绿豆环氧水解酶基因克隆、表达及酶学性质表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环氧水解酶(Epoxide hydrolase, EH)能催化合成光学纯环氧化合物和邻位二醇,在医药、绿色精细化工等领域具有重要应用前景。近年新发现的绿豆EH (mbEH)能对映归一性水解消旋环氧化物产生单一构型的R-邻位二醇,底物转化率与立体选择性达90%以上,是更一种实用的生物催化剂。本论文首次获得了一种mbEH的编码序列,实现了该基因在大肠杆菌中的克隆与高效表达,对重组绿豆EH进行了纯化和酶学性质表征。
     首先,比较了UNIQ-10柱式法、Trizol法和改良Trizol法对绿豆种子、绿豆胚芽和绿豆芽总RNA抽提效果,选定改良Trizol法抽提目标RNA;RT-PCR仅从绿豆胚芽RNA中扩增到部分绿豆EH编码序列,说明该基因的表达存在时间差异性;利用cDNA末端快速扩增(RACE)法获得mbEH A全长序列,该序列含有960bp的开放阅读框、117bp和239bp的上下游非编码序列;通过三维建模方法获得衍生的mbEH A的三维模型。
     其次,成功构建了mbEH A的重组质粒pET-28a-mbEH A,转化大肠杆菌BL21(DE3)获得重组表达菌;经IPTG诱导,重组mbEH A表达量约占菌体总蛋白的30%,分子量为41 kDa,等电点pI为6.02;金属螫合亲和层析法一步纯化了重组酶,纯度和回收率均在85%以上;以对硝基苯乙烯氧化物(pNSO)为底物,重组酶活力比天然酶提高了近500倍。
     酶学性质分析表明,重组mbEH A能对映归一性水解pNSO,且主要产生R-二醇;相对顺式-pNSO而言,更倾向于优先水解反式-pNSO该酶的最适反应pH和最适反应温度分别为pH7.0和25℃,米氏常数Km为2.05 mM,最大反应速率Vmax为14.8μmol·min-1·mg-1;重组mbEH A基本不耐热性,在pH6-10较稳定;有较强的有机溶剂耐受性,10%苯、甲苯或二甲基亚砜中活力残留50%左右,甲醇、异丙醇对酶活有促进作用;聚乙二醇、吐温、曲拉通等也能明显促进重组酶活力。
     最后,初步摸索了重组mbEH A真空冻干条件。低浓度的海藻糖、山梨醇、乳糖、蔗糖、甘露醇、甘氨酸均对重组酶的冻干有良好保护性,5%海藻糖和1%蔗糖的保护效果最好,分别为92.4%和92.1%;对大规模冻干而言,1%蔗糖作为保护剂更经济实用。
Epoxide hydrolases (EHs) have attracted significant interest as biocatalysts of industrial potential. Recently, two novel interesting EHs that catalyze enantioconvergent hydrolysis of both (R)-and (S)-styrene epoxides to (R)-diols was found in Vigna radiate L. In this thesis, for the.first time, a novel gene, mbEH A, encoding one of the two EHs from Vigna radiate L, mbEH A, was obtained, cloned and highly expressed in Escherichia coli. Recombinant mbEH A was one-step purified and characterized.
     First, total RNA was isolated from seed, germ and sprouts of Vigna radiata by UNIQ-10 column, Trizol and modified Trizol methods, respectively. Modified Trizol method was selected for further use because of high yield, high purity and integrity of RNA. After RT-PCR, partial mbEH A was only amplified from RNA of Vigna radiata germ. Whole length mbEH A was obtained by rapid amplification of cDNA ends (RACE), which composed of a 960 bp open reading frame,117 bp 5'-upstream and 239 bp 3'-downstream non-coding regions, respectively. The three-dimensional (3D) structure of the deduced mbEH A was predicted and compared to that of potato EH.
     Next, recombinant expression plasmid pET-28a-mbEH A was successfully constructed and transformed into Escherichia coli BL21(DE3). Recombinant mbEH A was about 30% of total bacterial protein after IPTG induction, which had a molecular mass of 41 kDa and pI value of 6.02. Recombinant mbEH A was purified to 85% pure by one-step nickel chelating affinity chromatography. The recovery yield was over 85%. Its activity was increase by 500-fold compared to that of purified native enzyme using p-nitrostyrene oxide (pNSO) as substrate.
     Then, enzymatic properties assay showed that recombinant mbEH A can catalyze enantioconvergent hydrolysis of both (R)-and (S)-styrene epoxides to (R)-diols and display a enantiopreference to trans-pNSO; its pH and temperature optima were pH 7.0 and 25℃, the Km and Vmax were 2.05 mM and 14.8μmol·min-1·mg-1, respectively; it was stable in buffers within pH6-10 and showed high tolerance against methanol, Tween-40 and Triton X100, which can even strongly activate the enzyme.
     At last, cryoprotectants for recombinant mbEH in freeze-drying process were preliminarily screened. All cryoprotectants tested (trehalose, lactose, sucrose, mannitol and glycine) showed better protect at low concentration. The optima was 5% trehalose(92.4%) and 1% sucrose (92.1%). For large scale freeze-drying process,1%sucrose is better and more economic.
引文
[1]黄量,戴立信.手性药物的化学与生物学[M].化学工业出版社.2002
    [2]Faber K, Mischitz M, Kroutil W. Microbial epoxide hydrolase[J]. Acta Chem Scand. 1996,50(3):249-254
    [3]李从发.新型环氧化物水解酶筛选及其在手性合成中的应用[D].山东农业大学博士论文.2003
    [4]Besse P, Veschambre H. Chemical and Biological Synthesis of Chiral Epoxides[J]. Tetrahedron.1994,50(33):8885-8927
    [5]Archelas A, Furstoss R. Biocatalytic. Approaches for the Synthesis of Enantiopure Epoxides, In:Fessner WD(ed) Biocatalysis, from Discovery to Application[J]. Germany:Springer—Verlag Berlin Herdetberg.1999,52(2):159-191
    [6]Kolb H C, Van Nieuwenhze M S, Sharpless K B. Catalytic asymmetric dihydroxylation[J]. Chem Rev.1994,94(21):2483-2485
    [7]孙万儒.手性化合物的生物合成与转化[J].化工科技市场.2003,26(6):5-7
    [8]Genzel Y, Archelas A, Broxterman QB. Microbiological transformation. Part 47:A step toward a Green Chemistry Preparation of Enanfiopure(s)-2-,-3-and-4-Pyridyloxirane via an Epoxide Hydrolase Catalyzed Kinetic resolution[J]. J Org Chem,2001,66(5):538-543
    [9]吴襟,孙万儒.环氧化物的生物不对称合成[J].生物工程进展,2001,21(4):35—42
    [10]魏志亮,李祖义,林国强.生物还原反应在手性药物不对称合成中的应用[J].有机化学.2001,21(6):403-412
    [11]M. Decker, M. Arand, A. Cronin, Mammalian epoxide hydrolases in xenobiotic metabolism and signalling[J]. Arch Toxicol.2009,83:297-318
    [12]J. Meijer, J.W. DePierre, Cytosolic epoxide hydrolase[J]. Chem Biol Interact.1988,64: 207-249
    [13]T. Shimada. Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons[J]. Drug Metab Pharmacokineti.2006,21:257-276
    [14]F.P. Guengerich, Cytochrome P450 and chemical toxicology [J]. Chem Res Toxicol. 2008,21:70-83
    [15]C.J, Sinal, M. Miyata, M. Tohkin. Gonzalez, Targeted disruption of soluble epoxide hydrolase reveals a role in blood pressure regulation[J]. J Biol Chem.2000,275:40504-40510
    [16]W. Zhang, I.P. Koerner, R. Noppens. Alkayed, Soluble epoxide hydrolase:a novel therapeutictarget in stroke[J]. J Cereb Blood Flow Metab.2007,27:1931-1940
    [17]A.N. Simpkins, R.D. Rudic, D.A. Schreihofer. Soluble epoxide inhibition is protective against cerebralischemia via vascular and neural protection [J]. Am J Pathol.2009,174: 2086-2095
    [18]J.W. Newman, C. Morisseau, B.D. Hammock. Epoxide hydrolases:their roles and interactions with lipid metabolism[J]. Prog Lipid Res.2005,44:1-51
    [19]J.Z. Haeggstrom, F. Tholander, A. Wetterholm. Structure and catalytic mechanisms of leukotriene A4 hydrolase, Prostag[J]. Oth Lipid M.2007,83:198-202
    [20]K.L. Fillgrove, S. Pakhomova, M.R. Schaab. Armstrong, Structure and mechanism of the genomically encoded fosfomycin resistance protein,FosX, from Listeria monocytogenes[J]. Biochemistry.2007,46:8110-8120
    [21]M.J. van der Werf, K.M. Overkamp, J.A.M. de Bont. Limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14 belongs to a novel class of epoxide hydrolases[J]. J Bacteriol.1998,180:5052-5057
    [22]M. Arand, B.M. Hallberg, J. Zou. Mowbray, Structure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site[J]. EMBO J.2003,22:2583-2592
    [23]D.L. Ollis, E. Cheah, M. Cygler. The α/β hydrolase fold[J]. Protein Eng.1992,5:197-211
    [24]M. Arand, A. Cronin, F. Oesch. The telltale structures of epoxide hydrolases[J]. Drug Metab. Rev.2003,35:365-383
    [25]P. Johansson, T. Unge, A. Cronin. Structure of an atypical epoxide hydrolase from Mycobacterium tuberculosis gives insights into its function[J]. J Mol Biol.2005,351: 1048-1056
    [26]M.J. van der Werf, R.V.A. Orru, K.M. Overkamp. Substrate specificity and stereospecificity of limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14; an enzyme showing sequential and enantioconvergent substrate conversion [J]. Appl Microbiol Biotechnol.1999,52:380-385
    [27]A.-L. Bottalla, M. Ibrahim-Ouali, M. Santelli, R. Furstoss. Epoxide hydrolase-catalysed kinetic resolution of a spiroepoxide, a key building block of various 11 heterosteroids[J]. Adv Synth Catal.2007,349:1102-1110
    [28]S. Barth, M. Fischer, R.D. Schmid. Sequence and structure of epoxide hydrolases:a systematic analysis. Proteins[J].2004,55:846-855
    [29]S.L. Mowbray, L.T. Elfstrom, K.M. Ahlgren. X-ray structure of potato epoxide hydrolase sheds light on substrate specificity in plant enzymes[J]. Protein Sci.2006,15: 1628-1637
    [30]M.A. Argiriadi, C. Morisseau, B.D. Hammock, Detoxification of environmental mutagens and carcinogens:structure, mechanism, and evolution of liver epoxide hydrolase[J]. Proc Natl Acad Sci.1999,96:10637-10642
    [31]G.A. Gomez, C. Morisseau, B.D. Hammock. Structure of human epoxide hydrolase reveals mechanistic inferences on bifunctional catalysis in epoxide and phosphate ester hydrolysis[J]. Biochemistry.2004,43:4716-4723
    [32]A. Cronin, S. Mowbray, H. Durk. The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase[J]. Proc Natl Acad Sci.2003,100:1552-1557
    [33]J.W. Newman, C. Morisseau, T.R. Harris. The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity[J]. Proc Natl Acad Sci.2003,100:1558-1563
    [34]A. Thomaeus, A. Naworyta, S.L. Mowbray. Removal of distal protein-water hydrogen bonds in a plant epoxide hydrolase increases catalytic turnover but decreases thermostability[J]. Protein Sci.2008,17:1275-1284
    [35]A. Thomaeus, J. Carlsson, J. A qvist. Active site of epoxide hydrolases revisited:a non-canonical residue in potato StEH1 promotes both formation and breakdown of the alkylenzyme intermediate[J]. Biochemistry.2007,46:2466-2479
    [36]R.N. Armstrong, Kinetic and chemical mechanism of epoxide hydrolase[J]. Drug Metab Rev.1999.31:71-86
    [37]R.N. Armstrong, C.C. Cassidy. New structural and chemical insight into the catalytic mechanism of epoxide hydrolases[J]. Drug Metab Rev.2000,32:327-338
    [38]C. Morisseau. B.D. Hammock, Epoxide hydrolases:mechanisms, inhibitor designs,and biological roles[J]. Annu Rev Pharmacol Toxicol.2005.45:311-333
    [39]B. Schiφtt. T.C. Bruice. Reaction mechanism of soluble epoxide hydrolase:insights from molecular dynamics simulations[J]. J Am Chem Soc.2002,124:14558-14570
    [40]K.H. Hopmann, F. Himo. Theoretical study of the full reaction mechanism of human soluble epoxide hydrolase[J]. Chem Eur J.2006,12:6898-6909
    [41]G.M. Lacourciere, R.N. Armstrong. The catalytic mechanism of microsomal epoxide hydrolase involves an ester intermediate[J]. J Am Chem Soc.1993,115:10466-10467
    [42]B. Borhan, A.D. Jones, F. Pinot. Mechanism of soluble epoxide hydrolase. Formation of an alpha-hydroxy ester-enzyme intermediate through Asp-333[J]. J Biol Chem. 1995,270:26923-26930
    [43]T. Yamada, C. Morisseau, J.E. Maxwell. Biochemical evidence for the involvement of tyrosine in epoxide activation during the catalytic cycle of epoxide hydrolase[J]. J Biol Chem.2000,275:23082-23088
    [44]R. Rink, J. Kingma, J.H. Lutje Spelberg. Tyrosine residues serve as proton donor in the catalytic mechanism of epoxide hydrolase from Agrobacterium radiobacter[J]. Biochemistry.2000,39:5600-5613
    [45]L.T. Elfstrom, M. Widersten. Implications for an ionized alkyl-enzyme intermeintermediate during StEH1-catalyzed trans-stilbene oxide hydrolysis[J]. Biochemistry.2006,45:205-212
    [46]F. Pinot, D.F. Grant, J.K. Beetham. Molecular and biochemical evidence for the involvement of the Asp-333-His-523 pair in the catalytic mechanism of soluble epoxide hydrolase[J]. J Biol Chem.1995,270:7968-7974
    [47]H.-F. Tzeng, L.T. Laughlin, S. Lin. The catalytic mechanism of microsomal epoxide hydrolase involves reversible formation and rate-limiting hydrolysis of the alkyl-enzyme intermediate[J]. J Am Chem Soc.1996,118:9436-9437
    [48]H.-F. Tzeng, L.T. Laughlin, R.N. Armstrong, Semifunctional site-specific mutants affecting the hydrolytic half-reaction of microsomal epoxide hydrolase[J]. Biochemistry.1998,37:2905-2911
    [49]L.T. Elfstrom, M. Widersten. Catalysis of potato epoxide hydrolase, StEHl [J]. Biochem J.2005,390:633-640
    [50]E.Y. Lau, Z.E. Newby, T.C. Bruice. A theoretical examination of the acid-catalyzed and noncatalyzed ring-opening reaction of an oxirane by nucleophilic addition of acetate[J]. Implications to epoxide hydrolases. J Am Chem Soc.2001,123:3350-3357
    [51]D. Lindberg, A. Gogoll. Substrate-dependent hysteretic behavior in StEH1-catalyzed hydrolysis of styrene oxide derivatives[J]. FEBS J.2008,275:6309-6320
    [52]R. Rink, D.B. Janssen. Kinetic mechanism of the enantioselective conversion of styrene oxide by epoxide hydrolase from Agrobacterium radiobacter AD1[J]. Biochemistry.1998,37:18119-18127
    [53]A. Archelas, R. Furstoss. Epoxide hydrolases:new tools for the synthesis of fine organic chemicals[J]. Trends Biotechnol.1998,16:108-116
    [54]R.V.A. Orru, K. Faber. Stereoselectivities of microbial epoxide hydrolases[J]. Curr Opin Chem Biol.1999,3:16-21
    [55]A. Archelas, R. Furstoss. Synthetic applications of epoxide hydrolases [J]. Curr Opin Chem Biol.2001,5:112-119
    [56]S.K. Yang. Stereoselectivity of cytochrome P-450 isozymes and epoxide hydrolasein the metabolism of polycyclic aromatic hydrocarbons [J]. Biochem Pharmacol.1988,37: 61-70
    [57]P.E. Kolattukudy. Polyesters in higher plants[J]. Adv Biochem Eng Biotechnol.2001, 71:1-49
    [58]W.P. Watson, L. Cottrell, D. Zhang. Metabolism and molecular toxicology of isoprene[J]. Chem Biol Interact.2001,135:223-238
    [59]E.J. de Vries, D.B Janssen. Biocatalytic conversion of epoxides[J]. Curr Opin Biotechnol.2003,14:414-420
    [60]C. Morisseau, J.K. Beetham, F. Pinot. Cress and potato soluble epoxide hydrolases: purification, biochemical characterization,and comparison to mammalian enzymes[J]. Arch Biochem Biophys.2000,378:321-332
    [61]B.T. Ueberbacher, G. Oberdorfer, K. Gruber. Epoxide-hydrolase-initiated hydrolysis/ rearrangement cascade of a methylene-interrupted bis-epoxide yields chiral THF moieties without involvement of a cyclase[J]. Chem Bio Chem.2009,10:1697-1704
    [62]D. Chang, Z. Wang, M.F. Heringa. Highly enantioselective hydrolysis of alicyclic meso-epoxides with a bacterial epoxide hydrolase from Sphingomonas sp. HXN-200: simple syntheses of alicyclic vicinal transdiols[J]. Chem Commun.2003,21:960-961
    [63]L. Zhao, B. Han, Z. Huang, M. Miller. Epoxide hydrolase-catalyzed enantioselective synthesis of chiral 1,2-diols via desymmetrization of meso-epoxides[J]. J Am Chem Soc.2004,126:11158-11159
    [64]B. van Loo, J. Kingma, G. Heyman. Improved enantioselective conversion of styrene epoxides and mesoepoxides through epoxide hydrolases with a mutated nucleophile-flanking residue[J]. Enzyme Microb Technol.2009,44:145-153
    [65]M.I. Monterde, M. Lombard, A. Archelas. Enzymatic transformations. Part 58: enantioconvergent biohydrolysis of styrene oxide derivatives catalysed by the Solanum tuberosum epoxide hydrolase[J]. Tetrahedron Asym.2004,15:2801-2805
    [66]W.J. Choi. Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution[J]. Appl Microbiol Biotechnol.2009,84:239-247
    [67]R.E. Parker, N.S. Isaacs. Mechanisms of epoxide reactions[J]. Chem Rev.1959,59: 737-799
    [68]W. Xu, J.-H. Xu, J. Pan. Enantioconvergent hydrolysis of styrene epoxides by newly discovered epoxide hydrolases in mung bean[J]. Org Lett.2006,8:1737-1740
    [69]A.L. Botes, C.A.G.M. Weijers. M.S. van Dyk. Biocatalytic resolution of 1,2-epoxyoctane using resting cells of different yeast strains with novel epoxide hydrolase activities[J]. Biotechnol Lett.1998,20:421-426
    [70]C.A. Yeates, M.S. van Dyk, A.L. Botes. Biocatalysis of nitro substituted styrene oxides by non-conventional yeasts[J]. Biotechnol Lett.2003,25:675-680
    [71]M.S. Smit. Fungal epoxide hydrolases:new landmarks in sequence-activity space[J]. Trends Biotechnol.2004,22:123-129
    [72]B. van Loo, J. Kingma, M. Arand. Diversity and biocatalytic potential of epoxide hydrolases identified by genome analysis[J]. Appl Environ Microbiol.2006,72:2905-2917
    [73]W.J. Choi, S.M. Puah, L.L. Tan. Production of (R)-ethyl-3,4-epoxybutyrate by newly isolated Acinetobacter baumannii containing epoxide hydrolase[J]. App Microbiol Biotechnol.2008,79:61-67
    [74]J.-H. Woo, J.-H. Kang, S.G. Kang. Cloning and characterization of an epoxide hydrolase from Novosphingobium aromaticivorans[J]. App Microbiol Biotechnol. 2009,82:873-881
    [75]S.J. Lee, H.S. Kim, S.J. Kim. Cloning, expression and enantioselective hydrolytic catalysis of a microsomal epoxide hydrolase from a marine fish, Mugil cephalus[J]. Biotechnol Lett.2007,29:237-246
    [76]J.-H. Kang, J.-H. Woo, S.G. Kang. A cold-adapted epoxide hydrolase from a strict marine bacterium, Sphingophyxis alaskensis[J]. J Microbiol Biotechnol.2008,18: 1445-1452
    [77]Y.-O. Hwang, S.G. Kang, J.-H. Woo. Screening enantioselective epoxide hydrolase activities from marine microorganisms:detection of activities in Erythrobacter spp[J]. Mar Biotechnol.2008,10:366-373
    [78]R. Rink, J.H. Lutje Spelberg, R.J. Pieters. Mutation of tyrosine residues involved in the alkylation half reaction of epoxide hydrolase from Agrobacterium radiobacter AD1 results in improved enantioselectivity[J]. J Am Chem Soc.1999,121:7417-7418
    [79]Y. Genzel, A. Archelas, J.H. Lutje Spelberg, Microbiological transformations. Part 48: enantioselective biohydrolysis of 2-,3-and 4-pyridyloxirane at high substrate concentration using the Agrobacterium radiobacter AD1 epoxide hydrolase and its Tyr215Phe mutant[J]. Tetrahedron.2001,57:2775-2779
    [80]S.H. Choi, H.S. Kim. Comparative homology modeling-inspired protein engineering for improvement of catalytic activity of Mugil cephalus epoxide hydrolase [J]. Biotechnol Lett.2009,31:1617-1624
    [81]M. Arand, F. Muller, A. Mecky. Catalytic triad of microsomal epoxide hydrolase: replacement of Glu404 with Asp leads to a strongly increased turnover rate[J]. Biochem J.1999,337:37-43
    [82]M. Kotik, V. Stepaneka, P. Kyslika. Cloning of an epoxide hydrolaseencoding gene from Aspergillus niger M200, overexpression in E. coli, and modification of activity and enantioselectivity of the enzyme by protein engineering[J]. J Biotechnol.2007,132: 8-15
    [83]M.T. Reetz, L.-W. Wang. High-throughput selection system for assessing the activity of epoxide hydrolases[J]. Comb Chem High Throughput Screen.2006,9:295-299
    [84]Claudia Diaz-Camino, Renaud Conde, Marco A. Villanueva actin expression is induced and three isoforms are differentially expressed during germination in Zea mays[J]. J Exp Bot,2005,56(412):557-565.
    [85]李宏,王新力.植物组织RNA提取的难点与对策[J].生物技术通报.1999,15(1):36-39
    [86]张今今,王跃进.葡萄总RNA提取方法的研究[J].果树学报.2003,20(3):178-181
    [87]孙德权,郭启高,胡玉林.改良Trizol法提取香蕉叶片总RNA[J]广东农业科学.2009(5):162-164
    [88]Sambrook J, Russell DW黄培堂等译.分子克隆实验指南[M].科学出版社.2005
    [89]F.cedrone, Bhatnagar T, Baratti JC. Colorimetric assays for quantitative analysis and screening of epoxide hydrolase activity[J]. Biotechnology Letter 2005,27:1921-1927
    [90]Tej Bhatnagar, Kelath M. Manoj, Jacques C. Baratti. A spectrophotometric method to assay epoxide hydrolase activity[J]. J Biochem Biophys Methods.2001,50:.1-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700