硅烷化改性MCM-41担载的Pd催化剂加氢脱硫性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界各国都对汽柴油的质量,特别是硫含量进行严格限制。开发新型高效的加氢脱硫(HDS)催化剂用来生产超低硫燃料油,是一个十分有意义的研究课题。全硅MCM-41型介孔材料是一种优良的HDS催化剂载体,本文从MCM-41载体入手,以三甲基氯硅烷为硅烷化试剂,通过后嫁接处理法对载体MCM-41进行了硅烷化改性,通过X射线衍射、N2吸附等温线和CO吸附红外光谱等手段对改性载体骨架结构和孔性质进行了表征。以质量分数为0.8%的二苯并噻吩(DBT)的十氢萘溶液作模型化合物考察了硅烷化改性前后的MCM-41担载Pd催化剂HDS反应。结合ICP、H2化学吸附、XPS以及CO吸附红外光谱对催化剂进行表征,探讨了载体对担载的贵金属催化剂HDS反应性能的影响。
     以三甲基氯硅烷为硅烷化试剂对MCM-41进行硅烷化改性,原位IR结果显示,经焙烧、原位还原,载体表面仍保留硅烷基团,硅烷化改性顺利进行;XRD以及N2吸附等温线表明,改性前后MCM-41均保持了典型的全硅MCM-41六方有序介孔结构;N2吸附等温线表明硅烷化改性后MCM-41孔容、孔径和BET比表面积都有所降低。
     以DBT为模型化合物,考察了改性前后担载Pd催化剂的加氢脱硫反应。通过加氢脱硫活性与抗硫性效果对比,发现经硅烷化改性后担载Pd催化剂活性明显提高且能够保持良好的稳定性。长时间抗硫性测试,发现硅烷化改性后催化剂表现出良好的抗硫性;通过加氢脱硫路径选择性与产物选择性对比,可以看出硅烷化改性对催化剂的加氢性能产生很大影响。硅烷化改性主要提高了催化剂加氢反应路径的活性。同时,硅烷化改性后,催化剂表现出了较低的裂化活性。
     CO-IR表征结果显示,硅烷化改性对担载Pd金属的电子性质产生影响,IR谱图蓝移现象证明Pd与硅烷化载体发生强相互作用,产生了缺电子结构。Pd 3d的XPS结果同样显示有Pdδ+结构的形成。从而解释了硅烷化改性后Pd催化剂活性与抗硫性提高的原因。
Environment legislations demand lower-sulfur transportation fuels all over the world. The development of novel catalyst with high efficiency to produce ultra-low sulfur diesel fuels is a meaningful topic.The Si-MCM-41 is a promising support for deep HDS catalysts, in this dissertation, silylation modification of MCM-41 was prepared using trimethylchlorosilane. XRD, N2 adsorption, CO adsorbed FTIR were performed to characterize the structure of the support. The hydrodesulfurization (HDS) performances of the supported Pd catalysts were studied using a model fuel containing 0.8 wt% DBT in decalin. ICP, H2-chemisorption, CO adsorbed FT-IR, XPS were performed to characterize the structure of the catalysts. The effects of support on the HDS performances of noble metal catalysts were discussed.
     Silylation modification of MCM-41 was prepared using trimethylchlorosilane, FTIR indicated that silylation process was successful. XRD and N2 adsorption indicated that the original structure of MCM-41 maintained after silylation, but the total pore volume, the pore size and the BET surface area decreased to some extent.
     The hydrodesulfurization (HDS) performances of the supported Pd catalysts were studied using a model fuel containing 0.8 wt% DBT in decalin. By comparing the activities and thioresistance in the HDS, the HDS activity and thioresistance were both improved by silylation modification. The long-term stability test of the supported Pd catalysts in DBT HDS indicated that the supported noble metal catalysts exhibited better thioresistance by silylation modification. By comparing the selectivities of the route and the products in the HDS, the catalysts activity was improved by silylation modification, especially the hydrogenation ability.The HYD activity was improved signally. Meanwhile, the catalysts exhibited low cracking activity by silylation modification.
     CO-IR indicated that the electronic properties of the Pd catalysts supported on silylated MCM-41 changed. The IR showed the frequency shifts (blue shift). The shift revealed the strong interaction between Pd and the silylated MCM-41. The XPS also proved the generation of Pdδ+. The CO-IR and XPS both indicated the improvement in activities and thioresistance originates from electron-deficient Pd.
引文
[1]Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal. Today,2003,86(1-4):211-263.
    [2]Nag N K, Sapre A V, Broderick D H, et al. Hydrodesulfurization of polycyclic aromatics catalyzed by sulfided Co-Mo/Al2O3:The relative reactivities. J Catal.,1979,57 (3): 509-512.
    [3]Vrinat M L. The kinetics of the hydrodesulfurization process-a review. Appl. Catal. 1983,6(2):137-158.
    [4]Aubert C, Durand R, Geneste P, et al. Hydroprocessing of dibenzothiophene, phenothiazine, phenoxathiin, thianthrene, and thioxanthene on a sulfided NiO-MoO3/Al2O3 catalyst. J. Catal.,1986,97(1):169-176.
    [5]Wang H, Prins R. Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over sulfided Mo/g-Al2O3. J. Catal.2008,258(1):153-164.
    [6]Todorova T, Prins R, Weber Th. A density functional theory study of the hydrogenolysis reaction of CH3SH to CH4 on the catalytically active (100) edge of 2H-MoS2. J. Catal., 2005,236(2):190-204.
    [7]Meille V, Schulz E, Lemaire M, et al. Hydrodesulfurization of Alkyldibenzothiophenes over a NiMo/Al2O3Catalyst:Kinetics and Mechanism. J. Catal.1997,170(1):29-36.
    [8]Bataille F, Lemberton J, Michaud P, et al. Alkyldibenzothiophenes Hydrodesulfurization-Promoter Effect, Reactivity, and Reaction Mechanism. J. Catal. 2000,191(2):409.
    [9]Anderson J R, Boudart M. Catalysis Science and Technology, BerlinSpringer-Verlarge, 1996, vll:22-127.
    [10]KABE T, QIAN W, WANG W, et al. Sulfur exchange on Co-Mo/Al2O3 hydrodesulfurization catalyst using 35S radioisotope tracer [J]. Catal. Today,1996,29(1-4):197-202.
    [11]Topsoe H, Clausen B S. Active sites and support effects on hydrodesulfurization catalyst. Appl Catal.,1986,25(1-2):273-293.
    [12]Hagenbach G, Courty Ph, Delmon B. Physicochemical investigations and catalystic activity measurements on crystallized molybdenum sulfided-cobalt sulfided mixed catalysts. J Catal.1973,31 (2):264-273.
    [13]WANG A J, WANG Y, KABE T, et al. Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported catalysts:I. sulfided Co-Mo catalysts [J]. J. Catal.,2001,199(1): 19-29.
    [14]WANG A J, WANG Y, KABE T, et al. Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported catalysts:Ⅱ. sulfided Ni-Mo catalysts [J]. J. Catal.,2002,210(2): 319-327.
    [14]NARA R, ORTEGA R A, ALONSO G, et al. CoMo/Ti-SBA-15 catalysts for dibenzothiophene desulfurization [J]. Catal. Today,2007,127(1-4):70-84.
    [15]YOSHIMURA Y, TOBA M, MATSUI T, et al. Active phases and sulfur tolerance of bimetallic Pd-Pt catalysts used for hydrotreatment [J]. Appl. Catal. A,2007,322:152-172.
    [16]CHIOU J F, HUANG Y L, LIN T B, et al. Aromatics reduction over supported Platinum catalysts.1. effect of sulfur on the catalyst deactivation of tetralin hydrogenation [J]. Ind. Eng. Chem. Res.,1995,34(12):4277-4283.
    [17]LIN T B, JAN C A, CHANG J R. Aromatics reduction over supported platinum catalysts. 2. improvement in sulfur resistance by addition of palladium to supported platinum catalysts [J]. Ind. Eng. Chem. Res.,1995,34(12):4284-4289.
    [18]HOMEYER S T, KARPINSKI Z, SACHTLER W M H. Effect of zeolite protons on palladium-catalyzed hydrocarbon reactions [J]. J. Catal.,1990,123(1):60-73.
    [19]BAI X, SACHTLER W M H. Methylcyclopentane conversion catalysis by zeolite encaged palladium clusters and palladium-proton adducts [J]. J. Catal.,1991,129(1):121-129.
    [20]SUGIMOTO M, KATSUNO H, HAYASAKA T, et al. Electronic state of platinum supported on the monochlorotrifluoromethane-treated alkaline L zeolite [J]. Appl. Catal. A,1993, 102(2):167-180.
    [21]JANSEN A P J, van SANTEN R A. Hartree-Fock-Slater calculations on cation-induced changes in the adsorption of carbon monoxide on iridium tetrameric clusters [J]. J. Phys. Chem.,1990,94(17):6764-6772.
    [22]MOJET B L, MILLER J T, RAMAKER D E, et al. A new model describing the metal-support interaction in noble metal catalysts [J]. J. Catal.,1999,186(2):373-386.
    [23]KONINGSBERGER D C, de GRAAF J, MOJET B L, et al. The metal-support interaction in Pt/Y zeolite:evidence for a shift in energy of metal d-valence orbitals by Pt-H shape resonance and atomic XAFS spectroscopy [J]. Appl. Catal. A,2000,191(1-2):205-220.
    [24]RAMAKER D E, de GRAAF J, van VEEN J A R, et al. Nature of the metal-support interaction in supported Pt catalysts:shift in Pt valence orbital energy and charge rearrangement [J]. J. Catal.,2001,203(1):7-17.
    [25]BETTA R A D, BOUDART M. Well dispersed platinum on Y zeolite:preparation and catalytic activity. Proc. 5th. Int. Congr. Catal., Amsterdam North Holland [C].1972, p:1329.
    [26]STANKHEEV A Y, KUSTOV L M. Effects of the support on the morphology and electronic properties of supported metal clusters:modern concepts and progress in 1990s [J]. Appl. Catal. A,1999,188(1-2):3-35.
    [27]Guillon E, Lynch J, Uzio D, et al. Characterisation of bimetallic platinum system: application to the reduction of aromatics in presence of sulfur. Catal. Today,2001, 65:201-208
    [28]AMBS W J, MITCHELL M M Jr. Hydrogen spillover on platinum-alumina, effect of water [J]. J. Catal.,1983,82(1):226-229.
    [29]CONNER W C, Jr, FACCONER J L. Spillover in heterogeneous catalysis [J]. Chem. Rev. 1995,95(4):759-788.
    [30]MILLER J T, MEYERS B L, MODICA F S, et al. Hydrogen temperature-programmed desorption (H2 TPD) of supported platinum catalysts [J]. J. Catal.,1993,143(2):395-408.
    [31]Gallezot P, Dakta I, Massardier J, et al. Proc.6th Int. congr. Catal. (Eds. Hightower H). London,1976.389-396
    [32]SONG C, MA X. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization [J]. Appl. Catal. B,2003,41(1-2):207-238.
    [33]MURALIDHAR G, MASSOTH F E, SHABTAI J. Catalytic functionalities of supported sulf ides: I. Effect of support and additives on the CoMo catalyst [J].J. Catal,1984,85(1):44-52
    [34]ISHIHARA A, SHIROUCHI K, KABE T. Hydrodesulfurization of Dibenzothiophene Catalyzed by Silica-Alumina Supported Anionic Molybdenum Carbonyl Complexes [J]. CHEM LETT,1993, 22(4):589
    [35]CHARY K V R, RAMA RAO K S, MURALIDHAR G, et al. Hydrodeoxygenation of furan by carbon supported molybdenum sulphide catalysts [J]. Carbon,1991,29(3):478-479
    [36]CINIBULK J, KOOYMAN P J, VIT Z, et al. Magnesia-Supported Mo, CoMo and NiMo Sulf ide Catalysts Prepared by Nonaqueous Impregnation:Parallel HDS/HDN of Thiophene and Pyridine and TEM Microstructure [J]. Catal Lett,2003,89(1/2):147
    [37]DATYE A K, SRINIVASAN S, ALLARD L F, et al. Oxide Supported MoS2 Catalysts of Unusual Morphology [J].J Catal,1996,158(1):205-216
    [38]FARAG H, WHITEHURST D D, MOCHIDA I. Synthesis of active hydrodesulfurization carbon-supported Co-Mo catalysts:Relationships between preparation methods and activity/selectivity [J]. Ind Eng Chem Res,1998,37:3533-3539.
    [39]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature.1992,359:710-712.
    [40]Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc.1992,114:10834-10843.
    [41]LI X, WANG A J, SUN Z C, et al. Effect of surface proton exchange on hydrodesulfurization performance of MCM-41-supported catalysts [J]. Appl Catal:A,2003,254:309-326.
    [42]LI X, WANG An J, ZHANG S, et al. Effect of surface Na+ or K+ ion exchange on hydrodesulfurization performance of MCM-41supported Ni-W catalyst [J]. Appl Catal:A, 2007,316(2):134-141.
    [43]Stein A, Brian JM, Rick C S.Adv. Mater. [J],2000,12:1403-1419
    [44]W ightA P, DavisM E.Chem. Rev.[J],2002,102:3589-3614.
    [45]Vinu A, Hossain K Z, Ariga K. J. Nanosci. Nanotech. [J],2005,5(3):347-371.
    [46]Liu Jian(刘健), Yang Qi-hua(杨启华),Zhang Lei(张磊), et al. Prog. In. Chem(化学进展)[J],2005,17(5):809-817
    [47]Corma A, Garcia H.Adv. Synth. Catal. [J],2006,348:1391-1412.
    [48]Hoffmann F, Cornelius M, Morell J, et al. Angew. Chem. Int. Ed. [J],2006,45:3216-3 251
    [49]Zhan Wang-cheng(詹望成), Lu Guan-zhong(卢冠忠),Wang Yan-qing(王艳芹)Chem. Ind. Eng. Prog. (化工进展)[J],2006,25(1):1-7.
    [50]Tatsumi T, Koyano K A, Igarashi N. Remarkable activity enhancement by trimethylsilylation in oxidation of alkenes and alkanes with H202 catalyzed by titanium-containing mesoporous molecular sieves, Chem Commun,1998,998:325-326.
    [51]Kimura T, Kuroda K, Sugahara Y et al. Esterification of the Silanol Groups in the Mesoporous SilicaDerived from Kanemite. J Porous Mater,1998,5:127-132.
    [52]Zhao X S, Lu G Q. Modification of MCM-41 by Surface Silylation with Trimethylchlorosilane and Adsorption Study, J Phys Chem B,1998,102:1556-1561.
    [53]Anwander R, Palm C, Stelzer J etal. Silazane-silylation of mesoporous silicates: towards tailor-made support materials,Stud Surf Sci Catal,1998,117:135-142.
    [54]潘媛,胡萍,朱红香等.疏水性二氧化硅的制备及其应用研究,河南化工.2010,27:9-10.
    [55]Sanehez C, Ribot F. New J Chem,1994,18:100.
    [56]Wen J.Wilkes G L. Chem Mater,1996,8:1667.
    [57]LasperasM, LlorettT, ChavesL, etal. Stud. Surf. Sci. Catal. [J],1997,108:75-82.
    [58]Diaz I, M rquez2Alvarez C, Mohino F, et al. J. Catal. [J],2000,193:295-302.
    [59]Shimizu K, Koizumi S, Hatamachi T, et al. J. Catal. [J],2004,228:141-151.
    [60]KosslickH, M nnich I, Paetzold E, etal. Micropor. Mesopor. Mater. [J],2001,44~45: 537-545
    [61]Kim D J, Dunn B C, Cole P, Turpin G, Ernst R D, Pugmire R J, Kang M, Kim J M, Eyring E M. Chem Commun,2005:1462
    [62]A. Quintanilla, J. J. W. Bakker, M.T. Kreutzer, et al. Tuning the support adsorption properties of Pd/SiO2 by silylation to improve the selective hydrogenation of aromatic ketones [J]. Journal of Catalysis 257 (2008) 55-63.
    [63]Manuel Ojeda, Francisco J P, Pilar T, et al. Silylation of a Co/SiO2 Catalyst. Characterization and Exploitation of the CO Hydrogenation Reaction [J]. Langmuir 2006, 22,3131-3137.
    [64]Gunnwewegh E A,Gopie S S.,MCM-41 type molecular sieves as catalysts for the Friedel-Crafts acylation of 2-methoxynaphthalene, J. Mol. Catal. A:Chem.1996,106,151-158.
    [65]Vasant R, Choudhary V R, High active Si-MCM-41 supported Ga203 and In203 catalyst for F-C-type benzylation and acylation reaction in the presence or absence of moisture,J,Catal.,2000,192,257-261.
    [66]Kowalab S,Stawniski K,Stankiewicz K. Proc.3rdPolish-German Zeolite Colloquium,NCUP(ed. Rozwadowski M),Torun,1998,169.
    [67]Hu X C. Foo M L., Pore size engineering on MCM-41:selectivity tuning of heterogenized A1203 for the synthesis of liner alkyl benzenes, J. Catal.,2000,195,412-415.
    [68]Mokaya R., The effect of paricle size on aluminosilicate MCM-41 catalysts prepared via grafting routs, J. Catal.,1999,186,470.
    [69]Jun S,Ryoo R.,Alumninum impregnation into mesoporous silica molecular sieves for catalic application to F-C alkylation, J. Catal.,2000,195,237-243
    [70]Climent M J, Corma A., Use of mesoporous MCM-41 aluminosilicates as catalysts in the preparation of fine chemicals, J. Catal.,1998,175,70-79.
    [71]Climent M J, Corma A., Mesoporous materials as catalysts for the producton of chemicals:synthesis of alkyl glucosides on MCM-41, J. Catal.,1999,183,76-82.
    [72]Janenicke S,Chuah G K.,Origanic-Inorganic hybrid catalysts for acid- and base-catalyzed reactions Micro. Meso. Mater.,2000,35-36,143-153.
    [73]Kohara I,Fujiyama H.Catalytic activity of Cu ion-exchanged Na MCM-41 in the liquid-phase oxidation of 2,6-di-tert-butylphenol, J. Mol. Catal. A:Chem.,2000,153,93-101.
    [74]Corma A, lglesias M, Obisco J P, Chiral Reactions in Heterogeneous Catalysis. (ed. Jannes G,V.Dubois V),New York and London:Plenum Press,1995,179-189.
    [75]Piaggio P, Langham C., Catalytic asymmetric epoxidation stilbene using a chiral salen complex immobilized in Mn-exchanged Al-MCM-41, J. Chem. Soc., Perkin Trans.,2000,2,143-148.
    [75]Zhou X G, Yu X Q.,Asymmetric epoxidation of alkenes catalyzed by chromium by binaphtyl Schiff based on complex supported on MCM-41, J. Chem. Soc., Chem. Comm.,1999,1789-1790.
    [77]M. Lasperas, N. Bellocq, D. Brunel, P. Moreau, Chiral mesoporous templated silicas as heterogeneous inorganic-organic catalysts in the enantioselective alkylation of benzaldehyde, Tetrahedron:Asymmetry.1998,9(17),3053-3064.
    [78]Bae S J,Kim S W., New chiral heterogeneous catalyst based on mesoporous silica:asymmetric diethylzinc addition to benzaldehyde,Chem. Comm.,2000,31-32.
    [79]Johnson B F G, Raynor S A., Superior performance of a chiral catalyst:confined within mesoporous silica. Chem Comm.,1999,1167-1168.
    [80]Coman S, Florea M., Low metal loading Ru-MCM-41 stereocontrolled hydrogenation of prostaglandine intermediates, Chem. Comm.,1999,2175-2176.
    [81]Anwander R, Gorlitzer H W.,Grafting bulky rare earth metal complexes onto mesoporous silica MCM-41, J. Chem.Soc.,Dalton Trans.,1999,3611-3615.
    [82]Gisela G, Clemens P, Reiner A., Chem. Eur. J.,1999,5(3),1997.
    [83]Debabrata C.,Anannya M.,Olifine epoxidation catalyzed by Shiff-base complexes of Mn and Ni hetero-homogeneous system, J. Mol. Catal. A:Chem.,1999,142,361-365.
    [84]Rodriguez I,Iborra S, ammonium hydroxides as catalysts for fine production chromenes and coumarine, Appl.Catal. A:Gen.,2000,194-195,241-252.
    [85]Sercheli R,Vargas R A.,Guanidine encapsulated in zeolite Y and anchored to MCM-41:synthesis and catalysis active function-bed with amino groups, J. Mol. Catal. A:Chem.,1999,148,173-181.
    [86]Alexander B. Sorokin, Alain Tuel, Metallophthalocyanine functionalized silicas:catalysts for the selective oxidation of aromatic compounds, Catal. Today,2000,57,45-59.
    [87]Oldroyd R D, Thomas J M,Maschmeyer T., The titanium(Ⅳ) catalysed epoxidation of alkens by tert-alkyl hydroperoxides, Angew. Chem. Int.Ed. Engl.,1996,35,2787-2790.
    [88]Bleloch A, Johnson B F G.,Modified mesoporous silicate MCM-41 materials immobilized perruthenate-A new highly active heterogeneous oxidation catalyst for clean organic synthesis using molecular oxyen, Chem. Comm.,1999,1907-1908.
    [89]B. M. Choudary,M. L. Kantam., Hydrogenation of acetylenics by Pd-exchanged mesoporous materials, Appl. Catal, A:Gen.,1999,181,139-144.
    [90]Campaigne E, Hewitt L, Ashby J. Substitution reactions of 4-methydibenzothiophene. J. Heterocycl Chem.1969,6:533-557.
    [91]WANG A, KABE T. Fine-tuning of pore size of MCM-41 by adjusting the initial pH of the synthesis mixture [J]. Chem. Commun.,1999,20:2067-2068.
    [92]TRONG O D, ZAIDI S M J, KALIAGUINE S. Stability of mesoporous aluminosilicate MCM-41 under vapor treatment, acidic and basic conditions [J]. Micropor Mesopor Mater,1998, 22:211-214.
    [93]X S Zhao, G Q Lu.Modification of MCM-41 by surface silylation with trimethyl chlorosilane and adsorption study [J]. J. Phys.Chem. B,1998,102:1556-1561.
    [94]White, L. D; Tripp, C. P. J. Colloid Interface Sci.2000,224,417-424.
    [95]Kresge C T., Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liguid-crystal template mechanism [J]. Nature,1992,359,710-712.
    [96]Pugin B, M llerM.Stud. Surf. Sci. Catal.[J],1993,78:107-114.
    [97]Angew. Chem. Int. Ed.,2008,47(44),8478-8481
    [98]Eischens R P, Pliskin W A, Francis S A·Infrared spectra of chemisorbed carbon monoxide[J]. J Chem Phys,1954,22 (2):1786.
    [99]Palazov A, kadinov G, Bonev C H et al·Infrared spectroscopic study of the interaction between carbon monoxide and hydrogen on supported palladium[J]·J Catal,1982, 74(1):44.
    [100]Gill C M, Gonzalez R D·Infrared study of the adsorption of CO and NO on silica-supported Pd and Pt-Pd[J]·J Phys Chem,1980,84(8):878.
    [101]徐慧珍,过中儒,王利盛·CO在Pd系双金属及其单金属催化剂上的吸脱附红外光谱[J]·分子催化,1993,7(1):55.
    [102]Primet M, Saehtler W M H. J Catal,1976,44:324.
    [103]Soma-Noto Y, Saehtler W M H. J Catal,1974,32:315.
    [104]Grill C M, MeLaughlin M L, Stevenson J M et al. J Catal,1981,69:454.
    [105]Francesco A, Sara C, Alessandro D et al. PdO hydrate as an efficient and recyclable catalyst for the Suzuki-Miyaura reaction in water/ethanol at room temperature. [J]. Catalysis Communications 12 (2011) 563-567
    [106]KOGAN V M, GAZIEV R G, LEE S W, et al. Radioisotopic study of (Co)Mo/Al203 sulfide catalysts for HDS:Part III. poisoning by N-containing compounds [J]. Appl. Catal. A, 2003,251(1):187-198.
    [107]MEILLE V, SCHULZ E, LEMAIRE M, et al. Hydrodesulfurization of alkyldibenzothiophenes over a NiMo/Al2O3 catalyst:kinetics and mechanism [J]. J. Catal.,1997,170(1):29-36.
    [108]EGOROVA M, PRINS R. Competitive hydrodesulfurization of 4,6-dimethyldibenzothiophene, hydrodenitrogenation of 2-methylpyridine, and hydrogenation of naphthalene over sulfided NiMo/y-Al2O3 [J]. J. Catal.,2004,224(2):278-287.
    [109]STAKHEEV A Y, KUSTOV L M. Effects of the support on the morphology and electronic properties of supported metal cluster:modern concepts and progress in 1990s[J]. Appl Catal:A,1999,188 (1-2):3-35.
    [110]YOSHIMURA Y, TODA M, MATSUI T, et al. Active phases and sulfur tolerance of bimetallic Pd-Pt catalysts used for hydrotreatment[J]. Appl Catal:A,2007,322 (16):152-171.
    [111]LI X, WANG An J, EGOROVA M, et al. Kinetics of the HDS of 4,6-dimethyldibenzothiophene and hydrogenated intermediates over sulf ided Mo and NiMo on γ-Al2O3[J]. J Catal,2007, 250 (2):283-293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700