黄酮类Vif-A3G拮抗剂的设计与合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄酮类化合物是一类存在于自然界,具有2-苯基色原酮结构的化合物,具有广泛的药理活性,其中对HIV-1病毒的抑制作用引起人们的广泛关注。课题组前期研究发现槲皮素衍生物6-21具有抑制HIV-1 Vif-A3G相互作用的活性,其中8位磺酸基是明显增强化合物该活性的基团,归纳文献可知,磺酰胺是作用于该靶点的重要基团,因此,拟开展一系列黄酮类衍生物与HIV-1 Vif相互作用的研究工作。
     首先利用计算机辅助药物设计的方法,基于文献报道的小分子抑制剂建立药效团模型,发现6-21与其有较好的匹配结果,于是在该模型基础上设计了目标分子——8位取代的黄酮类磺酰胺衍生物;以A3G模型为受体的分子对接工作中,发现该系列的衍生物可通过氢键、π-σ等方式很好的作用于A3G与Vif结合的重要部位,预测该系列衍生物对A3G也有一定的结合亲和力。
     其次在化学合成部分,为获得结构改造所需原料,进行了黄酮糖苷类物质的水解反应,应用强阳离子交换树脂CT-450作为催化剂,以水为溶剂,条件温和,是一种操作简便、原料转化率高、催化剂可循环套用的绿色水解方法,且循环套用对收率无影响,其中芦丁的水解反应最高收率可达98.6%,经HPLC检测其纯度最高可达98%。以8位取代的槲皮素磺酰胺衍生物为目标分别设计两条路线:第一条路线的磺化反应中,通过控制温度分别得到了相应的一磺化和二磺化产物以及其异构体,解析了化合物6的晶体结构,该路线以乙酰基为羟基保护基,未成功得到目标物;第二条路线以甲基为保护基,以氯磺酸为磺酰化试剂,成功分离得到3个磺酰胺衍生物。本文中所得到的所有化合物结构通过核磁、质谱等手段得到表征。
Flavonoids (2-phenyl chromone) exist in nature with extensive activities especially for HIV-1. It has already been found that 6-21 which is a derivative of quercetin could inhibit HIV-1 Vif-A3G effectively.8-sulfonic group of 6-21 could enhance the activity. Therefore, a series of flavonoid derivatives may be developed to disrupt the interaction with Vif-A3G.
     Firstly, Computer Aided Drug Design was used to establish a pharmacophore model and dock.6-21 could match the pharmacophore very well. In addition, the sulfamine is a vital group. Therefore, a series of flavonoid-8-sulfamine derivatives were designed. Moreover, by LigandFit of Discovery Studio, the prominent activity of the compounds has been predicted in the key sites of A3G-Vif in manner of hydrogen bond andπ-σinteraction.
     Secondly, the hydrolysis reactions of flavonoid glycosides were performed to form raw materials of the target compounds. CT-450 was used as a catalyst instead of the traditional proton acid. Meanwhile, water acts as the solvent which provids a mild condition. A convenient, high-convertible, and recyclic method was found. In addition, the recycle had few effect on the yield. Two routes were carried out to modify the flavonoids. In route 1, the mono-sulfonated sodium and di-sulfonated sodium of flavonoids were obtained through adjusting the reaction temperature. Moreover, the crystal structure of 6 was determined by X-ray diffraction. However, the target compounds were not generated with acetyl protective group. In route 2, acetyl group was insteaded by methyl group. Chlorosulfonic acid was used to be sulfonylation agent. Three sulfamide derivatives of quercetin were synthetized and their structures were confirmed by 1HNMR,13CNMR, MS, et al.
引文
[1]World Health Organization,http://www.who.int/hiv/data/en/index.html
    [2]Scozzafava A, Mastrolorenzo A, Supuran CT. Non-peptidie chemokine receptors antagonists as emerging anti-HIV agents[J]. J Nnzyme Inhib Med Chem,2002,7(2):69-76.
    [3]Degar S, Johnson JE, Boritz E, et al. Replication of primary HIV-1 isolates is inhibited in PMI cells expressing CD4-KDEL[J]. Virology,1996,226(2):424-429.
    [4]Franke R. Theoretical Drug Design Methods[C]. Elsevier:Amsterdam,1984.
    [5]Stanton DT, Jurs PC. Development and use of charged partial surface area structural descriptors in computer assissted quantitative structure property relationship studies[J]. Anal Chem.1990,62, 2323-2329.
    [6]姜晓华,龙亚秋.结构多样的HIV-1整合酶抑制剂:过去、现在和未来[J].有机化学,2004,24(11):1380-1388.
    [7]Dayam R, Neamati N. [J]. Curr.Pharm.Des.2003,9,1789.
    [8]Dayam R, Deng J, Neamati N. [J]Med. Res. Rew.2006,26,271.
    [9]郭涤亮,刘冠男,周宇等.HIV整合酶抑制剂的研究进展[J].有机化学,2010,30(4),477-485.
    [10]Molls A, Grannem GR, Sun Et, et al. Recent developments in HIV protease inhibitor therapy[J]. Antivir Res,1998,39(1):1-23.
    [11]高慧.HIV蛋白酶多肽类抑制剂的筛选及修饰和构效关系研究[D].天津:天津师范大学物理化学,2006.
    [12]Krogstad P, Lee S, Johnson G, et al. Nucleoside-analogue reverse-transcriptase inhibitors plus nevirapine,nelfinavir,or ritonavir for pretreated children infected with human immunodeficiency virus type[J]. Clin Infect Dis,2002,34(7):991-1001.
    [13]Kirk O, Mocroft A, Pradier C, et al. Clinical outcome among HIV infected patients starting saquinavir hard gel compared to ritonavir or indinavir[J]. AIDS,2001,15(8):999-1008.
    [14]Patick AK, Duran M, Cao Y, et al. Genotypic and phenotypic characterization of human immunodeficiency virus type 1 varients isolated from patients treated with the protease inhibitor nelfinavir[J]. Antimicrob Agents Chemother,1998,42(10):2637-2644.
    [15]Churchill DR, Pym AS, Babiker AG, et al. Hyperlipidemia following treatment with protease inhibitor in patients with HIV-1 infection[J]. Br J Clin Pharmacol,1998,46(5):518-519.
    [16]黄文林.分子病毒学[M].北京:人民卫生出版社,2002:260-261.
    [17]Simon JH, Gaddis NC, Fouchier RA,et al. Evidence for a newly discovered cellular anti-HIV-1 phenotype[J]. Nat Med,1998,4:1397-1400.
    [18]Khan MA, Aberham C, Kao S,et al. Human immunodeficiency virus type 1 Vif protein is packaged into the nucleoprotein complex through an interaction with viral genomic RNA[J]. J Virol,2001,75:7252-7265.
    [19]Sheehy AM, Gaddis NC, Choi JD, et al. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein[J]. Nature,2002,418:646-650.
    [20]Conticello SG, Thomas CJ, Petersen SK, et al. Evolution of the AID/APOBEC family of polynucleotide(deoxy) cytidine deaminases[J]. Mol Biol Evol,2005,22(2):367-377.
    [21]Jarmuz A,Chester A,Bayliss J,et al. An anthropoid2specific locus of orphan C to URNA2editing enzymes on chromosome 22 [J]. Genomics,2002,79:285-296.
    [22]Harris RS,Petersen2Mahrt SK, Neuberger MS. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators [J]. Mol Cell,2002,10:1247-1253.
    [23]Chiu YL. Greene WC. The APOBEC3 cytidine deaminases:aninnate defensive network opposing exogenous retroviruses and endogenous retroelements [J]. Annu Rev Immunol,2008,26: 317-353.
    [24]Holden LG, Prochnow C, Chang YP, et al.Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications [J].Nature,2008,456 (7218):121-124.
    [25]Furukawa A, Nagata T, Matsugami A, et al.Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G[J]. EMBO J,2009,28(4):440-451.
    [26]Bransteitter R, Prochnow C, Chen XS.The current structural and functional understanding of APOBEC deaminases[J]. Cell Mol Life Sci,2009,66(19):3137-3147.
    [27], Li YQ. Mechanism analysis of viral inhibition for stilbene derivatives based on targeted action. The proceedings of the 3nd international symposium on biomechanics, human function and information science[C]. Kanazawa:2009,.
    [28]HIV Vif as a Therapeutic Target, Division of AIDS, NIAID, Bethesda, MD, September,18,2000.
    [29]Oberste MS, Gonda MA. Conservation of amino acid sequence motifs in lentivirus Vif proteins[J]. Virus Genes,1992,6 (1):95-102.
    [30]李震宇,展鹏,刘新泳.HIV-1病毒感染因子Vif及其相关抑制剂的研究进展[J].药学学报,2010,45(6):684-693.
    [31]He Z, Zhang W, Chen G, et al.Characterization of conserved motifs in HIV-1 Vif required for APOBEC3G and APOBEC3F interaction[J]. J Mol Biol,2008,381 (4):1000-1011.
    [32]Barraud P, Paillart JC, Marquet R, et al.Advances in the structural understanding of Vif proteins[J]. Curr HIV Res,2008,6 (2):91-99.
    [33]Yu Y, Xiao Z, Ehrlich ES, et al.Selective assembly of HIV-1 Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines[J]. Gene Dev,2004, 18 (23):2867-2872.
    [34]Lv W,Liu Z,Jin H,et al.Three-dimensional structure of HIV-1 Vif constructed by comparative modeling and the function characterization analyzed by molecular dynamics simulation[J]. Org Biomol Chem,2007,5:617-626.
    [35]李岚,杨怡姝,李泽琳等.HIV-1 Vif与机体内在抗病毒因子APOBEC3G的研究进展[J].国外医学病毒学分册,2005,12(5):143-146.
    [36]Cancio R,Spadari S,Maga G. Vif is an auxiliary factor of the HIV-1 reverse transcriptase and facilitates abasic site bypass[J]. Biochem J,2004,383:475-482.
    [37]DeHart JL,Bosque A,Harris RS,et al.Human immunodeficiency virus type 1 Vif induces cell cycle delay via recruitment of the same E3 ubiquitin ligase complex that targets APOBEC3 proteins for degradation[J]. J Virol,2008,82:9265-9272.
    [38]Wang J,Shackelford JM,Casella CR,et al.The Vif accessory protein alters the cell cycle of human immunodeficiency virus type] infected cells[J]. Virology,2006,359:243-252.
    [39]Sakai K,Dimas J,Lenardo MJ.The Vif and Vpr accessory proteins independently cause HIV-1-induced T cell cytopathicity and cell cycle arrest[J]. Proc Natl Acad Sci USA,2006,103: 3369-3374.
    [40]Burnett A, Spearman P. APOBEC3G multimers are recruited to the plasma membrane for packaging into human immunodeficiency virus type 1 virus-like particles in an RNA-dependent process requiring the NC basic linker [J]. J Virol,2007,81:5000-5013.
    [41]Yu Q, KEnig R, Pillai S, et al. Single2strand specificity of APOBEC3G accounts for minus2strand deamination of the H IV genome [J]. Nat Struct Mol Biol,2004,11:435-442.
    [42]褚小刚,杨占秋,龚作炯.新型抗病毒因子APOBEC3G的研究进展[J].中国艾滋病性病,2006,12(6),577-579.
    [43]Newman EN, Holmes RK, Craig HM, et al. Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity [J]. Curr Biol,2005,15:166-170.
    [44]Guo F, Cen S, Niu M, et al. Inhibition of tRNALys primed reverse transcrip tion by human APOBEC3G during human immunodeficiency virus type 1 rep lication[J]. J Virol,2006,80: 11710-11722.
    [45]Sheehy MA, Nathan CG, Malim HM. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif[J]. Letters,2003,9(11):1404-1407.
    [46]Stopak K, Noronha C, Yonemoto W, et al. HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability[J]. Mol Cell,2003,12:591-601.
    [47]Malim MH.APOBEC proteins and intrinsic resistance to HIV-1 infection[J]. Phil Trans R Soc Lond Biol Sci,2009,364(1517):675-687.
    [48]Chiu YL, Greene WC.The APOBEC3 cytidine deaminases:aninnate defensive network opposing exogenous retroviruses and endogenous retroelements[J]. Annu Rev Immunol,2008,26: 317-353.
    [49]Fujita M,Akari H,Sakurai A,et al. Expression of HIV-1 accessory protein Vif is controlled uniquely to be low and optimal by proteasome degradation[J]. Microbes Infect,2004,6:791-798.
    [50]Akari H,Fujita M,Kao S,et al. High level expression of human immunodeficiency virus type-1 Vif inhibits viral infectivity by modulating proteolytic processing of the Gag precursor at the p2/nucleocapsid processing site[J]. J Biol Chem,2004,279:12355-12362.
    [51]Goncalves J,Silva F,Freitas-Vieira A,et al. Functional neutralization of HIV-1 Vif protein by intracellular immunization inhibits reverse transcription and viral replication[J]. J Biol Chem, 2002,277:32036-32045.
    [52]Nekhotiaeva N, Awasthi SK, Nielsen PE, et al. Inhibition of Staphylococcus aureus gene expression and growth using antisense peptide nucleic acids[J]. Mol Ther,2004,10(4):652-659.
    [53]Barnor JS, Miyano-Kurosaki N,Yamaguchi K, et al.Intracellular expression of antisense RNA transcripts complementary to the human immunodeficiency virus type-1 vif gene inhibits viral replication in infected T-lymphoblastoid cells[J]. Biochem Biophys Res Commun,2004,320: 544-550.
    [54]Wolkowicz R, Nolan GP. Gene therapy progress and prospects:novel gene therapy approaches for AIDS[J]. Gene Ther,2005,12:467-476.
    [55]Richter SN, Frasson I, Palu G. Strategies for inhibiting function of HIV-1 accessory proteins:a necessary route to aids therapy?[J]. Curr Med Chem,2009,16:267-286.
    [56]Bovolenta C. HIV Vif mutants:CA,2599525[P].2006,10,26.
    [57]Xiao Z,Ehrlich E,Luo K,et al. Zinc chelation inhibits HIV Vif activity and liberates antiviral function of the cytidine deaminase APOBEC3G[J]. FASEB J,2007,21:217-222.
    [58]Rana TM. Composition and synthesis of new reagents for inhibition of HIV replication: WO,2007044565[P].2007,04,19.
    [59]Robin N, Hong G, Natalia S, et al. Small molecule inhibition of HIV-1 Vif[J]. Nature Biotech., 2008,26(10):1187-1192.
    [60]Nikravesh A, Dryselius R, Faridani OR,et al. Antisense PNA accumulates in Escherichia coli and mediates a long post-antibiotic effect[J]. Mol Ther,2007,15(8):1537-1542.
    [61]张培成.黄酮化学[M].北京:化学工业出版社,2008:3-9.
    [62]姚新生.天然药物化学[M].北京:人民卫生出版社,1999,191-196.
    [63]Kim D, Park J, Kim J, et al. Flavonoids as Mushroom Tyrosinase Inhibitors:A Fluorescence Quenching Study[J]. J. Agric. Food Chem.2006,54(3):935-941.
    [64]许旭东,杨竣山.黄酮类化学成分现代药理学研究概况[C].北京地区药学学术年会大会报告集,北京:[出版者不详],2004.
    [65]Ono K, Nakane H, Fukushima M, et al. Inhibition by reverse transcriptase activity of a flavonoid compound,5,6,7-trihydroxyflavone[J]. Biochem Biophys Res Commun,1989,160(3):982-987.
    [66]Matsuse IT, Lim YA, Hattori M, et al. A search for anti-viral properties in Panamanian medicinal plants.The effects on HIV and its essential enzymes[J]. J Ethnophymarcol,1999,64:15.
    [67]Kim HJ, Woo ER, Shin CG, et al. A new flavonol glycoside gallate ester from Acer okamotoanum and its inhibitory activity against human immunodeficiency virus 1(HIV-1)integrase[J]. J. Nat. Prod,1998,61(1):145-148.
    [68]来国防,陈纪军,王易芬等.黄酮类化合物抗HIV-1活性研究进展[J].商丘师范学院院报,2002,18(5):83-87.
    [69]Middleton E, Kandaswami C, Theoharides TC. The effects of plant flavonoide on mammalian cell:implications for inflammation,heart disease, and cancer[J]. Pharmaeol Rev,2000,52: 673-751.
    [70]李贞双,李超林.计算机辅助药物设计在新药研究中的应用[J].电脑知识与技术,2009,31(5):8812-8813.
    [71]黄雅俊.基于虚拟筛选的HIV抑制剂研究[D].大连:大连理工大学药物工程,2008.
    [72]Wang J, Kollman PA, Kuntz D. Flexible ligand docking:a multiple strategy approach[J]. Proteins, 1999,36(1):1-19.
    [73]王芸.计算机辅助磺胺类药物、β-内酰胺酶抑制剂、极光激酶抑制剂类似物的设计[D].北京:北京化工大学发酵工程,2009.
    [74]Verlinde C, Rudenko G, Hol W. In search of new lead compounds for trypanosomiasis drug design:a protein structure-based linked-fragment approach[J]. Mol Des,1992,6(2):131-147.
    [75]尤启冬.药物化学[M].北京:化学工业出版社,2003,446-447.
    [76]延玺,刘会青,邹永青,任占华.黄酮类化合物生理活性及合成研究进展[J].有机化学,2008,28(9),1534-1544.
    [77]李泽琳,赵伟杰,杨怡姝等.磺酸基苯并-γ-吡喃酮类化合物的新用途:中国,200810118774.9[P].2010,02,24.
    [78]Truong VT, Tran TD. Synthesis and in vitro antioxidant activities of some rutin derivatives[J]. Tap Chi Duoc Hoc,2008,48(11):39-43.
    [79]Hisashi M, Toshio M, Iwao T, et al. Structural Requirements of Flavonoids and Related Compounds for Aldose Reductase Inhibitory Activity[J].Chem. Pharm. Bull.,2002,50(6): 788-795.
    [80]Karel G, John A, Manthey RG, et al. Acid-catalyzed hydrolysis of hesperidin at elevated temperatures [J]. Carbohydrate Research 328,2000:141-146.
    [81]Marta PM, Gyula S. Regioselective lithiations of 2-(3,5-dichlorophenyl)-2-(4-fluorophenyl)-1,3-dioxolane[J]. Arkivoc,2009,(vi):167-173.
    [82]Wei L, Chang L,Chuan W, et al. A Selective Matrix Metalloprotease 12 Inhibitor for potential Treatment of Chronic Obstructive Pulmonary Disease (COPD):Discovery of (S)-2-(8-(Methoxycarbonylamino)dibenzo[b,d] furan-3-sulfonamido)-3-methylbutan-oic acid (MMP408)[J]. J.Med.Chem.,2009,52:1799-1802.
    [83]Krista BG, Michael JB, Mui C, et al. Discovery of poten,selective sulfonylfuran urea endothelial lipase inbitors[J]. Bioorganic&Medicinal Chemistry Letters,2009,19:27-30.
    [84]Georg AH, Zita M, Bernard U. Neue 2,4,4-trisubstituierte 3-Oxo-1,2,5-thiadiaz--olidin-1,1-dioxide[J]. Arch.Pharm.(Weinheim),1993,326:497-498.
    [85]Peggy MP, Richard TWP, Ranjeet N, et al. Synthesis of Substituted Alkoxy Benzene Mini libraries, for the Discovery of New Insect Olfaction or Gustation Inhibitors[J]. J.Comb.Chem.,2008,10:123-124.
    [86]Dimitris PM, John TR. Hydroxyl Free Radical-Mediated Oxidative Degradation of Quercetin and Morin:A Preliminary Investigation[J]. Journal of Food Composition and Analysis,2002,15: 103-113.
    [87]Igor GZ, Anna YE, Svetlana VM, et al. Identification of the Products of Oxidation of Quercetin by Air Oxygen at Ambient Temperature[J]. Molecules.2007,12:654-672.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700