纳米HZSM-5在FCC汽油选择性加氢脱硫改质中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为保护环境,世界各国对发动机燃料的组成相继提出了严格的限制,以降低有害物质的排放。生产低硫、高辛烷值的清洁汽油己成为当今炼油技术进步的重要课题。我国FCC汽油一般占成品汽油总和的70%以上,采用常规的加氢脱硫催化剂,在加氢改质过程中会导致FCC汽油烯烃严重饱和,造成辛烷值大量损失。因此,我国迫切需要开发具有高选择性的加氢脱硫催化剂。
     纳米HZSM-5具有独特的孔道结构和较大的外表面积,可以增强活性组分的分散度和负载量,提高目的产物的选择性和收率。本文采用水热处理对纳米HZSM-5分子筛进行改性,通过XRD、NH3-TPD、N2-吸附等表征手段研究了改性后分子筛的物性变化;在此基础上,将活性组分Co、Mo负载在水热处理后的分子筛上,考察了其在FCC汽油中的选择性加氢脱硫性能,并在模型化合物中比较了催化剂对不同硫化物的脱除情况。最后探索了螯合剂EDTA改性对CoMo/HZSM-5催化剂在FCC汽油中选择性加氢脱硫性能的影响。主要得到如下结论:
     1.随着水热处理温度的提高,纳米HZSM-5分子筛比表面积降低,酸量减少,酸强度变弱,同时孔体积变化不大,分子筛保持了良好的MFI拓扑结构。
     2.采用活性组分Co、Mo对水热处理后的纳米HZSM-5催化剂进行改性,考察了催化剂在全馏分FCC汽油中的选择性加氢脱硫性能。结果表明,随着水热处理温度的提高,催化剂的加氢脱硫性能受到抑制,烯烃饱和活性却得到改善;反应温度提高,催化剂脱硫活性增强,烯烃饱和程度加剧;增大空速有利于催化剂保烯烃,而不利于脱硫。CoMo改性的600℃水热处理纳米HZSM-5分子筛,其反应后产品油族组成基本不变,汽油辛烷值损失△RON<1,表现出较好的选择性加氢脱硫性能。
     经过水热处理并负载活性组分CoMo的纳米HZSM-5系列催化剂对噻吩和苯并噻吩具有良好的脱除能力,但当处理温度高于700℃时,催化剂对二者的脱除能力严重下降,不利于脱硫;该系列催化剂对苯并噻吩的脱除效果要好于对噻吩的脱除。
     3.采用EDTA对CoMo/HZSM-5催化剂进行改性,考察了其在FCC汽油中选择性加氢脱硫性能的变化。结果表明,EDTA改性后的催化剂加氢脱硫性能得到明显改善,但烯烃饱和程度加剧,辛烷值损失严重,未能达到脱硫保辛烷值的目的;改变工艺条件,催化剂的烯烃饱和活性和加氢脱硫活性不能达到一个好的平衡,无法实现高效选择性加氢脱硫。要达到高选择性的加氢脱硫,还必须进一步改善催化剂性能。
To protect the environment, the motor fuel compositions have been limited strictly to reduce emissions of harmful substances in the world. Production of low sulfur, high reaserch octane number(RON) clean gasoline has become an important issue of refining technological progress. Fluid catalytic cracking(FCC) gasoline of the total gasoline usually accounts for more than 70% in China. The process using traditional hydrodesulfurization catalyst will lead to the serious saturation of olefins in FCC gasoline, causing significant loss of RON. Therefore, our country needs urgently to develop high selective hydrodesulfurization catalyst.
     Nano-HZSM-5 has a unique pore structure and larger surface area, which can enhance the dispersion of active components and the loading amount and improve the selectivity and yield of target product in the reaction. In this article, nano-HZSM-5 zeolites had been modified by hydrothermal treatment, the physical properties of the modified catalysts were characterized. On this basis, the selective hydrodesulfurization performance of HZSM-5 zeolites after hydrothermal treatment and loading active component Co, Mo were investigated for FCC gasoline upgrading. The hydrodesulfurization performance of the catalysts for thiophene was compared with that of benzothiophene. Finally, the selective hydrodesulfurization performance of CoMo/HZSM-5 catalysts modified with chelating agent EDTA was also studied. Conclusions from the experiments were summarized mainly as follow:
     1. With hydrothermal treatment temperature increased, the surface area and the acid amount of the nano-HZSM-5 catalyst decreased and the weak acid strength and pore volume changed little. HZSM-5 zeolite maintained a good MFI topology after hydrothermal treatment.
     2. The selective hydrodesulfurization performance of HZSM-5 zeolites after hydrothermal treatment and loading active component Co, Mo were investigated in the full range FCC gasoline. The results showed that the hydrodesulfurization activity of modified catalysts was inhibited, but olefin saturation activity was improved with hydrothermal treatment temperature increased. As reaction temperature increased, the desulfurization activity and olefin saturation of the catalyst increased; The increase of WHSV was helpful for keeping olefin contents, but not beneficial to the desulfurization activity of the catalysts. The modified catalyst after hydrothermal treatment at 600℃and loading active component Co, Mo had better selective hydrodesulfurization performance than other catalysts, which the composition of reaction product is essentially as the same as raw oil and its RON loss was less than 1.
     The HZSM-5 catalysts after hydrothermal treatment and loading active component Co, Mo had good desulfurization activity for thiophene and benzothiophene. However, when the hydrothermal treatment temperature was over 700℃, the catalytic activity for them declined seriously. The desulfurization activity of these serial catalysts for benzothiophene is better than that of thiophene.
     3. The selective hydrodesulfurization performance of the CoMo/HZSM-5 catalys modified with chelating agent EDTA was investigated in FCC gasoline upgrading. The results showed that the catalyst after modified by EDTA can not meet the purpose of desulfurization and maintaining RON of FCC gasoline for its desulfurization activity significantly improved, but the olefin saturation degree aggravated and its RON loss was serious. The olefin saturation activity and HDS activity can not reach a good balance with the change of process conditions. To achieve high selectivity hydrodesulfurization performance, the catalytic activity of the catalysts must be further improved.
引文
[1]王开远.介绍2006年新版车用汽油国家标准[J].汽车工业研究,2007,6(11):34-37.
    [2]Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel [J]. Catalysis Today,2003,86(1-4):211-263.
    [3]Romanow S. Gasoline and diesel sulfur content review [J]. Hydrocarbon Processing, 2000,79 (9):17-19.
    [4]达建文,韩新竹,徐兴忠,等.催化裂化汽油选择性加氢脱硫催化剂的研制及性能评价[J],石油炼制与化工,2002,33(7):1-3.
    [5]Halbert T R. Technology options for meeting low sulfur targets [J].US Hydrocarbon ngineering,2000,5 (6):1-5.
    [6]Noeea J L, Cosyns J, Debuissehert Q, et al. The domino interaction of refinery processes for gasoline quality attainment [C]. NPRA Annual Meeting, Washington, 2000:61.
    [7]侯永兴,赵永兴Prime-G催化裂化汽油加氢脱硫技术的应用[J].炼油技术与工程,2009,39(7):13-15.
    [8]兰玲,鞠雅娜,钟海军,等.满足国Ⅳ标准的中国石油清洁汽油生产技术[J].哈尔滨理工大学学报,2010,6(15):102-106.
    [9]Greeley J P, Zaezepinski S. Selective cat naphtha hydrofining with minimal octane loss [C]. NPRA Annual Meeting, San Antonio, Texas,1999:31.
    [10]Desai P H, Gerritsen L A, Inoue Y. Low cost production of clean fuels with stars catalyst technology [C]. NPRA Annual Meeting, San Antonio, Texas,1999:40.
    [11]Halbert T R, Brignac G B, Greeley J P, et al. Technology options for meeting low sulfur mogas targets [C].NPRA Annual Meeting, Washington,2000:11.
    [12]Rock K. Ultra-low sulfur gasoline via catalytic distillation. Proceeding of the fifth international conference on refinery processing [C]. AICHE 2002 spring national meeting, New orleans, LA,2002:200-205.
    [13]李大东,胡云剑,石玉林,等.一种生产低硫汽油的方法[P].CN 1465668,2002.
    [14]朱渝,王一贯,陈巨星,等.催化裂化汽油选择性加氢脱硫技术(RSDS)工业应用试验[J].石油化工与炼制,2005,36(12):6-10.
    [15]伊西青.清洁汽油生产现状及技术进展[J].石油与天然气化工.2005,34(3):187-191.
    [16]后磊.OCT-M技术应用及组合催化剂器外再生后应用对比[J].当代化工,2009,38(3):240-243.
    [17]Martinez N P, Salazar J A, Tejada J, ea tl. Gasoline pool sulfur and octane control with ISAL [J]. Vision Tecnologica,2000,7(2):77-82.
    [18]Antos G J, Solari B, Monque R. Hydroprocessing to produce reformulated gasoline: The ISAL process [M]. Studies in Surface Science and Catalysis,1997,106:27-40.
    [19]Shih S S, Keville KM, Lissy D N. Gasoline upgrading proeess [P]. US,5326462.1994.
    [20]Shih S S, Owens P J, Palit S, et al. Mobil's OCTGAIN Process:FCC gasoline desulfurization reaches a new Performance level [C].NPRA Annual Meeting, SanAntonio, Texas,1999:30.
    [21]马伯文,清洁燃料生产技术[M].北京:中国石化出版社,2001.
    [22]李大东,石玉林,胡云剑,等.一种汽油深度脱硫降烯烃的方法[P].CN,1465666.2002.
    [23]胡永康,赵乐平,李扬,等.FDO全馏分催化裂化汽油芳构化烷基化降烯烃技术的开发[J].炼油技术与工程,2004,34(1):1-4.
    [24]胡永康,赵乐平,李扬,等.纳米ZSM-5沸石在OTA汽油降烯烃技术中的应用[J].中国有色金属学报,2004,14(1):317-322.
    [25]刘妍,孙斌,赵地顺,等.催化裂化汽油氧化法脱硫[J].天津化工,2004,18(5):25-27.
    [26]Khare G P, Engelbert D R, Cass B W. Transport desulfurization process utilizing a sulfur sorbent that is both fluidizable and circulatable and a method of making such sulfur sorbent [P]. US,5914292,1999.
    [27]Khare G P, Process for the producation of a sulfur sorbent [P]. US 6184176,2001.
    [28]KhareG P. Desulfurization with zinc titanate sorbents[P]. US 6338794,2002.
    [29]Irvine R L. Process for desulfurizing gasoline and hydrocarbon feed stocks [P]. US 5730860.1998.
    [30]张晓静,秦如意,刘金龙.FCC汽油吸附脱硫工艺技术—LADS工艺[J].天然气与石油,2003,21(1):39-41.
    [31]孙兰兰,刘淑芝,王宝辉.轻质燃料油脱硫技术研究进展[J].化工科技市场,2006,29(2):27-31.
    [32]夏道宏,苏贻勋.汽油中硫醇的分离及结构、组成分析[J].炼油设计,1995,25(1):46-49.
    [33]徐舟波,郭洪臣,王祥生,等.催化裂化汽油降烯烃技术进展及新技术探讨[J].当代化工,2004,3(3):141-145.
    [34]吴青,何鸣元.降低催化裂化汽油硫含量的技术及进展[J].炼油技术与工程,2005,35(2):1-4.
    [35]Chung K S, Massoth F E. Studies on molybdena-alumina catalysts:VII. Effect of cobalton catalyst states and reducibility [J]. Journal of Catalysis,1980,64(2): 320-331.
    [36]Tops(?)c H, Bartholdy J, Clausen B S, et al. Relation between structure and activity of sulfided Co-Mo HDS catalysts [J]. Preprints-Division of Petroleum Chemistry, 1982,27(3):721-729.
    [37]王月霞.加氢催化剂的器外预硫化[J].炼油设计,2000,30(7):57-58.
    [38]Hatanaka S, Yamada M. Hydrodesulfurization of catalytic cracked gasoline.2. the difference between HDS active site and olefin hydrogenation active site [J]. Industrial&Engineering Chemistry Research,1997,36(12):5110-5116.
    [39]Hatanaka, Sadakane, Yamada M. Hydrodesulfurization of catalytic cracked gasoline 1. Inhibiting effects of olefins on HDS of alkyl-(benzo)-thiophenes contained in catalytic cracked gasoline [J]. Industrial&Engineering Chemistry Research,1997, 36(5):1519-1523.
    [40]李明丰,夏国富,褚阳,等.催化裂化汽油选择性加氢脱硫催剂RSDS-1的开发[J].石油炼制与化工,2003,34(7):1-4.
    [41]Breysse M, Portefmx J L, Vrinat M. Support effects on hydro-treating catalysts[J]. Catalysis Today,1991,10(4):489-505.
    [42]Breysse M, Afanasiev P, Geantet C, et al. Overview of support effects in hydrotreating catalysts [J]. Catalysis Today,2003,86(1-4):5-16.
    [43]沈俭一,石国军.燃料油深度加氢脱硫催化剂的研究进展[J].2008,37(11):1111-1120.
    [44]Thiollier A, Afanasiev P, Cattenot M, et al. Preparation and properties of chromium-containing hydrotreating catalysts(Ni-Mo)/ZrO2-Cr2O3. Catalysis Letters,1998,55(1):39-45.
    [45]Shimizu T, Hiroshima K, M ochizuki T T, et al. Highly active hydrotreatment catalysts prepared with chelating agents [J]. Catalysis Today,1998,45(1-4):271-276.
    [46]Shen J, Spiewak B E, Dumesic J A. Microcalorimec studies of CO and H2 adsorption on nickel, nickel-boride, and nickel-phosphide catalysts [J]. Langmuir,1997,13(10):2735-2739.
    [47]张维萍,韩秀文,包信和.超细分子筛的合成、结构特性及在催化中的应用[J].分子催化,1999,13(5):393-399.
    [48]王学勤.纳米ZSM-5沸石的合成、表征和催化性能研究:(博士学位论文)[D].大连:大连理工大学,1997.
    [49]Zhang W P, Han X W, Liu X M, et al. Characterization of the acid sites in dealuminated nanosized HZSW-5 zeolite with the probe molecule trimethylphosphine [J]. Journal of Molecular Catalysis A:Chemical,2003,194:107-113.
    [50]Pu S B, Inui T. Influence of crystallite size on catalytic performance of HZSM-5 preoared by different methods in 2,7-dimethylphthalene isonerization [J]. Zeolites, 1996,17(4):334-339.
    [51]Yamamura M, Chaki K, Wakatsuki T, et al. Synthesis of ZSM-5 zeolite with small crystal size and its catalytic performance for ethylene oligomerization. Zeolites, 1994,14(8):643-649.
    [52]王学勤,王祥生.苯乙烯烷基化HZSM-5沸石催化剂积炭失活的研究1.不同晶粒大小沸石的合成及HZSM-5沸石的积炭过程[J].石油学报(石油加工),1994,10(2):38-43.
    [53]Tauster S T, Vaughan D E, Steger J J. Zeolite catalyst and preparation thereof. US,4552856.1985.
    [54]王学勤,王祥生,郭新闻.超细颗粒五元环型沸石.中国,1240193[P],2000.
    [55]Zhao X B, Guo X W, Wang X S. Effect of hydrothermal treatment temperature on FCC gasoline upgrading properties of the modified nanoscale ZSM-5 catalyst [J]. Fuel Proessing Technology,2007,88(3):237-241.
    [56]王文寿,郭洪臣,刘海鸥,等.NiO或NiS04改性的纳米HZSM-5催化剂的加氢脱硫活性[J].催化学报,2008,29(8):705-709.
    [57]Choudhary T V, Kinage A, Banerjee S, et al. Influence of hydrothermal pretreatment on acidityand activity of H-GaAlMFI zeolite for the propane aromatization reaction [J]. Microporous and Mesoporous Materials,2005,87(1):23-32.
    [58]Choudhary V R, Devadas P, Kinage A K, et al. Acidity, catalytic activity, and deactivation of H-gallosilicate(MFI) in propane aromatization:Influence of hydrothermal pretreatments [J]. Journal of Catalysis.1996,158(2):537-550.
    [59]Ogura M, Shinomiya S Y, Tateno J, et al. Alkalitreatment techniaue-New method for modification of structural and acid-catalytic properties of ZSM-5 zeolitea [J]. Applied Catalysis A:General,2001,219(1-2):33-43.
    [60]Song Y q, Zhu X X, Song Y, et al. An effective method to enhance the stability on-stream of butene aromatization:Post-treatment of ZSM-5 by alkali solution of sodium hydroxide [J]. Applied Catalysis A:General,2006,302(1):69-77.
    [61]Shaikh R A, Hegde S G, Behlekar A A, et al. Enhancement of acidity and paraselectivity by the silynation in pentasil zeolites [J]. Catalysis Today,1999, 49(1-3):201-209.
    [62]赵晓波.改性纳米HZSM-5在低品质轻质油中的应用研究:(博士学位论文)[D].大连:大连理工大学,2006.
    [63]王岚,孟霜鹤,谭志诚,等.纳米分子筛ZSM-5的热稳定性[J].催化学报,2001,22(5):491-493.
    [64]Zhang W P, Han X W, Liu X M, et al. The stability of nanosized HZSM-5 Zeolite:a high-resolution solid-state NMR study [J]. Microporous and Mesoporous Materials, 2001,50(1):13-23.
    [65]郭新闻,王祥生,沈建平,等.4-甲基联苯与甲醇择形甲基化合成4,4’-二甲基联苯Ⅰ.氧化镁改性的与水热处理的HZSM-5催化剂的性能比较[J].石油学报(石油加工),2004,20(1):6-11.
    [66]郭洪臣.在改性HZSM-5沸石上乙苯乙烯选择乙基化合成对二乙苯的研究:(博士学位论文)[D].大连:大连理工大学,1997.
    [67]Emeis C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts [J]. Journal of Catalysis,1993,141(2):347-354.
    [68]Wang W S, Guo H C, Liu H 0, et al. Promoting effect of SO42- on desulfurization activity on Ni/support for fluidized catalytic cracking (FCC) gasoline [J]. Energy & Fuel,2008,22(5):2902-2908.
    [69]杨晓宇,王祥生,郭新闻,等.Ti02改性Ni-Mo/HZSM-5催化剂加氢脱硫性能影响[J].石油炼制与化工,2010,41(9):49-54.
    [70]山红红,李春义,赵博艺,等.FCC汽油中硫分布和催化脱硫研究[J].石油大学学报(自然科学版),2001,25(6):78-80.
    [71]Wormsbecher R F, Kim H G, Olney, et al. Sulfur reduction in FCC gasline.US 5525210 [P].1996.
    [72]van Dillen A J, Terorde R J AM, Lensveld D J, et al. Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes [J]. Journal of Catalysis.2003,216(1-2):257-264.
    [73]左广玲,王文寿,王刃,等.改性纳米HZSM-5催化剂上噻吩转化反应研究[J].分子催化,2007,4(8):319-323.
    [74]Leflaive P, Lemberton J L, Perot G, et al. On the origin of Sulfur impurities in fluid catalytic cracking Gasoline-Reactivity of thiophene derivatives and of their possible precursors under FCC conditions [J]. Applied Catalysis A:General,2002, 227(1-2),201-215.
    [75]Saintigny X, van Santen R A, Clemendot S, et al. A theoretical study of the solid acid catalyzed desulfurization of thiophene [J]. Journal of Catalysis,1999,183(1): 107-118.
    [76]Kanai J, Martens J A, Jacous P A. On the nature of the active sites for ehtlene hydrogenation in metal-free zeolites [J]. Journal of Catalysis,1992,133(2), 527-543.
    [77]Nag N K, Sapre A V, Broderick D H, et al. Hydrodesulfurization of polycyclic aromatic catalyzed by sulfided CoO-MoO3/Al2O3:The relative reactivities [J]. Journal of Catalysis,1979,57 (3):509-512.
    [78]Shafi R, Hutchings G J. Hydrodesulfurization of hindered dibenzothiophenes:an overview [J]. Catalysis Today.2000,39(3-4):423-442.
    [79]Shimizu T, Hiroshima K, Honma T, et al. Highly active hydrotreatment catalysts prepared with chelating agents [J]. Catalysis Today,1998,45(1-4):271-276.
    [80]Mazoyer P, Geantet C, Diehl F, et al. Role of chelating agent on the oxidic state hydrotreating catalysts [J]. Catalysis Today,2008,130(1):75-79.
    [81]Hensen E J M, Kooyman P J, ven der Meer Y, et al. The relation between morphology and hydrotreating activity for supported MoS2 particles [J]. Journal of Catalysis.2001,199(2):224-225.
    [82]Hensen E J M, de Beer V H J, ven Veen J A R, et al. Formation of stilbene by oxidative coupling of toluene over lead oxide modified with lithium [J]. Catalysis letters. 2002,84(1-2):59-67.
    [83]靳凤英,郭新闻,王祥生.乙二胺四乙酸改性对NiMo/nano-HZSM-5催化剂脱硫性能的影响[J].高等学校化学学报,2011,32(1):1-4.
    [84]Rana M S, Ramfrez J, Gutierrz-Alejandre A, et al. Support effects in CoMo hydrodesulfurization catalysts prepared with EDTA as a chelating agent [J]. Journal of Catalysis.2007,246(1):100-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700