid State Sci[J].2006,8,1243-1249
    [81] Anderson J.,Rosenholm J.,Areva S.,etc.Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro-and mesoporous silica matrices,Chem.Mater.2004,16,4160-4167
    [82] Zhu Y.,Shi J.,Li Y.,etc,Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface,Micoporous Mesoporous Mater[J].2005,85,75-81
    [83] Zeng W.,Qian X.,Yin J.,etc.The drug delivery system of MCM-41 materials via co-condensation synthesis,Mater.Chem.Phys[J].2006,97,437-441
    [84] Charnay C.,Begu S.,T-Peteilh C.,etc.Inclusion of ibuprofen in mesoporous templated silica:drug loading and release property,Euro.J.Pharm.Biopharm.2004, 57,533-540
    [85] Qu F.,Zhu G.,Lin H.,etc.Drug self-templated synthesis of ibuprofen/mesoporous silica for sustained release,Eur.J.Inorg.Chem[J].2006,3943-3947.
    [86] Xue J M, Shi M. PLGA/Mesoporous Silica Hybrid Structure for Controlled Drug Release [J]. J. Controlled Release, 2004, 98(2): 209?217.
    [87] Hwang Y J, Oh C, Oh S G. Controlled Release of Retinol from Silica Particles Prepared in O/W/O Emulsion: The Effects of Surfactants and Polymers [J]. J. Controlled Release, 2005, 106(3): 339?349.
    [88] El-Safty, S. A.; Hanaoka, T. Chem.Mater. 2003, 15, 2892.
    [89] Alonso B., Clinard C., Durand D., New routes to mesoporous silica-based spheres with functionalisedsurfaces. Chem. Commun. 2005, 1746-1748.
    [90] Burkett S. L., Sims S. D., Mann S., Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chem.Commun. 1996, 1367-1368.
    [91] Mercier L., Pinnavaia T. J., Direct synthesis of hybrid organic-inorganic nanoporous silica by a neutral amine assembly route: Structure-function control by stoichiometric incorporation of organosiloxane molecules. Chem. Mater. 2000, 12, 188-196.
    [92] Fowler C. E., Burkett S. L., Mann S., Synthesis and characterization of ordered organo-silica-surfactant mesophases with functionalized MCM-41-type architecture. Chem. Commun. 1997, 1769-1770.
    [93] Tolbert S. H., Landry C. C., Stucky G. D., Chmelka B. F., Norby P., Handon J. C., A. Monnier Phase transitions in mesostructured silica/surfactant composites: Surfactant packing and the role of charge density matching. Chem. Mater. 2001, 13, 2247-2256.
    [94] Israelachvili J. N., Mitchell D. J., Ninham B. W., Theory of self-assembly of hydrocarbonamphiphiles into micelles and bilayers. J. Chem. Soc., Faraday Trans. 2. 1976, 72, 1525-1568.
    [95] Huo Q., Margolese D. I., Ciesla U., Demuth D. G., Feng P., Gier T. E., P. Sieger, A. Firouzi, B. F. Chmelka, F. Schüth, G. D. Stucky, Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem. Mater. 1994, 6, 1176-1191.
    [96] Kim J. M., Sakamoto Y., Hwang Y. K., Kwon Y-U., Terasaki O., Park S-E., Stucky G. D., Structural design of mesoporous silica by micelle-packing control using blends of amphiphilic block copolymers. J. Phys. Chem. B 2002, 106, 2552-2558.
    [97] Shen S., Garcia-Bennett A. E., Liu Z., Lu Q., Shi Y., Yan Y., Yu C., Liu W., Cai Y., Terasaki O., Zhao D., Three-dimensional low symmetry mesoporous silica structures templated from tetra-headgroup rigid bolaform quaternary ammonium surfactant. J. Am. Chem. Soc. 2005, 127, 6780-6787.
    [98]江琳沁. PluronicF127和P123嵌段共聚物的胶束化及其胶束增溶[J].福州大学学报,2000, 28(6).
    [99]梁旭东等,井冈霉素载药二氧化硅空心微球的原位制备及缓释性能评价,过程工程学报,2008,8(3):595-598.
    [100] Che S., Garcia-Bennett A. E., Yokoi T., Sakamoto K., Kunieda H., Terasaki O., Tatsumi T., A Novel Anionic Surfactant Templating Route for Synthesizing Mesoporous Silica with Unique Structure. Nature Mater. 2003, 2, 801-803.
    [101] Zhang J, Wang W, Lu X, Xu Y, Zhang X. The stability and degradation of a new biological pesticide, pyoluteorin. Pest Manag Sci. 2009,66(3):248-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700