基于钴肟配合物的光活性分子器件和光敏组件TPA-Ru的合成和光电化学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设计合成了含三苯胺和吡啶官能团的光敏化合物作为分子器件的光捕获单元,通过紫外光谱证明了光敏化合物的吡啶官能团与钴肟配合物的配位相互作用,由此构建了基于钴肟配合物的光活性分子器件。利用MS和1HNMR对所合成的光敏化合物和分子器件的结构进行了表征,研究了分子器件的紫外、荧光、电化学及光致产氢性质。根据分子器件和三乙胺的氧化还原电位,以及分子器件中光敏化合物的荧光淬灭现象,从光敏单元向钴肟配合物的分子内电子转移是热力学可行的,但在光致产氢实验中未检测到氢气。可能是由于分子器件电荷分离态寿命短,电子回传速度快所致。
     论文还设计合成了两个能够传输空穴的带有三苯胺和邻菲罗啉官能团的配体L1和L2(L1=4-[4-((4-(1H-咪唑[4,5-f][1,10]邻菲罗啉-2-位)苯基)(苯基)氨基)苯基]-苯甲酸,L2=4-[(4-(1H-咪唑[4,5-f][1,10]邻菲罗啉-2-位)苯基)(苯基)氨基]苯基亚磷酸二乙酯)。L1和L2配体分别与[Ru(bpy)2Cl2]反应生成光敏剂(1)和(2)。两个配体上分别引入了能够吸附在p型半导体材料上的羧基和磷酸基,期望利用p型半导NiO向光致放氢体系提供电子,而不需要外加牺牲电子给体。利用MS和1HNMR对所合成的配体和光敏剂的结构进行了表征,研究了光敏剂的荧光、紫外、电化学及瞬态吸收光谱。测试结果表明光诱导光敏剂到电子载体(MV2+)的电子转移和由此引发在光敏剂内部的空穴传输是可行的。
A photosensitizer containing triphenylamine and pyridine functional group was designed and synthesized as a light capturing unit for a molecular device. An axial coordination of the pyridine group of the photosensitizer to a cobaloxime complex results in construction of a new noble-metal-free molecular device. The structures of the photosensitizer and the molecular device were characterized by MS and1H NMR spectroscopy. The UV-vis and fluorescence spectra, electrochemistry of the molecular device, and photoinduced hydrogen production with the device were studied. On the basis of the apparent quenching of the fluorescence emission in the molecular device as compared to that of the free photosensitizer and the redox potentials of the molecular device, photosensitizer, and triethylamine, the intramolecular photoinduced electron transfer from the photosensitizer unit to the cobaloxime unit is thermodynamically feasible. But no H2 was detected by GC analysis in the photocatalytic reaction with the molecular device, presumably due to fast electron recombination and/or a short life of charge-separated state of the molecular device.
     Two lignds containing triphenylamine and phenanthroline functional group were prepared (L1=4-[4-((4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenyl)(phenyl)amino) phenyl]-benzoic acid, L2=4-[(4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenyl) (phenyl)amino]-phenylphosphonic acid diethyl ester). Coordination of the ligands to [Ru(bpy)2Cl2] results in construction of two new photosensitizers. The structures of the ligands and photosensitizers were characterized by MS and1H NMR spectroscopy. The UV-vis and fluorescence spectra, as well as electrochemistry of photosensitizers were studied. The electron transfer was verified by transient absorption spectroscopy and kinetic traces obtained from laser flash photolysis.
引文
[1]ESSWEIN A J, NOCERA D G. Hydrogen production by molecular photocatalysis [J]. Chem. Rev.,2007,107(10):4022-4047.
    [2]NA Y, PAN J, WANG M, et al. Intermolecular electron transfer from photogenerated Ru(bpy)3- to [2Fe2S] model complexes of the iron-only hydrogenase active site [J]. Inorg. Chem.,2007,46:3813-3815.
    [3]FIHRI A, ARTERO V, RAZAVET M, et al. Cobaloxime-based photocatalytic devices for hydrogen product ion [J]. Angew. Chem., Int. Ed.2008,47:564-567.
    [4]NAY, WANG M, SUN L, et al. Visible light-driven electron transfer and hydrogen generation catalyzed by bioinspired[2Fe2S] complexes [J]. Inorg. Chem.,2008, 47:2805-2810.
    [5]FIHRI A, ARTERO V, PEREIRA A, et al. Efficient H2-producting photocatalytic systems based on cyclometalated iridium-and tricarbonyl rhenium-diimine photosensitizers and cobaloxime catalysts [J]. Dalton. Trans.,2008, 5567-5569.
    [6]LAZARIDES T, DU P, EISENBERG R, et al. Making hydrogen from water using a homogeneous system without noble metals [J]. J. Amer. Chem. Soc.,2009,131: 9192-9194.
    [7]ZHANG P, WANG M, SUN L, et al. Photochemical H2 production with noble-metal-free molecular devices comprising a prophyrin photosensitizer and a cobaloxime catalyst. [J]. Chem. Commun.,2010,46:8806-8808.
    [8]ESSWENIN A J, NOCERA D G. Hydrogen production by molecular photocatalysis [J].Chem. Rev.,2007,107:4022-4047.
    [9]KALYANASUNDARAM K, GRATZEL M. Light induced redox reactions of water soluble porphyrins, sensitization of hydrogen generation from water by zincporphyrin derivatives. [J]. Helvetica Chimica ACTA,1980,63:478-485.
    [10]GAFNEY H D, ADAMSON A W. Excited state Ru(bipyr)32- as an electron-transfer reductant. [J].J. Amer. Chem. Soc.,1972,94:8238-8239.
    [11]YOUNG R C, MEYER T J, WHITTEN D G. Kinetic Relaxation Measurement of Rapid Electron Transfer Reactions by Flash Photolysis. The Concersion of Light Energy into Chemical Energy Using the Ru(bpy)33--Ru(bpy)32- Couple. [J]. J. Amer. Chem. Soc.,1975,97:4781-4782.
    [12]CRUETZ C, SUTIN N. Reaction of tris(bipyridine) ruthenium (Ⅲ) with hydroxide and its application in a solar energy storage system. [J].Proc. Natl. Acad. Sci.1975,72:2858-2862.
    [13]SEEFELD K P, MOBIUS D, KUHN H. Electron transfer in monolayer assemblies with incorporated ruthenium(Ⅲ) complexes. [J].Helv. Chim. Acta.,1977,60: 2608-2632.
    [14]KUHN H. Synthetic molecular organizates. [J].J. Photochem.1979,10:111-132.
    [15]MORADPOUR A, AMOUYAL E, KELLER P, et al. Hydrogen production by visible light irradiation of aqueous solutions of tris (2,2-bipyridine)ruthenium(2+). [J].Nouv. J. Chim.,1978,2:547-549.
    [16]KIWI J, GRATZEL M. Hydorgen evolution from water induced by visible light mediated by redox catalysis. [J].Nature 1979,281:657-658.
    [17]KIRCH M, LEHN J M, SAUVAGE J P. Hydrogen generation by visible light irradiation of aqueous solutions of metal complexes. An approach to the photochemical conversion and storage of solar energy. [J].Helv. Chim. Acta, 1979,62:1345-1384.
    [18]LEHN JM, SAUVAGE J P, ZIESSEL R. Thermal and photoinduced oxidation of water. Continuous generation of oxygen by visible light irradiation of aqueous solutions of metal complexes. [J].Nouv. J. Chim.,1979,36:423-427.
    [19]BROWN G M, BRUNSCHWIG B C, CREUTZ C, et al. Homogeneous catalysis of the photoreduction of water by visible light. Mediation by a tris (2,2'-bipyridine) ruthenium(Ⅱ)-cobalt (Ⅱ)macrocycle system. [J].J. Amer. Chem. Soc.,1979, 101:1298-1300.
    [20]BROWN G M, CHAN S F, CREUTZ C, et al. Mechanism of the formation of dihydrogen from the photoinduced reactions of tris(bipyridine) ruthenium(Ⅱ) with tris(bipyridine) rhodium (Ⅲ). [J].J. Amer. Chem. Soc.1979,101:7638-7640.
    [21]CREUTZ C, SUTIN N. Electron-transfer reactions of excited states:direct evidence for reduction of the charge-transfer excited state of tris(2,2'-bipyridine) ruthenium(Ⅱ). [J].J. Amer. Chem. Soc.1976,98: 6384-6385.
    [22]GILBERT M, BROWN B, CREUTZ C, et al. Homogeneous catalysis of the photoreduction of water by visible light. Mediatio by a tris (2,2'-bipyridine) ruthenium(Ⅱ)-cobalt (Ⅱ) macrocycle system. [J].J. Amer. Chem. Soc.1979, 101:1298-1300.
    [23]FISHER J R, COLE-HAMILTON D J. Photochemical hydrogen production from ascorbic acid catalysed by tris(2,2'-bipyridyl) ruthenium(Ⅱ) and hydridotris(triethylphosphine) palladium(Ⅱ). [J].J. Chem. Soc. Dalton Trans.1984,809-813.
    [24]BALZANI V, BERGAMINI G, MARCHIONI F, et al. Ru(II)-bipyridine complexes in supramolecular systems, devices and machines [J].Coord. Chem. Rev.,2006, 250:1254-1266.
    [25]DU P, SCHNEIDER J, LUO G, et al. Visible light-driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts [J]. Inorg. Chem.,2009,48(11):4952-4962.
    [26]CHAN S F, CHOU M, CREUTZ C, et al. Mechanism of the formation of dihydrogen from the photoinduced reactions of poly(pyridine) ruthenium(Ⅱ) and poly(pyridine) rhodium(Ⅲ) complexes. [J].J. Am. Chem. Soc.1981,103: 369-379.
    [27]LOWRY M S, HUDSON W R, PASCAL R A, et al. Accelerated luminophore discovery through combinatorial synthesis. [J].J. Am. Chem. Soc.2004,126 14129-14135.
    [28]GOLDSMITH J I, HUDSON W R, LOWRY M S, et al. Discovery and high-throughput screening of heteroleptic Iridium complexes for photoinduced hydrogen production. [J].J. Am. Chem. Soc.2005,127:7502-7510.
    [29]MICHEAL S L, GOLDSMITH J I, SLINKER J D, et al. Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic Iridium (Ⅲ) complex. [J].Chem. Of Mater.2005,17:5712-5719.
    [30]HUERTAS S, HISSLER M, MCGARRAH J E, et al. Syntheses and structure of Luminescent Platinum(Ⅱ) Complexes Containing Di-tert-butylbipyridine and New 1.1-Dithiolate Ligands. [J]. Inorg. Chem.2001,40:1183-1188.
    [31]MCGARRAH J E, KIM Y J, HISSLER M, et al. Toward a Molecular Photochemical Decive:A Triad for Photoinduced Charge Separation Based on a Platinum Diimine Bis(acetylide) Chromophore. [J].Inorg. Chem.2001,40:4510-4511.
    [32]CHAKRABORTY S, WADAS T J, HESTER H, et al. Platinum chromophore-based systems for photoinduced charge separation:A molecular design approach for artif ical photosynthesis. [J]. Inorg. Chem.2005,44:6865-6878.
    [33]SEELY G R. The energetics of electron-transfer reactions of chlorophyll and other compounds. [J]. Photochem. Photobiol.1978,27:639-654.
    [34]HOSONO H, KANEKO M. Effect of configuration of viologen-linked porphyrin on photocurrent generation and on photoinduced hydrogen evolution. [J]. J. Chem. Soc., Faraday Trans.,1997,93:1313-1319.
    [35]ZHANG P, WANG M, SUN L, et al. Photocatalytic hydrogen production from water by water noble-metal-free molecular catalyst systems containing rose Bengal and the cobaloximes of BF,-bridged oxime ligands. [J].J. Phys. Chem. C.,2010, 114:15868-15874.
    [36]WOLPHER H, BORGSTROM M, HAMMARSTROM L, et al. Synthesis and properties of an iron hydrogenase active site model linked to a ruthenium tris-bipyridine photosensitizer [J]. Inorg. Chem. Commun.,2003,6 (8):989-991.
    [37]OTT S, KRITIKOS M, AKERMARK B, et al. Synthesis and structure of a biomimetic model of the Iron hydrogenase active site covalently linked to a Ruthenium photosensitizer [J].Angew. Chem. Int. Ed.,2003,42(28):3285-3288.
    [38]OTT S, BORGSTROM M, KRITIKOS M, et al. Model of the Iron Hydrogenase Active Site Covalently Linked to a Ruthenium Photosensitizer:Synthesis and Photophysical Properties [J]. Inorg. Chem.,2003,43(15):4683-4692.
    [39]EKSTROM J, ABRAHAMSSON M, OLSON C, et al. Bio-inspired side on attachment of a ruthenium photosensitizes to an iron hydrogenase active site model [J].Dalton Trans.,2006,38:4599-4606.
    [40]OZAWA H, HAGA M, SAKAI K. A photo-hydrogen-evolving molecular device driving visible-light-induced EDTA-reduction of water into molecular hydrogen [J]. J. Am. Chem. Soc.,2006,128(15):4926-4927.
    [41]OZAWA H, HAGA M, SAKAI K. et al. Syntheses, characterization, and photo-hydrogen-evolving properties of tris(2,2'-bipyridine)ruthenium(II) derivatives tethered to a cis-Pt(Ⅱ)Cl2 unit:insights into the structure-activity relationship [J].Dalton Trans.,2007,12:1197-1206.
    [42]RAU S, SCHAFER B, GLEICH D, et al. A supramolecular photocatalyst for the production of hydrogen and the selective hydrogenation of tolane [J].Angew. Chem. Int. Ed.,2006,45(37):6215-6218.
    [43]LEI P, HEDLUND M, LOMOTH R, et al. The role of colloid formation in the photoinduced H2 pProduction with a Rull-PIl supramolecular complex:A study by GC, XPS, and TEM [J].J. Am. Chem. Soc.,2008,130(1):26-27.
    [44]ELVINGTON M, BROWN J, ARACHCHIGE S M, et al. Photocatalytic hydrogen production from water employing a Ru, Rh, Ru molecular device for photoinitiated electron collection [J].J. Am. Chem. Soc.,2008,129(35): 10644-10645.
    [45]FIHRI A; ARTERO V, RAZAVET M, et al. Cobaloxime-based photocatalytic devices for hydrogen production [J].Angew. Chem. Int. Ed.,2008,47(3):564-567.
    [46]LI C, WANG M, SUN L, et al. Photochemical hydrogen production catalyzed by polypyridyl ruthenium-cobaloxime heterobinuclear complexes with different bridges [J].J. Organomet. Chem.,2009,694:2814-2819.
    [47]FIHRI A, ARTERO V, PEREIRA A, et al. Efficient Hz-producing photocatalytic systems based on cyclometalated iridium-and tricarbonylrhenium-diimine photosensitizers and cobaloxime catalysts [J].Dalton Trans.,2008,41: 5567-5569.
    [48]LI C, WANG M, PAN J, et al. Photochemical hydrogen production catalyzed by polypyridyl ruthenium-cobaloxime heterobinuclear complexes with different bridges. [J].J. Organomet. Chem.,2009,694(17):2814-2819.
    [49]SONG L, TANG M, SU F, et al. A-biomimetic model for the active site of Iron-only hydrogenases covalently bonded to a porphyrin photosensitizer [J].Angew. Chem., Int. Ed.,2006,45(7):1130-1133.
    [50]SONG L C, TANG M Y, ME I S Z, et al. The} active site model for Iron-only hydrogenases coordinatively bonded to a metalloporphyrin photosensitizer [J].Organometallics,2007,26(7):1575-1577.
    [51]LI X, WANG M, ZHANG S, et al. Noncovalent assembly of a metalloporphyrin and an Iron hydrogenase active-site model:Photo-induced electron transfer and hydrogen generation [J].J. Phys. Chem. B,2008,112(27):8198-8202.
    [52]KUWER A, KAPRE R, LUTZ M, et al. Self-assembled biomimetic [2Fe2S]-hydrogenase-based photocatalyst for molecular hydrogen evolution [J].PNAS,2009,106(26):10460-10465.
    [53]SAKAI K, OZAWA H. Homogeneous catalysis of platinum (Ⅱ) complexes in photochemical hydrogen production from water [J].Coord. Chem. Re.,2007, 251(21-24):2753-2766.
    [54]CONNOLLY P, ESPENSON J. Cobalt-catalyzed evolution of molecular hydrogen. [J].Inorg. Chem.,1986,25:2684-2688.
    [55]SCHRAUZER G. Organocobalt chemistry of vitamin B12 model compounds (Cobaloximes) [J].Acc. Chem. Res.,1968,1(4):97-103.
    [56]DU P, SCHNEIDER J, EISENBERG R, et al. Correction to visible light-driven hydrogen production from aqueous protons catalyzed molecular cobaloxime catalysts [J].Inorg. Chem.,2009,48:8646-8646.
    [57]DU P, SCHNEIDER J, EISENBERG R, et al. Visible light-driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts [J].Inorg. Chem.,2009,48:4952-4962.
    [58]KIRCH M, LEHN J M, SAUVAGE J P. Hydrogen generation by visible light irradiation of aqueous solutions of metal complexes. An approach to the photochemical conversion and storage of solar energy [J]. Helv. Chim. Acta. 1979,62:1345-1384.
    [59]CHAN S F, CHOU M, SUTIN N, et al. Mechanism of the formation of dihydrogen from the photoinduced reaction of poly(pyridine)ruthenium(Ⅱ) and poly(pyridine)rhodium(Ⅲ) complexes [J].J. Am. Chem. Soc.,1981,103: 369-379.
    [60]PROBST B, RODENBERG A, ALBERTO R, et al. A highly stable rhenium-cobalt system for photocatalytic H2 production:unraveling the performance-limiting steps [J].Inorg. Chem.,2010,49:6453-6460.
    [61]HAWECKER J, LEHN J M, ZIESSEL R. Efficient homogeneous photochemical hydrogen generation and water reduction mediated by combaloxime [J].Nouv. J. Chim. 1983,7(5):271-277.
    [62]PROBST B, KOLANO C, HAMM P, et al. An efficient homogeneous intermolecular Rhenium-based photocatalytic system for the production of H2 [J].Inorg. Chem.,2009,48(5):1836-1843.
    [63]DU P, KNOWLES K, EISENBERG R. A Homogeneous system for the photogeneration of hydrogen from water based on a platinum(Ⅱ) terpyridyl acetylide chromophore and a molecular cobalt catalyst [J].J. Am. Soc. Chem.,2008, 130(38):12576-12577.
    [64]DU P, SCHNEIDER J, LUO G, et al. Visible light-driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts [J]. Inorg. Chem.,2009,48:4952-4962.
    [65]MCCORMICK T M, CALITREE B D, EISENBERG R, et al. Reductive side of water splitting in artificial photosynthesis:new homogeneous photosystems of great activity and mechanistic insight [J].J. Am. Chem. Soc,2010,132: 15480-15483.
    [66]ZOU Y, PENG B, PAN C, et al. Conjugated copolymers of cyanosubstituted poly (p-phenylene vinylene) with phenylene ethynylene and thienylene vinylene moieties:synthesis, optical and electrochemical properties [J]Journal of Applied Polymer Science.,2009,115:1480-1488.
    [67]HAGBERG D P, MARINADO T, SUN L, et al. Tuning the HOMO and LUMO energy levels of organic chromophores for dye sensitized solar cells [J]. J. Org. Chem. 2007,72:9550-9556.
    [68]GADZIKWA T, LU G, NGUYEN S T, et al. Covalent surface modification of a metal-organic framework:selective surface engineering via Cu'-catalyzed Huisgen cycloaddition [J].Chem. Commun.,2008,43:5493-5495.
    [69]GIUSEPPE B, CINZIA C, GIACOMO L M. Crown ether catalyzed stereospecific synthesis of Z-and E-stilbenes by Wittig reaction in a solid-liquid two-phases system [J].Tetrahedron Letters.,1996,37:4225-4228.
    [70]ZHANG P, WANG M, SUN L, et al. Photochemical H2 production with noble-metal-free molecular devices comprising a prophyrin photosensitizer and a cobaloxime catalyst [J].Chem. Commun.,2010,46:8806-8808.
    [71]TROGLER W C., STEWART R C, MARZILLI L G, et al. Cis and trans effects on the proton magnetic resonance spectra of cobaloximes [J]. Inorg. Chem.,1974,13: 1564-1570.
    [72]吴维昌,冯洪清,吴开治.标准电极电位数据手册[M].北京:科学出版社,1991.
    [73]REHM D, WELLER A. Kinetics and mechanism of electron transfer in fluorescens quenching in acetonitrile [J].Ber. Bunsenges. Phys. Chem.,1956,24:996-978.
    [74]TIAN H, YANG X, SUN L, et al. Effect of different dye baths and dye-structures on performance of dye-sensitized solar cells based on triphenylamine dyes [J].J. Phys. Chem. C.,2008,112:11023-11033.
    [75]WANG W, WANG F, WU L, et al. Photocatalytic hydrogen evolution by [FeFe] hydrogenase mimics in homogeneous solution [J] Chem.-Asian J.2010,5: 1796-1803.
    [76]YAMAUCHI K, MASALKA S, SAKAI K. Evidence for Pt (Ⅱ)-based molecular catalysis in the thermal reduction of water into molecular hydrogen [J]. J. Am. Chem. Soc.,2009,131:8404-8406.
    [77]QIN P, ZHU H, SUN L, et al. Design of an organic chromophore for P-type dye-sensitized solar cells [J].J. Am. Chem. Soc.,2008,130:8570-8571.
    [78]LACHAUD F, QUARANTA A, AUKAULOO A, et al. A biomimetic model of the electron transfer between P680 and the Thrz-his190 pair of PSII [J].Angew. Chem. Int. Ed.,2005,44:1536-1540.
    [79]ZHANG L, LIU Y, XUE S, et al. Synthesis of sensitizers containing donor cascade of triarylamine and dimethylarylamine moieties for dye-sensitized solar cells [J]. Tetrahedron.,2010,66:3318-3325.
    [80]HUBBARD C, BARRIOS A. A highly efficient route to enantiomerically pure L-N-Bz-Pmp (t-Bu)2-OH and incorporation into a peptide-based protein tyrosine phosphatase inhibitor [J].Bio. Med. Chem. Lett.,2008,18:679-681.
    [81]QUARANTA A, LACHAUD F, AUKAULOO A, et al. Influence of protonic state of an imidazole-contaiming ligand on the electrochemical and photophysical properties of a ruthenium(Ⅱ)-polypyridine-type complex [J].Chem. Eur. J. 2007,13:8201-8211.
    [82]QIN PENG, WIBERG J, SUN L, et al. Synthesis and mechanistic studies of organic chromophores with different energy levels for p-type dye-sensitized solar cells [J].J. Phys. Chem. C.,2010,114:4738-4748.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700