基于三芳胺类聚集诱导发光材料的合成和双光子性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有聚集诱导发光效应和大的双光子吸收截面值的有机光电功能材料在生物光子领域具有潜在的应用前景。本论文主要设计合成了三个系列基于三芳胺类的具有聚集诱导发光效应和双光子性能的有机光电功能材料,研究了它们在双光子吸收、荧光和电致发光中的应用性能。
     本论文的主要内容包括以下几个方面:
     第一章综述了具有聚集诱导发光效应、双光子效应的有机光电功能材料的研究进展,并在此基础上提出了本文的设计思路和研究内容。
     第二章设计合成了一类基于三苯基胺的吡咯并吡咯二酮(DPP)类衍生物,研究了该类化合物的聚集诱导发光效应和双光子性能。化合物DPP-Ⅰ和DPP-Ⅱ具有聚集诱导发光的特征,而化合物DPP-Ⅲ则表现出聚集诱导发光增强效应。三个化合物分别采用了D-π-A-π-A,D-兀-A-π-A和D-π-A-π-D(D代表给体,A代表受体)的分子结构。在80飞秒、800 nm激光的激发条件下,三个化合物的双光子吸收截面值分别为188 GM,275 GM和447 GM,其中采用对称分子结构的化合物DPP-Ⅲ具有较高的双光子吸收截面值。
     第三章设计合成了一类具有聚集诱导发光效应基于星射状三芳胺和氰基的四极分子双光子材料(CNDPASB(a-c)),为了进行对比,我们也合成了没有氰基基团星射状三芳胺的化合物(DPASB(a-c))。在80飞秒、800 nm激光的激发条件下,化合物CNDPASB(a-c)的双光子吸收截面值分别为1016 GM,1484 GM和814 GM,化合物DPASB(a-c)的双光子吸收截面值分别为540 GM,259 GM和34 GM。另外,化合物CNDPASB(a-c)在溶液中荧光强度接近于零,在聚集态时则发出强烈的荧光,且荧光颜色分别呈现出红色、橙色和黄色,表现出聚集诱导发光效应,而化合物DPASB(a-c)却表现出聚集猝灭现象。将具有聚集发光性能的CNDPASB-a和CNDPASB-c制成有机电致发光二极管,CNDPASB-c器件展现出很强的深黄色荧光且具有很好光色稳定性,最大发光强度达858cd/m2。CNDPASB-a和CNDPASB-c器件的电流效率分别为0.67和0.83 cd/A,两者的最大外部量子效率分别为0.77%和0.33%。
     第四章设计合成了以星射状三芳胺为封边给体,三苯胺为核的化合物(TSASB-b),测试了化合物的聚集诱导发光效应和双光子性能。在80飞秒、800 nm激光的激发条件下,化合物TSASB-b双光子吸收截面值为129 GM。化合物TSASB-b在一般的有机溶剂中具有较好的溶解性,在纯的四氢呋喃溶液中具有很强的荧光,但随着溶液中水的比例的增加溶液的荧光出现逐渐减弱的趋势,因此该化合物不具备聚集诱导发光效应。
     第五章结论
Development of organic materials with large two-photon absorption and aggregation-induced emission (AIE) is a highly active area of research for the promising biophotonic application. In this dissertation, three new classes of triarylamine-based derivatives with aggregation-induced emission have been designed and synthesized, and their one- and two-photon absorption (2PA) properties and electroluminescence have been investigated.
     The main contents and results are generalized as follows:
     In Chapter 1, recent progress of the organic light-emitting materials with AIE or 2PA is reviewed. Then the research strategy of the dissertation is presented.
     In Chapter 2, a new series of triphenylamine-based diketo-pyrrolo-pyrrole (DPP) fluoro-phores (DPP-Ⅰ, DPP-Ⅱ, DPP-Ⅲ) have been prepared, in which their strctures are D-π-A-π-A, D-π-A-π-A and D-π-A-π-D (D:donor,π:conjugated bridge, A:acceptor), respectively. And their photophysical properties have been investigated. It was found that DPP-Ⅰand DPP-Ⅱdisplayed aggregation-induced emission, while DPP-III showed aggregation-induced emission enhancement. Their values of 2PA cross section (σ) are 188,275 and 447 GM at wavelength of 800nm, respectively. DPP-Ⅲwith symmetrical structure shows the highest value of 2PA cross section.
     In Chapter 3, we have developed a new class of aggregation-induced emission (AIE) active compounds, in which three electron-donating dipheylamine, phenothiazine or carbazole groups were connect to the 1,4-positions of the benzene via bis (a-cyano-4-diphenylaminostyryl conjugation bridges to form three triarylamine CNDPASB(a-c) quadrupolar derivatives. And we also synthesized the corresponding DPASB(a-c) compounds without cyano unit for the purpose of comparison. Their one- and two-photon absorption properties have been investigated. The two-photon absorption (2PA) cross sections measured by the open aperture Z-scan technique were determined to be 1016,1484 and 814 GM for CNDPASB(a-c) and 540,259 and 34 GM for DPASB(a-c), respectively. The result shows that the high 2PA properties of these molecules are attributed to the extendedπ-system and enhanced intramolecular charge transfer from starburst triarylamine to cyano group. Moreover, CNDPASB-based compounds are very weakly fluorescent in THF solution, but their intensities are increased by almost 230,70, and 5 times in the water-THF (V/V 90%) mixtures, respectively, in which they exhibit a strongly enhanced red, orange and deep-yellow color fluorescence emission, respectively. The result indicates that the intra-molecular vibration and rotation of these dyes is considerably restricted in nano-aggregates formed in water, which leads to significant increases of fluorescence. It was found that the CNDPASB-based compounds color tuning can be conveniently accomplished by alternating the starburst triarylamine donor moiety. The multi-layer electroluminescence devices with TPBI (2,2', 2"-(benzene-1,3,5-triyl)-tri(1-phenyl- 1H-benzimidazole)) electron-transporting layer have been made with CNDPASB-a and CNDPASB-c as non-doping red-yellow emitter, electron-transporting as well as hole-transporting material. CNDPASB-c showed a good stability of the light color. The luminous intensity of CNDPASB-c reached 858 cd/m2. The current efficiency attained by the EL device for CNDPASB-a and CNDPASB-c are 0.67 and 0.83 cd/A, respectively. The maximum external quantum efficiency is 0.77% and 0.33% for CNDPASB-a and CNDPASB-c, respectively.
     In Chapter 4, we have synthesized a new starburst triphenylamine-based 2PA compound (TSASB-b) using the triphenylamine as the core and their photophysical properties are investigated. TSASB-b showed a good performance of 2PA and its value of 2PA cross section is 129 GM. TSASB-b has a good solubility in THF, dichloromethane and so on. The emission from the THF solution of TSASB-b was so strong, but the fluorescence gradually weakened with the increasing of the proportion of water in the solution. So TSASB-b didn't show aggregation-induced emission.
     In Chapter 5,conclusion.
引文
[1]J. B. Briks. Photophysics of Aromatic Molecules. Wiley. London.1970
    [2]J. Malkin. Photophysical and Photochemical Properties of Aromatic Compounds. CRC. Boca Raton.1992
    [3]N. J. Turro. Modern Molecular Photochemistry. University Science Books. Mill Valley.1991
    [4]S. A. Jenekhe, J. A. Osaheni. Excimers and Exciplexes of Conjugated Polymers. Science.1994,265:765-768
    [5]J. Cornil, D. A. dos Santos, X. Crispin. Influence of Interchain Interactions on the Absorption and Luminescence of Conjugated Oligomers and Polymers;A Quantum-Chemical Characterization. J. Am. Chem. Soc.1998,120:1289-1299
    [6]S. Janyanty, T. P. Radhakrishnan. Enhanced Fluorescence of Remote Functionalized Diaminodicyanoquinodimethanes in the Solid State and Fluorescence Switching in a Doped Polymer by Solvent Vapors. Chem. A Eur. J.2004,10:791-797
    [7]Y. N. Hong, Jacky W. Y. Lam, B. Z. Tang, Aggregation-induced Emission: Phenomenon, Mechanism and Applications. Chem. Commun.2009,4333-4334
    [8]C. D. Geddes, J. R. Lakopwicz. Advanced Concepts in Fluorescence Sensing. Springer. Norwell.2005
    [9]R. B. Thompson. Fluorescence Sensors and Biosensors. CRC. Boca Raton.2006
    [10]W. H. Tan, K. M. Wang, T. J. Drake. Molecular beacons. Curr. Opin. Chem. Biol. 2004,8:547-553
    [11]K. E. Sapsford, L. Berti, I. L. Medintz. Materials for Fluorescence Resonance Energy Ttransfer Analysis:Beyond Traditional Donor-Acceptor Combinations. Angew. Chem. Int. Ed.2006,45:4562-4588
    [12]S. M. Borisov, O. S. Wolfbeis. Optical Biosensors. Chem. Rev.2008,108:423-461
    [13]Z. J. Ning, Z. Chen, Q. Zhang, Y. L. Yan, S. X. Qian, Y. Cao, H. Tian, Aggregation-Induced Emission (AIE)-active Starburst Triarylamine Fluorophores as Potential Non-doped Red Emitters for Organic Light-Emitting Diodes and Cl2 Gas Chemodosimeter. Adv. Funct. Mater.2007,17:3799-3807
    [14]A. P. Alivisatos, W. Gu, C. Larabell. Quantum Dots as Cellular Probes. Annu. Rev. Biomed. Eng.2005,7:55-76
    [15]I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Quantum Dot Bioconjugates for Imaging, Labelling and Sensing. Nat. Mater.2005,4:435-446
    [16]M. De, P. S. Ghosh, V. M. Rotello. Applications of Nanoparticles in Biology. Adv. Mater.2008,20:4225-4241
    [17]J. S. Yang, J. L. Yan. Central-ring Functionalization and Application of the Rigid, Aromatic, and H-shaped Pentiptycene Scaffold. Chem. Commun.2008,1501-1512
    [18]Y. T. Lee, C. L. Chiang, C. T. Chen, Solid-State Highly Fluorescent Diphenylaminospirobi-fluorenefumaronitrile Red Emitters for Non-Doped Organic Light-Emitting Diodes. Chem. Commun.2008,217-218
    [19]C. W. Wu, C. M. Tsai, H. C. Lin. Synthesis and Characterization of Poly(fluorene)-Based Copolymers Containing Various 1,3,4-Oxadiazole Dendritic Pendants. Macromolecules.2006,39:4298-4299
    [20]S. F. Lim, R. H. Friend, I. D. Rees, J. Li, Y. Ma, K. Robinson, A. B. Holms, E. Hennebicq, D. Beljonne, F. Cacialli. Suppression of Green Emission in a New Class of Blue-emitting Polyfluorene Copolymers with Twisted Biphenyl Moieties. Adv. Funct. Mater.2005,15:981-988
    [21]F. He, Y. Tang, S. Wang, Y. Li, D. Zhu. Fluorescent Amplifying Recognition for DNA G-Quadruplex Folding with a Cationic Conjugated Polymer:A Platform for Homogeneous Potassium Detection. J. Am. Chem. Soc.2005,127:12343-12346
    [22]C. Fan, S. Wang, J. W. Hong, G C. Bazan, K. W. Plaxco, A. J. Heeger. Beyond superquenching:Hyper-efficient Energy Transfer from Conjugated Polymers to Gold Nanoparticles. Proc. Natl. Acad. Sci. USA.2003,100:6297-6301
    [23]S. Setayesh, A. C. Grimsdale, K. Weil, V. Enkelmann, K. Mullen, F. Meghdadi, E. J. W. List, G. Leising. Fuctional Molecular Nanostructures. J. Am. Chem. Soc.2001, 123:946-947
    [24]S. Hecht, J. M. J. Frechet, Dendritic Encapsulation of Function:Applying Nature's Site Isolation Principle from Biomimetics to Materials Science. Angew. Chem. Int. Ed.2001,40:74-91
    [25]R. Jakubiak, Z. Bao, L. Rothberg. Synthesis, Properties and Applications of Dendronized Polymers. Synth. Met.2000,114:61-64
    [26]A. Kraft, A. C. Grimsdale, A. B. Holmes. Electroluminescent Conjugated Polymers-Seeing Polymers in a New Light. Angew. Chem. Int. Ed.1998,37:402-428
    [27]B. T. Nguyen, J. E. Gautrot, C. Ji, P. L. Brunner, M. T. Nguyen, X. X. Zhu. Enhancing Photoluminescence Intensity of Conjugated Polycationic Polymers by Using Quantum Dots as Anti-aggregation Reagents. Langmuir.2006,22:4799-4803
    [28]A. P. Kulkarni, S. A. Jenekhe, Blue Light-Emitting Diodes with Good Spectral Stability Based on Blends of Poly(9,9-dioctylflouorene):Interplay between Morphology, Photophysics, and Device Performance. Macromolecules.2003,36: 5285-5296
    [30]S. Abe, L. Chen. Tuning the photophysical properties of an ionic conjugated polymer through interaction with polyelectrolytes. J. Polym. Sci. Part B:Polym. Phys.2003, 41:1676-1679
    [31]B. S. Gaylord, S. Wang, A. J. Heeger, G. C. Bazan. Water-Soluble Conjugated Oligomers:Effect Of Chain Length and Aggregation on Photoluminescence-Quenching Efficiencies. J. Am. Chem. Soc.2001,123:6417-6418
    [32]L. Chen, S. Xu, D. McBranch, D. Whitten. Tuning the Properties of Conjugated Polyelectrolytes Through Surfactant Complexation. J. Am. Chem. Soc.2000,122: 9302-9303
    [33]P.N. Taylor, M. J. O'Connell, L. A. McNeill, M. J. Hall, R. T. Aplin, H. L. Anderson. Insulated Molecular Wires:Synthesis of Conjugated Polyrotaxanes by Suzuki Coupling in Water. Angew. Chem. Int. Ed.2000,39:3456-3460
    [34]D. Sainova, T. Miteva, G. Nothofer, U. Scherf, I. Glowacki, J. Ulanski, H. Fujikawa, D. Neher. Control of Color and Efficiency of Light-emitting Diodes Based on Polyfluorenes Blended With Hole-transporting Molecules. Appl. Phys. Lett.2000,6: 1810-1811
    [35]J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang. Aggregation-induced Emission of 1-methyl-1,2,3,4,5-Pentaphenyl-silole. Chem. Commun.2001,1740-1741
    [36]B. Z. Tang, X. Zhan, G. Yu, P. P. S. Lee, Y. Liu, D. Zhu. Efficient Blue Emission from Siloles. J. Mater. Chem.2001,11:2974-2978
    [37]Y. Q. Dong, J. W. Y. Lam, Z. Li. Vapochromism of Hexaphenylsilole. Inorg. Organomet. Polym. Mater.2005,15:287-291
    [38]Y. K. Sonoda, M. D. Goto, S. J. Tsuzuk. Photoisomerization of cis,cis-1,4-Diphenyl-1,3-butadiene in the Solid State:the Bicycle-Pedal Mechanism. J. Phys. Chem. A. 2006,110:13379-13387
    [39]G. Yu, S. W. Yin, Y. Q. Liu. Structures. Electronic States, Photoluminescence, and Carrier Transport Properties of 1,1-Disubstituted 2,3,4,5-Tetraphenylsiloles. J. Am. Chem. Soc.2005,127:6335-6346
    [40]J. W. Chen, B. Xu, Y. Cao. Large Blue Shifted Photoluminescence Spectra of Silole Crystals Relative to the Amorphous Form. Synthetic Metals.2005,152:249-252
    [41]J. W. Chert, B. Xu, K. X. Yang. Excitation Migration along Oligopheny-lenevinylene-Based Chiral Stacks:Delocalization Effects on Transport Dynamics. J. Phys. Chem. B.2005,109:17086-17093
    [42]Z. J. Zhao, S. M. Chen, Jacky W. Y. Lam, Cathy K. W. Jim, Carrie Y. K. Chan, Z. M. Wang, P. Lu, C. M. Deng, H. S. Kwok, Y. G. Ma, B. Z. Tang. High-Tg Carbazole Derivatives as a New Class of Aggregation-induced Emission Enhancement Materials. J. Phys. Chem. C.2010,114:7963-7972
    [43]J. W. Chen, B. Xu, X. Y. Ouyang. Aggregation-induced Emission of cis,cis-1,2,3,4-tetraphenylbutadiene from Restricted Intramolecular Rotation. J. Phys Chem. A.2004,108:7522-7526
    [44]K. Itami, Y. Ohashi, J. I. Yoshida. Triarylethene-Based Extended π-Systems: Programmable Synthesis and Photophysical Properties. J. Org. Chem.2005,70: 2778-2792
    [45]P. An, Z. F. Shi, W. Dou, X. P. Cao, H. L. Zhang. Synthesis of 1,4-Bis[2,2-bis(4-alkoxyphenyl)vinyl]benzenes and Side Chain Modulation of Their Solid-State Emission Organic. Letter.2010,12:4364-4367
    [46]Y. Qian, S. Y. Li, G. Q. Zhang, Q. Wang, S. Q. Wang, H. J. Xu, C. Z. Li, Y. Li, G. Q. Yang. Aggregation-induced Emission Enhancement of 2-(2'-Hydroxyphenyl) benzothiazole-Based Excited-State Intramolecular Proton-Transfer Compounds. J. Phys. Chem. B.2007111:5861-5868
    [47]Z. Y. Yang, Z. G. Chi, T. Yu, X. Q. Zhang, M. N. Chen, B. J. Xu, S. W. Liu, Y. Zhang, J. R. Xu. Triphenylethylene Carbazole Derivatives as A New Class of AIE Materials with Strong Blue Light Emission and High Glass Transition Temperature. J. Mater. Chem.2009,19:5541-5546
    [48]H. Y. Li, Z. G. Chi, B. J. Xu, X. Q. Zhang, Z. Y. Yang, X. F. Li, S. W. Liu, Y. Zhang, J. R. Xu. New Aggregation-induced Emission Enhancement Materials Combined Triarylamine and Dicarbazolyl Triphenylethylene Moieties. J. Mater. Chem.2010,20: 6103-6110
    [49]Y. H. Jiang, Y. C. Wang, J. L. Hua, J. Tang, B Li, S. X. Qian, H. Tian. Multibranched Triarylamine End-capped Triazines with Aggregation-induced Emission and Large Two-photon Absorption Cross-sections. Chem. Commun.2010,46:4689-4691
    [50]J. Chen, C. C. W. Law, J. W. Y. Lam, Y Dong, S. M. F. Lo, I. D. Williams, D. Zhu, B. Z. Tang. Synthesis, Light Emission, Nanoaggregation and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles. Chem. Mater.2003,15: 1535-1537
    [51]X. Fan, J. Sun, F. Wang, Z. Zhu, P. Wang, Y. Dong, R. Hu, B. Z. Tang, D. Zou. Photoluminescence and Electroluminescence of Hexaphenylsilole Are Enhanced by Pressurization In The Solid State. Chem. Commun.2008,2989-2991
    [52]L. He, F. Xiong, S. Li, Q. Gan, G. Zhang, Y Li, B. Zhang, B. Chen, G. Yang. High pressure Tuning of Excited States:Distinguish the Emission of the Exciplexes in the Intramolecular Electron Transfer Compound. J. Phys. Chem. B.2004,108: 7092-7094
    [53]S. Li, Q. Wang, Y. Qian, S. Wang, Y. Li, G. Yang. Understanding the Pressure Induced Emission Enhancement for Triple Fluorescent Compound with Excited State Intramolecular Proton Transfer. J. Phys. Chem. A.2007,111:11793-11800
    [54]M. H. Lee, D. Kim, J. W. Y. Lam, B. Z. Tang. Time-resolved Photo-luminescence Study of an Aggregation-induced Time-resolved Photo-luminescence Study of an Aggregation-induced. J. Korean Phys. Soc.2004,45:329-332
    [55]Y. Ren, J. W. Y Lam, Y. Dong, B. Z. Tang, K. S. Wong. Enhanced Emission Efficiency and Excited State Lifetime Due to Restricted Intramolecular Motion in Silole Aggregates. J. Phys. Chem. B.2005,109:1135-1140
    [56]Y. Ren, Y. Dong, J. W. Y. Lam, B. Z. Tang, K. S. Wong. Studies on the Aggregation-induced Emission of Silole Film and Crystal by Time-resolved Fluorescence Technique. Chem. Phys. Lett.2005,402:468-473
    [57]C. J. Bhongale, C. W. Chang, E. W. G. Diau, C. S. Hsu, Y. Dong, B. Z. Tang. Formation of Nanostructures of Hexaphenylsilole with Enhanced Color-tunable Emissions. Chem. Phys. Lett.2006,419:444-449
    [58]Z. Li, Y. Dong, B. Mi, Y. Tang, M. Haeussler, H. Tong, Y. Dong, J. W. Y. Lam, Y. Ren, H. H. Y. Sung, K. S. Wong, P.Gao, I. D. Williams, H. S. Kwok, B. Z. Tang. Structural Control of the Photoluminescence of Silole Regioisomers and their Utility as Sensitive Regiodiscriminating Chemosensors and Efficient Electroluminescent Materials. J. Phys. Chem. B.2005,109:10061-10066
    [59]Y. Dong, J. W. Y. Lam, A. Qin, J. Liu, Z. Li, B. Z. Tang. Aggregation-induced Emissions of Tetraphenylethene Derivatives and Their Utilities as Chemical Vapor Sensor and In Organic Light-emitting Diodes. Appl. Phys. Lett.2007,91: 011111-011112
    [60]Y. Dong, J. W. Y. Lam, A. Qin, Z. Li, J. Liu, J. Sun, Y. Dong, B. Z. Tang. Endowing Hexaphenylsilole with Chemical Sensory and Biological Probing Properties by Attaching Amino Pendants to the Silolyl Core. Chem. Phys. Lett.2007,446:124-125
    [61]H. Tong, Y. Hong, Y. Dong, M. Haeussler, Z. Li, J. W. Y. Lam, Y. Dong, H. H. Y. Sung, I. D. Williams, B. Z. Tang. Protein Detection and Quantitation by Tetraphenylethene-based Fluorescent Probes with Aggregation Induced-emission Characteristics. J. Phys. Chem. B,2007,111:11817-11818
    [62]R. H. Friend, R. W. Gymer, A. B. Holmoes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, W. R. Salanech. Electroluminescence in Conjugated Polymers. Nature 1999,397:121-128
    [63]H. Aziz, Z. Popovic, X. Hu, A. M. Hor, G. Xu. Degradation Mechanism of Small Molecule-based Organic Light-emitting Devices. Science 1999,283:1900-1902
    [64]C. W. Tang, S. A. Vanslyke. Organic Electroluminescent Diodes. Appl. Phys. Lett. 1987,51:913-916
    [65]S. J. Liu, F. Li, Q. Diao, Y. G. Ma. Aggregation-induced Enhanced Emission Materials for Efficient White Organic Light-emitting Devices. Organic Electronics,2010, 11: 613-617
    [66]M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Vanstryland. Sensitive Measurement of Optical Nonlinearities Using A Single Beam. IEEE J. Quantum Electron,1990,26:760-769
    [67]M. Goppert-Mayer. Uber Elementarakte in zwei Quantensprungen Gottinger Dissertation. Ann Phys,1931,9:273-294.
    [68]W. Kaiser, C. G. B. Garrett. Two-Photon Excitation in CaF2:Eu2+. Phys. Rev. Lett. 1961,7:229-231
    [69]M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu. Design of Organic Molecules with Large Two-photon Absorption Cross Sections. Science,1998,281: 1653-1656
    [70]K. D. Belfield, D. I. Hagan, E. W. V. Stryland, K. J. Schafer, R. A. Negres. New two-photon absorbing fluorine derivatives:Synthesis and Nonlinear Optical Characterization. Org Lett,1999,1:,1575-1578
    [71]Y. Wan, L. Y. Yan, Z. J. Zhao, X. N. Ma, Q. J. Guo, M. L. Jia, P. Lu, A. D. Xia. Gigantic Two-Photon Absorption Cross Sections and Strong Two-photon Excited Fluorescence in Pyrene Core Dendrimers with Fluorene/Carbazole as Dendrons and Acetylene as Linkages. J. Phys. Chem. B,2010,114:11737-11745
    [72]W. Denk, J. H. Sttickler, W. W. Webb. Two-photon Laser Scanning Fluorescence Microscopy. Science 1990,248:73-76
    [73]K. D. Belfield, C. D. Andrade, C. O. Yanez, M. V. Bondar, F. E. Hernandez, O. V. Przhonska. New Two-Photon-Absorbing Probe with Efficient Superfluorescent Properties. J. Phys. Chem. B,2010,114:14087-14095
    [74]L. L. Brott, R. R. Naik, D. J. Pikas, Ultrafast Holographic Nanopatterning of Biocatalytically Formed Silica. Nature 2001,413:291-296
    [75]D. A. Parthenopoulos, P. M. Rentzepis. Three Dimensional Optical Storage Memory. Science 1989,245:843-844
    [76]J. H. Strickler, W. W. Webb.3-D Optical Data Storage by Two-photon Excitation. Adv. Mater.1993,5:479-482
    [77]H. E. Pudavar, M. P. Joshi, P. N. Prasad, B. A. Reinhardt. High-density Three-dimensional Optical Data Storage in A Stacked Compact Disk Format with Two-photon Writing and Single Photon Read Out. Appl. Phys. Lett.1999,74: 1338-1341
    [78]D. Day, M. Gu, A. Smallridge. Rewritable 3D Bit Optical Data Storage in A PMMA-based Photorefractive Polymer. Adv. Mater.2001,13:1005-1011
    [79]K. D. Belfield, K. J. Schafer. A New Photosensitive Polymeric Material for WORM Optical Data Storage Using Multichannel Two-photon Fluorescence Read out. Chem. Mater.2002,14:3656-3662
    [80]G. S. He, J. D. Bhawalkar, C. F Zhao, P. N. Prasad. Optical Limiting Effect in A Two-photon Absorption Dye Doped Solid Matrix. Appl. Phys. Lett.1995,67: 2433-2434
    [81]J. E. Ehrlich, X. L. Wu, I. Y. S. Lee, Z. Y. Hu, H. Rcockel, S. R. Marder, J. W. Perry. Two-photon Absorption and Broadband Optical Limiting with Bis-donor Stilbenes. Opt. Lett.1997,22:1843-1845
    [82]P. L. Baldeck, Y. Morel, C. Andraud, J. F. Nicoud, A. Ibanez. Experimental Observation of Dark Spatial Solitons in a Planar Polymer Waveguide. Photonics Sci. News 1999,4:5-7
    [83]T. Brixner, N. H. Damrauer, P. Niklaus, G. Gerber. Photoselective Adaptive Femtosecond Quantum Control in The Liquid Phase. Nature 2001,414:57-61
    [84]K. D. Belfield, M. V. Bondar, F. E. Hernandez, O. V. J. Przhonska. Photophysical Characterization, Two-Photon Absorption and Optical Power Limiting of Two Fluorenylperylene Diimides. Phys. Chem. C 2008,112:5618-5622
    [85]Y. Qian, K. Meng, C. G. Lu, B. Lin, W. Huang, Y. P. Cui. The Synthesis, Photophysical Properties and Two-photon Absorption of Triphenylamine Multipolar Chromophores. Dyes Pigm.2009,80:174-180
    [86]W. Denk, J. H. Strickler, W. W. Webb. Two-photon Laser Scanning Fluorescence Microscopy. Science 1997,248:73-74
    [87]T. Gura. Biologists Get Up Close and Personal With Live Cells. Science 1990,276: 1988-1989
    [88]X. Wang, L. J. Krebs, M. AlNuri, H. E. Pudavar, S. Ghosal, C. Liebow, A. A. Nagy, A. V. Schally, P. N. Prasad. A Chemically Labelled Cytotoxic Agent:Two-photon Fluorophore for Optical Tracking of Cellular Pathway in Chemotherapy. Proc. Natl. Acad. Sci. USA 1999,96:11081-11083
    [89]X. Wang, H. E. Pudavar, R. Kapoor, L. J. Krebs, E. J. Bergey, C. Liebow, P. N. Prasad, A. Nagy, A. V. Schally. Studies on the Mechanism of Action of A Targeted Chemotherapeutic Drug in Lliving Cancer Cells by Two-photon Laser Scanning Microspectro Fluorometry. J. Biomed. Opt.2001,6:319-324
    [90]D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb. Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo. Science 2003,300:1434-1435
    [91]S. Chakrabarti, K. Ruud. Large Two-photon Absorption Cross Section:Molecular Tweezer as A New Promising Class of Compounds for Nonlinear Optics. Phys. Chem. Chem. Phys.2009,11:2592-2596
    [92]S. Zein, F. Delbecq, D. Simon. A TD-DFT Investigation of Two-photon Absorption of Fluorene Derivatives. Phys. Chem. Chem. Phys.2009,11:694-702
    [93]K. A. Nguyen, P. N. Day, R. Pachter. Effects of Conjugation in Length and Dimension on Two-photon Properties of Fluorene-based Chromophores. Theor. Chem. Acc. 2008,120:167-175
    [94]M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu. Design of Organic Molecules with Large Two-Photon Absorption Cross Sections. Science 1998,281: 1653-1656
    [95]P. N. Prasad. Introduction to Biophotonics. Wiley. NY 2003
    [96]S. Kim, Q. D. Zheng, G. S. He, D. J. Bharali, H. E. Pudavar, A. Baev, P. N. Prasad. Aggregation-Enhanced Fluorescence and Two-Photon Absorption in Nano-aggregates of a 9,10-Bis[4'-(4"-aminostyryl)styryl] anthracene Derivative. Adv. Funct. Mater. 2006,16:2317-2319
    [97]J. S. Park, R. H. Kim, N. S. Cho, H. K. Shim, K. S. Lee. Enhanced Emission and Two-Photon Absorption Cross-Section by Nanoaggregation of a Cyano-Substituted Stilbene Derivative. J. Nanosci. Nanotechnol.2008,8:4793-4796
    [98]Y. Zhu, A. R. Rabindranath, T. Beyerlein, B. Tieke. Highly Luminescent 1,4-Diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole-(DPP-)Based Conjugated Polymers Prepared Upon Suzuki Coupling. Macromolecules.2007,40:6981-6989
    [99]G. S. He, L. S. Tan, Q. Zheng, P. N. Prasad. Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications. Chem. Rev.2008,108: 1245-1330
    [100]M. Pawlicki, H. A. Collins, R. G. Denning, H. L. Anderson. Two-photon Absorption and the Design of Two-photon Dyes. Angew. Chem. Int. Ed.2009,48:3244-3266
    [101]G. A. Sotzing, C. A. Thomas, J. R. Reynolds, P. J. Steel. Low Band Gap Cyanovinylene Polymers Based on Ethylenedioxythiophene. Macromolecules 1998, 31:3750-3752
    [102]S. C. Moratti, R. Cervini, A. B. Holmes, D. R. Baigent, R. H. Friend, N. C. Greenham, J. Gruner, P. J. Hamer, High Electron Affinity Polymers for LEDs. Synth. Met.1995,71:2117-2120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700