聚合物辅助再沉淀法制备有机1-(2-吡啶偶氮)-2-苯酚材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,纳/微米材料的合成及其性质研究引起了研究者们的广泛兴趣。与无机和高分子纳/微米材料不同,有机小分子的结构多样性、功能性以及易裁剪性,使得有机功能小分子纳/微米材料的研究越来越受到重视。在文献报道的有机纳/微米材料的合成方法中,再沉淀法因其简易的特点得到了广泛的应用。本论文采用嵌段共聚物PDMA-b-PNIPAM辅助再沉淀法制备了有机1-(2-吡啶偶氮)-2-萘酚(PAN)纳/微米材料,系统研究了共聚物浓度、PAN浓度等因素对材料形貌以及尺寸的影响,并对其生长过程进行了探讨。
     (1)嵌段共聚物的合成。以S-乙基-S’-(2-甲基-2-丙酸丙炔酯基)三硫代碳酸酯(PEMP)为链转移剂,偶氮二异丁腈(AIBN)为引发剂,采用可逆加成断裂链转移(RAFT)聚合反应合成了一系列不同分子量的聚N,N-二甲基丙烯酰胺均聚物(PDMA)及聚N,N-二甲基丙烯酰胺聚N-异丙基丙烯酰胺嵌段共聚物(PDMA-b-PNIPAM)。采用GPC对所合成聚合物的分子量及分子量分布进行了分析,GPC分析结果显示链转移剂PEMP对RAFT聚合过程的可控性较好。同时采用动态光散射(DLS)对嵌段共聚物的胶束化行为进行了研究,DLS测试结果表明随着聚合物溶液浓度的增加,其临界胶束温度(CMT)降低且胶束粒径减小。
     (2)有机PAN纳/微米材料的制备。利用温敏型嵌段共聚物PDMA-b- PNIPAM辅助再沉淀法制备了有机PAN纳/微米材料,系统研究共聚物浓度、PAN浓度等因素对纳/微米材料形貌以及尺寸的影响。采用扫描电子显微镜(SEM)对产物的形貌进行了表征,结果表明通过调控聚合物浓度或者PAN浓度,可以得到不同形貌(纤维状、棒状、束状)的纳/微米材料;红外光谱(FTIR)结果证明所得到的纳/微米材料为纯PAN而没有夹杂聚合物分子。利用紫外-可见光光谱(UV-Vis)及荧光光谱对PAN纳/微米材料的光物理性能及其生长过程进行了跟踪研究。UV-Vis测试结果表明,相对于PAN溶液的吸收峰,PAN纳/微米材料的吸收峰发生了红移现象,为J-聚集体;并且随着时间的延长,其吸收峰的强度逐渐减弱,长波拖尾现象加剧。荧光光谱则表明,PAN纳/微米材料的发射强度要比其原料稀溶液的发射强度有明显的增强,即聚集诱导的荧光增强现象(AIEE),并且在长波方向出现了新的发射峰;同时还发现,其荧光发射强度随着时间的延长而逐渐增强。
During the past few years, nano/microstructures represent attractive building blocks for the fabrication of functional nano/microscale devices. However, most of the reported nano/microstructures have been focused on inorganic materials or polymers. Recently, nano/microstructures based on small organic functional molecule have been attracting considerable and increasing attention due to their unique optoelectronic properties and applications compared to those of their inorganic counterparts. Among the few synthesis methods, the so-called“reprecipitation method”has been one of the most popular methods for organic nano/microstructures formation due to its easy and versatile operation. In this paper, 1-(2-pyridylazo)-2- naphthol (PAN) was employed as a model compound to fabricate its corresponding organic nano/microstructures by reprecipitation with the assistance of poly(N,N- dimethylacrylamide)-poly(N-isopropylacrylamide) copolymer (PDMA-b-PNIPAM). The effects of copolymer concentration and PAN concentration on the size and shape have been investigated. Furthermore, the growth process of the products was discussed.
     (1) The preparation of block copolymers. A series of thermoresponsive diblock copolymers, PDMA-b-PNIPAM were synthesized by RAFT polymerization using 2-propynyloxy-2-(ethylthiocarbonothioylthio)-2-methyl propanoate (PEMP) and 2,2’- azobisisobutyronitrile (AIBN) as the RAFT agent and initiator, respectively. The molecular weight and the polydispersity (PDI) were determined by gel permeation chromatography (GPC). The results indicated that all polymerizations proceeded with good control, as evidenced by low polydispersity. The thermally aggregation behavior of the copolymers were investigated by dynamic light scattering (DLS) and the results indicated that critical micelle temperature (CMT) decreased with the increasing of polymer aqueous concentration.
     (2) Fabrication of organic PAN nano/microtructures. Nano/microstructures of a small organic functional molecule, 1-(2-pyridylazo)-2-naphthol (PAN), were successfully prepared via the reprecipitation method with the assistance of thermoresponsive diblock copolymer PDMA-b-PNIPAM. The effects of concentrations of copolymer and PAN on the size and shape have been investigated. Scanning electron microscopy (SEM) indicated that the morphology of the nano/microstructures prepared as either nano/microfibres, nano/microrods, or bundle- like nano/microstructures can be readily controlled by varying the experimental conditions such as the concentration of the polymer or PAN. Fourier transform infrared spectra (FTIR) were used to demonstrate that the as-prepared nano/micro- structures were essentially pure PAN without a noticeable incorporation of PDMA-b-PNIPAM molecules inside the nano/micromaterials. The optical absorption and fluorescence emission properties of the PAN nano/microtructures were also investigated, and the time-dependent spectra of the precipitating solution for nano/microstructures formation were measured to monitor the self-assembly process of PAN molecules. The nano/microstructures present a red shifts absorption spectrum to that of the monomers, suggesting that these as-obtained nano/microstructures were J-aggregates. Meanwhile, these absorption bands of the molecules decreased gradually and the baseline of the absorption at longer wavelength gets higher with the aging time increasing. Furthermore, the fluorescence emission demonstrated aggregation-induced emission enhancement (AIEE) phenomenon, which were caused by the restriction of the intramolecular vibrational and rotational motions in an indirect manner. Besides, new emission bands were observed at longer wavelength. With increasing aging time, intensities of the emission increase gradually whereas the peak positions are consistent.
引文
[1] Ball P, Garwin L. Science at the Atomic Scale[J]. Nature, 1992, 355(6363):761-766.
    [2] Goldstein A N, Echer C M, Alivisatos A P. Melting in Semiconductor Nanocrystals[J]. Science, 1992, 256(5062):1425-1427.
    [3] Lu L, Shen Y F, Chen X H, et al. Ultrahigh Strength and High Electrical Conductivity in Copper[J]. Science, 2004, 304(5669):422-426.
    [4] Alivisatos P, Barbara P F, Castleman A W, et al. From Molecules to Materials: Current Trends and Future Directions[J]. Adv. Mater., 1998, 10(16):1297-1336.
    [5] Special Issue on Nanomaterials[J]. Chem. Mater., 1996, 8(8):1569-1570.
    [6] Jr M B, Moronne M, Gin P, et al. Semiconductor Nanocrystals as Fluorescent Biological Labels[J]. Science, 1998, 281(5385):2013-2016.
    [7] Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis[J]. Chem. Rev., 1997, 97(6):2373-2420.
    [8] Chan W C W, Nie S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection [J]. Science 1998, 281(5385):2016-2018.
    [9] Schroedter A, Weller H, Eritja R, et al. Biofunctionalization of Silica-Coated CdTe and Gold Nanocrystals[J]. Nano Lett., 2002, 2(12):1363-1367.
    [10] Gu H, Ho P L, Tsang K W T, et al. Using Biofunctional Magnetic Nanoparticles to Capture Vancomycin-Resistant Enterococci and Other Gram-Positive Bacteria at Ultralow Concentration[J]. J. Am. Chem. Soc., 2003, 125(51):15702-15703.
    [11] Mueller A H, Petruska M A, Achermann M, et al. Multicolor Light-Emitting Diodes Based on Semiconductor Nanocrystals Encapsulated in GaN Charge Injection Layers[J]. Nano Lett., 2005, 5(6):1039-1044.
    [12] Wang Y, Xie X B, Goodson T. Enhanced third-Order Nonlinear Optical Properties in Dendrimer?Metal Nanocomposites[J]. Nano Lett., 2005, 5(12):2379-2384.
    [13] Fan H Y, Lu Y F, Stump A, et al. Rapid Prototyping of Patterned Functional Nanostructures[J]. Nature, 2000, 405(6782):56-60.
    [14] Service R F. Nanocrystals May Give Boost to Data Storage[J]. Science, 2000, 287(5460):1902 - 1903.
    [15] Peng X G, Manna L, Yang W D, et al. Shape Control of CdSe Nanocrystals[J]. Nature, 2000, 404(6773):59-61.
    [16] Cao Y C, Jin R C, Mirkin C A. Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection[J]. Science, 2002, 297(5586):1536 - 1540.
    [17] Seo W S, Lee J H, Sun X, et al. FeCo/graphitic-shell Nanocrystals as Advanced Magnetic-Resonance-Imaging and Near-Infrared Agents[J]. Nat Mater, 2006, 5(12):971-976.
    [18] Iijima S. Helical Microtubules of Graphitic Carbon[J]. Nature, 1991, 354(6348):56-58.
    [19] Duan X F, Huang Y, Cui Y, et al. Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices[J]. Nature, 2001, 409(6816):66-69.
    [20] Schaak R E, Mallouk T E. Prying Apart Ruddlesden?Popper Phases: Exfoliation into Sheets and Nanotubes for Assembly of Perovskite Thin Films[J]. Chem. Mater., 2000, 12(11):3427-3434.
    [21] Huynh W U, Dittmer J J, Alivisatos A P. Hybrid Nanorod-Polymer Solar Cells[J]. Science, 2002, 295(5564):2425-2427.
    [22] Pan Z W, Dai Z R, Wang Z L. Nanobelts of Semiconducting Oxides [J]. Science, 2001, 291(5510):1947 - 1949.
    [23] Barrelet C J, Greytak A B, Lieber C M. Nanowire Photonic Circuit Elements[J]. Nano Lett., 2004, 4(10):1981-1985.
    [24] Johnson J C, Choi H J, Knutsen K P, et al. Single Gallium Nitride Nanowire Lasers[J]. Nat Mater, 2002, 1(2):106-110.
    [25] Hu J T, Odom T W, Lieber C M. Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes[J]. Acc. Chem. Res., 1999, 32(5):435-445.
    [26] Xia Y, Yang P D, Sun Y, et al. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications[J]. Adv. Mater., 2003, 15(5):353-389.
    [27] Law M, Goldberger J, Yang P D. Semiconductor Nanowires and Nanotubes[J]. Annual Review of Materials Research, 2004, 34(1):83-122.
    [28] Herman M A, Sitter H. Molecular Beam Epitaxy-Fundamentals and Current Status[J]. Cryst. Res. Technol., 1989, 24(11):1186.
    [29] Jiang P, Bertone J F, Hwang K S, et al. Single-Crystal Colloidal Multilayers of Controlled Thickness[J]. Chem. Mater., 1999, 11(8):2132-2140.
    [30] Szymanski C, Wu C F, Hooper J, et al. Single Molecule Nanoparticles of the Conjugated Polymer MEH?PPV, Preparation and Characterization by Near-Field Scanning Optical Microscopy[J]. J. Phys. Chem. B, 2005, 109(18):8543-8546.
    [31] Chen F, Kondo Y, Hashimoto T. Control of Nanostructure in Mixtures of Block Copolymers:? Curvature Control via Cosurfactant Effects[J]. Macromolecules, 2007, 40(10):3714-3723.
    [32] Huang J, Virji S, Weiller B H, et al. Polyaniline Nanofibers:?Facile Synthesis and Chemical Sensors[J]. J. Am. Chem. Soc., 2002, 125(2):314-315.
    [33] Smela E. Conjugated Polymer Actuators for Biomedical Applications[J]. Adv. Mater., 2003, 15(6):481-494.
    [34] Wei Z, Zhang L, Yu M, et al. Self-Assembling Sub-Micrometer-Sized Tube Junctions and Dendrites of Conducting Polymers[J]. Adv. Mater., 2003, 15(16):1382-1385.
    [35] Zhong W, Liu S, Chen X, et al. High-Yield Synthesis of Superhydrophilic Polypyrrole Nanowire Networks[J]. Macromolecules, 2006, 39(9):3224-3230.
    [36] Granstr?m M, Berggren M, Ingan?s O. Micrometer- and Nanometer-Sized Polymeric Light-Emitting Diodes[J]. Science, 1995, 267(5203):1479-1481.
    [37] O'Brien G A, Quinn A J, Tanner D A, et al. Single Polymer Nanowire Photodetector[J]. Adv. Mater., 2006, 18(18):2379-2383.
    [38] Ramanathan K, Bangar M A, Yun M, et al. Individually Addressable Conducting Polymer Nanowires Array[J]. Nano Lett., 2004, 4(7):1237-1239.
    [39] Wei Z, Wan M, Lin T, et al. Polyaniline Nanotubes Doped with Sulfonated Carbon Nanotubes Made Via a Self-Assembly Process[J]. Adv. Mater., 2003, 15(2):136-139.
    [40] Martin C R. Template Synthesis of Electronically Conductive Polymer Nanostructures[J]. Acc.Chem. Res., 1995, 28(2):61-68.
    [41] Nakao H, Gad M, Sugiyama S, et al. Transfer-Printing of Highly Aligned DNA Nanowires[J]. J. Am. Chem. Soc., 2003, 125(24):7162-7163.
    [42] Lapierre D M A, Asher C L, Taft B J, et al. Amplified Electrocatalysis at DNA-Modified Nanowires[J]. Nano Lett., 2005, 5(6):1051-1055.
    [43] Yamaguchi T, Ishii N, et al. Supramolecular Peapods Composed of a Metalloporphyrin Nanotube and Fullerenes[J]. J. Am. Chem. Soc., 2003, 125(46):13934-13935.
    [44] Shimizu T, Masuda M, Minamikawa H. Supramolecular Nanotube Architectures Based on Amphiphilic Molecules[J]. Chem. Rev., 2005, 105(4):1401-1444.
    [45] Shinozuka Y, Matsuura M. Wannier Exciton in Quantum Wells[J]. Physical Review B, 1983, 28(8):4878.
    [46] Pope M, Swenberg C E. Electronic Processes in Organic Crystals and Polymers, 2nd ed. Oxford University Press, Oxford 1999.
    [47] Kasai H, Nalwa H S, Oikawa H, et al. A Novel Preparation Method of Organic Microcrystals[J]. Jpn. J. Appl. Phys. , 1992, 31(1132-1134
    [48] Zhang X J, Zhang X H, Shi W S, et al. Morphology-Controllable Synthesis of Pyrene Nanostructures and Its Morphology Dependence of Optical Properties[J]. J. Phys. Chem. B, 2005, 109(40):18777-18780.
    [49] Ong B S, Wu Y L, Liu P, et al. High-Performance Semiconducting Polythiophenes for Organic Thin-Film Transistors[J]. J. Am. Chem. Soc., 2004, 126(11):3378-3379.
    [50] Zhao Y S, Yang W S, Xiao D B, et al. Single Crystalline Submicrotubes from Small Organic Molecules[J]. Chem. Mater., 2005, 17(25):6430-6435.
    [51] Chernyak V, Meier T, Tsiper E, et al. Scaling of Fluorescence Stokes Shift and Superradiance Coherence Size in Disordered Molecular Aggregates[J]. J. Phys. Chem. A, 1999, 103(49):10294-10299.
    [52] Spano F C, Mukamel S. Nonlinear Susceptibilities of Molecular Aggregates: Enhancement of chi(3) by Size[J]. Physical Review A, 1989, 40(10):5783.
    [53] Jiang Q, Shi H X, Zhao M. Melting Thermodynamics of Organic Nanocrystals[J]. J. Chem. Phys., 1999, 111:2176.
    [54] Nalwa H S, Kakuta A, Mukoh A, et al. Fabrication of Organic Nanocrystals for Electronics and Photonics[J]. Adv. Mater., 1993, 5(10):758-760.
    [55] Oikawa H, Kasai H, Nakanishi H. Fabrication of Organic Microcrystals and Their Optical Properties. In: Anisotropic Organic Materials. Washington, DC: American Chemical Society. 2001:158-168.
    [56] Auweter H, Haberkorn H, Heckmann W, et al. Supramolecular Structure of Precipitated Nanosizeβ-Carotene Particles[J]. Angew. Chem. Int. Ed., 1999, 38(15):2188-2191.
    [57] Fu H B, Yao J N. Size Effects on the Optical Properties of Organic Nanoparticles[J]. J. Am. Chem. Soc., 2001, 123(7):1434-1439.
    [58] Fu H B, Loo B H, Xiao D B, et al. Multiple Emissions from 1,3-Diphenyl-5-pyrenyl-2-pyrazoline Nanoparticles: Evolution from Molecular to Nanoscaleto Bulk Materials[J]. Angew. Chem. Int. Ed., 2002, 41(6):962-965.
    [59] Gao X C, Cao H, Zhang L Q, et al. Properties of a New Pyrazoline Derivative and Its Application in Electroluminescence[J]. J. Mater. Chem., 1999, 9:1077-1080.
    [60] Zhao Y S, Fu H B, Hu F, et al. Multicolor Emission from Ordered Assemblies of Organic 1D Nanomaterials[J]. Adv. Mater., 2007, 19(21):3554-3558.
    [61] Luo J D, Xie Z L, Lam J W Y, et al. Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-Pentaphenylsilole [J]. Chem. Commun., 2001:1740-1741.
    [62] An B K, Kwon S K, Jung S D, et al. Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles[J]. J. Am. Chem. Soc., 2002, 124(48):14410-14415.
    [63] Lim S J, An B K, Jung S D, et al. Photoswitchable Organic Nanoparticles and a Polymer Film Employing Multifunctional Molecules with Enhanced Fluorescence Emission and Bistable Photochromism[J]. Angew. Chem. Int. Ed., 2004, 43(46):6346-6350.
    [64] Li S Y, He L M, Xiong F, et al. Enhanced Fluorescent Emission of Organic Nanoparticles of an Intramolecular Proton Transfer Compound and Spontaneous Formation of One-Dimensional Nanostructures[J]. J. Phys. Chem. B, 2004, 108(30):10887-10892.
    [65] Dong S C, Li Z, Qin J G. New Carbazole-Based Fluorophores: Synthesis, Characterization, and Aggregation-Induced Emission Enhancement[J]. J. Phys. Chem. B, 2008, 113(2):434-441.
    [66] Wu W C, Chen C Y, Tian Y Q, et al. Enhancement of Aggregation-Induced Emission in Dye-Encapsulating Polymeric Micelles for Bioimaging[J]. Adv. Funct. Mater., 2010, NA.
    [67] Zhao Y S, Di C, Yang W, et al. Photoluminescence and Electroluminescence from Tris(8- hydroxyquinoline)aluminum Nanowires Prepared by Adsorbent-Assisted Physical Vapor Deposition[J]. Adv. Funct. Mater., 2006, 16(15):1985-1991.
    [68] Tian F, Liu W, Wang C R. Controllable Preparation of Copper Tetracyanoquinodimethane Nanowire and the Field Emission Study[J]. J. Phys. Chem. C, 2008, 112(24):8763-8766.
    [69] Zhao Y S, Xu J J, Peng A D, et al. Optical Waveguide Based on Crystalline Organic Microtubes and Microrods[J]. Angew. Chem. Int. Ed., 2008, 47(38):7301-7305.
    [70] Martin C R. Nanomaterials: A Membrane-Based Synthetic Approach[J]. Science, 1994, 266(5193):1961-1966.
    [71] Murakami H, Kobayashi M, Takeuchi H, et al. Preparation of Poly(-lactide-co-glycolide) Nanoparticles by Modified Spontaneous Emulsification Solvent Diffusion Method[J]. Int. J. Pharm., 1999, 187(2):143-152.
    [72] Kim T W, Park I S, Ryoo R. A Synthetic Route to Ordered Mesoporous Carbon Materials with Graphitic Pore Walls[J]. Angew. Chem. Int. Ed., 2003, 42(36):4375-4379.
    [73] Chakarvarti S K, Vetter J. Template Synthesis a Membrane Based Technology for Generation of Nano-/Micro Materials: a Review[J]. Radiation Measurements, 1998, 29(2):149-159.
    [74] Lee J K, Koh W K, Chae W S, et al. Novel Synthesis of Organic Nanowires and Their Optical Properties[J]. Chem. Commun., 2002:138-139.
    [75] Zhao L Y, Yang W S, Ma Y, et al. Perylene Nanotubes Fabricated by the Template Method[J]. Chem. Commun., 2003:2442-2443.
    [76] Zhao L Y, Yang W S, Luo Y, et al. Nanotubes from Isomeric Dibenzoylmethane Molecules[J]. Chemistry - A European Journal, 2005, 11(12):3773-3778.
    [77] Dai Z R, Pan Z W, Wang Z L. Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation[J]. Adv. Funct. Mater., 2003, 13(1):9-24.
    [78] Chiu J J, Kei C C, Perng T P, et al. Organic Semiconductor Nanowires for Field Emission[J]. Adv. Mater., 2003, 15(16):1361-1364.
    [79] Liu H B, Li Y L, Xiao S Q, et al. Synthesis of Organic One-Dimensional Nanomaterials by Solid-Phase Reaction[J]. J. Am. Chem. Soc., 2003, 125(36):10794-10795.
    [80] Zhao Y S, Fu H B, Hu F Q, et al. Tunable Emission from Binary Organic One-Dimensional Nanomaterials: An Alternative Approach to White-Light Emission[J]. Adv. Mater., 2008, 20(1):79-83.
    [81] Liu H B, Zhao Q, Li Y L, et al. Field Emission Properties of Large-Area Nanowires of Organic Charge-Transfer Complexes[J]. J. Am. Chem. Soc., 2005, 127(4):1120-1121.
    [82] Huck W T S, Tien J, Whitesides G M. Three-Dimensional Mesoscale Self-Assembly[J]. J. Am. Chem. Soc., 1998, 120(32):8267-8268.
    [83] Wang Z, Medforth C J, Shelnutt J A. Porphyrin Nanotubes by Ionic Self-Assembly[J]. J. Am. Chem. Soc., 2004, 126(49):15954-15955.
    [84] Takazawa K. Waveguiding Properties of Fiber-Shaped Aggregates Self-Assembled from Thiacyanine Dye Molecules[J]. J. Phys. Chem. C, 2007, 111(24):8671-8676.
    [85] John G, Masuda M, Okada Y, et al. Nanotube Formation from Renewable Resources via Coiled Nanofibers[J]. Adv. Mater., 2001, 13(10):715-718.
    [86] Zhang X J, Zhang X H, Shi W S, et al. Single-Crystal Organic Microtubes with a Rectangular Cross Section[J]. Angew. Chem. Int. Ed., 2007, 46(9):1525-1528.
    [87] Wang J, Zhao Y F, Zhang J H, et al. Assembly of One-Dimensional Organic Luminescent Nanowires Based on Quinacridone Derivatives[J]. J. Phys. Chem. B, 2007, 111(26):9177-9183.
    [88] Che Y K, Datar A, Balakrishnan K, et al. Ultralong Nanobelts Self-Assembled from an Asymmetric Perylene Tetracarboxylic Diimide[J]. J. Am. Chem. Soc., 2007, 129(23):7234-7235.
    [89] Fu H B, Xiao D B, Yao J N, et al. Nanofibers of 1,3-Diphenyl-2-pyrazoline Induced by Cetyltrimethylammonium Bromide Micelles[J]. Angew. Chem. Int. Ed., 2003, 42(25):2883-2886.
    [90] Hu J S, Liang H P, Wan L J, et al. Three-Dimensional Self-Organization of Supramolecular Self-Assembled Porphyrin Hollow Hexagonal Nanoprisms[J]. J. Am. Chem. Soc., 2005, 127(48):17090-17095.
    [91] Hu J S, Ji H X, Cao A M, et al. Facile Solution Synthesis of Hexagonal Alq3 Nanorods and Their Field Emission Properties[J]. Chem. Commun., 2007:3083-3085.
    [92] Zhao Y S, Yang W S, Yao J N. Organic Nanocrystals with Tunable Morphologies and Optical Properties Prepared through a Sonication Technique[J]. Phys. Chem. Chem. Phys., 2006, 8:3300-3303.
    [93] Destrée C, Ghijsen J, Nagy J B. Preparation of Organic Nanoparticles Using Microemulsions: Their Potential Use in Transdermal Delivery[J]. Langmuir, 2008, 24(16):9181-9181.
    [94] Destrée C, Ghijsen J, Nagy J B. Preparation of Organic Nanoparticles Using Microemulsions:?Their Potential Use in Transdermal Delivery[J]. Langmuir, 2007, 23(4):1965-1973.
    [95] Bertorelle F, Rodrigues F, Fery-Forgues S. Dendrimer-Tuned Formation of Fluorescent Organic Microcrystals. Influence of Dye Hydrophobicity and Dendrimer Charge[J]. Langmuir, 2006, 22(20):8523-8531.
    [96] B?rla ?L, Bertorelle F, Rodrigues F, et al. Effects of DNA on the Growth and Optical Properties of Luminescent Organic Microcrystals[J]. Langmuir, 2006, 22(14):6256-6265.
    [97] Bertorelle F, Lavabre D, Fery-Forgues S. Dendrimer-Tuned Formation of Luminescent Organic Microcrystals[J]. J. Am. Chem. Soc., 2003, 125(20):6244-6253.
    [98] Nakanishi H, Kasai H. Polydiacetylene Microcrystals for Third-Order Nonlinear Optics. In: Photonic and Optoelectronic Polymers. Washington, DC: American Chemical Society, 1997:183-198.
    [99] Tian Z Y, Chen Y, Yang W S, et al. Low-Dimensional Aggregates from Stilbazolium-Like Dyes[J]. Angew. Chem. Int. Ed., 2004, 43(31):4060-4063.
    [100] Tachikawa T, Chung H R, Masuhara A, et al. In Situ and Ex Situ Observations of the Growth Dynamics of Single Perylene Nanocrystals in Water[J]. J. Am. Chem. Soc., 2006, 128(50):15944-15945.
    [101] Gesquiere A J, Uwada T, Asahi T, et al. Single Molecule Spectroscopy of Organic Dye Nanoparticles[J]. Nano Lett., 2005, 5(7):1321-1325.
    [102] Zhang X J, Zhang X H, Shi W F, et al. Single-Crystal Organic Microtubes with a Rectangular Cross Section[J]. Angew. Chem., 2007, 119(9):1547-1550.
    [103] Zhang X J, Zhang X J, Zou K, et al. Single-Crystal Nanoribbons, Nanotubes, and Nanowires from Intramolecular Charge-Transfer Organic Molecules[J]. J. Am. Chem. Soc., 2007, 129(12):3527-3532.
    [104] Abyan M, Bertorelle F, Fery-Forgues S. Use of Linear Polymers To Control the Preparation of Luminescent Organic Microcrystals[J]. Langmuir, 2005, 21(13):6030-6037.
    [105] Yu H, Qi L M. Polymer-Assisted Crystallization and Optical Properties of Uniform Microrods of Organic Dye Sudan II[J]. Langmuir, 2009, 25(12):6781-6786.
    [1] Horn D, Rieger J. Organic Nanoparticles in the Aqueous Phase-Theory, Experiment, and Use[J]. Angew. Chem. Int. Ed., 2001, 40(23):4330-4361.
    [2] Hoeben F J M, Jonkheijm P, Meijer E W, et al. About Supramolecular Assemblies ofπ-Conjugated Systems[J]. Chem. Rev., 2005, 105(4):1491-1546.
    [3] Zhao Y S, Fu H B, Peng A D, et al. Low-Dimensional Nanomaterials Based on Small Organic Molecules: Preparation and Optoelectronic Properties[J]. Adv. Mater., 2008, 20(15):2859-2876.
    [4] Cui S, Liu H, Gan L, et al. Fabrication of Low-Dimension Nanostructures Based on Organic Conjugated Molecules[J]. Adv. Mater., 2008, 20(15):2918-2925.
    [5] Zhao L, Yang W, Ma Y, et al. Perylene Nanotubes Fabricated by the Template Method[J]. Chem. Commun., 2003:2442-2443.
    [6] Bull S R, Palmer L C, Fry N J, et al. A Templating Approach for Monodisperse Self-Assembled Organic Nanostructures[J]. J. Am. Chem. Soc., 2008, 130(9):2742-2743.
    [7] Yu H, Qi L M. Polymer-Assisted Crystallization and Optical Properties of Uniform Microrods of Organic Dye Sudan II[J]. Langmuir, 2009, 25(12):6781-6786.
    [8] Ujiiye I K, Kwon E, Kasai H, et al. Methodological Features of the Emulsion and Reprecipitation Methods for Organic Nanocrystal Fabrication[J]. Crystal Growth & Design, 2008, 8(2):369-371.
    [9] Heskins M, Guillet J E. Solution Properties of Poly(N-isopropylacrylamide)[J]. J. Macromol. Sci. Chem. Part A, 1968, 2(8 ):1441 - 1455
    [10] Chiefari J, Chong Y K, Ercole F, et al. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process[J]. Macromolecules, 1998, 31(16):5559-5562.
    [11] Mayadunne R T A, Rizzardo E, Chiefari J, et al. Living Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization) Using Dithiocarbamates as Chain Transfer Agents[J]. Macromolecules, 1999, 32(21):6977-6980.
    [12] Mayadunne R T A, Rizzardo E, Chiefari J, et al. Living Polymers by the Use of Trithiocarbonates as Reversible Addition-Fragmentation Chain Transfer (RAFT) Agents:ABA Triblock Copolymers by Radical Polymerization in Two Steps[J]. Macromolecules, 2000, 33(2):243-245.
    [13] Convertine A J, Lokitz B S, Vasileva Y, et al. Direct Synthesis of Thermally Responsive DMA/NIPAM Diblock and DMA/NIPAM/DMA Triblock Copolymers via Aqueous, Room Temperature RAFT Polymerization[J]. Macromolecules, 2006, 39(5):1724-1730.
    [1] Ball P, Garwin L. Science at the Atomic Scale[J]. Nature, 1992, 355(6363):761-766.
    [2] Goldstein A N, Echer C M, Alivisatos A P. Melting in Semiconductor Nanocrystals[J]. Science, 1992, 256(5062):1425-1427.
    [3] Iijima S. Helical Microtubules of Graphitic Carbon[J]. Nature, 1991, 354(6348):56-58.
    [4] Barrelet C J, Greytak A B, Lieber C M. Nanowire Photonic Circuit Elements[J]. Nano Lett., 2004, 4(10):1981-1985.
    [5] Johnson J C, Choi H J, Knutsen K P, et al. Single Gallium Nitride Nanowire Lasers[J]. Nat Mater, 2002, 1(2):106-110.
    [6] Chen F, Kondo Y, Hashimoto T. Control of Nanostructure in Mixtures of Block Copolymers: Curvature Control via Cosurfactant Effects[J]. Macromolecules, 2007, 40(10):3714-3723.
    [7] Castillo R V, Mul?ler A J, Raquez J M, et al. Crystallization Kinetics and Morphology of Biodegradable Double Crystalline PLLA-b-PCL Diblock Copolymers[J]. Macromolecules, 2010.
    [8] Granstr?m M, Berggren M, Ingan?s O. Micrometer- and Nanometer-Sized Polymeric Light-Emitting Diodes[J]. Science, 1995, 267(5203):1479-1481.
    [9] O'Brien G A, Quinn A J, Tanner D A, et al. A Single Polymer Nanowire Photodetector[J]. Adv. Mater., 2006, 18(18):2379-2383.
    [10] Abdelsayed V, Panda A B, Glaspell G P, et al. Synthesis, Passivation, and Stabilization of Nanoparticles, Nanorods, and Nanowires by Microwave Irradiation. In: Nanoparticles: Synthesis, Stabilization, Passivation, and Functionalization. Washington, DC: American Chemical Society; 2008:225-247.
    [11] Guo Y L, Du C Y, Yu G, et al. High-Performance Phototransistors Based on Organic Microribbons Prepared by a Solution Self-Assembly Process[J]. Adv. Funct. Mater., 2010, 20(6):1019-1024.
    [12] Oikawa H, Kasai H, Nakanishi H. Fabrication of Organic Microcrystals and Their Optical Properties. In: Anisotropic Organic Materials. Washington, DC: American Chemical Society; 2001:158-168.
    [13] Kasai H, Nalwa H S, Oikawa H, et al. A Novel Preparation Method of Organic Microcrystals[J]. Jpn. J. Appl. Phys., 1992, 31:1132-1134.
    [14] Zhang X J, Zhang X H, Shi W F, et al. Morphology-Controllable Synthesis of Pyrene Nanostructures and Its Morphology Dependence of Optical Properties[J]. J. Phys. Chem. B, 2005, 109(40):18777-18780.
    [15] Ong B S, Wu Y L, Liu P, et al. High-Performance Semiconducting Polythiophenes for Organic Thin-Film Transistors[J]. J. Am. Chem. Soc., 2004, 126(11):3378-3379.
    [16] Zhao Y S, Yang W S, Xiao D B, et al. Single Crystalline Submicrotubes from Small OrganicMolecules[J]. Chem. Mater., 2005, 17(25):6430-6435.
    [17] Cheng K L, Bray R H. 1-(2-Pyridylazo)-2-Naphthol as Possible Analytical Reagent[J]. Anal. Chem., 1955, 27(5):782-785.
    [18] Bisset A, Dines T J. Resonance Raman Spectra of 1-(2-Pyridylazo)-2-Naphthol Adsorbed on Silica and Alumina[J]. Journal of Raman Spectroscopy, 1996, 27(1):49-55.
    [19] Eskandari H. Zero-Crossing Second Derivative Spectrophotometry for Simultaneous Determination of Palladium and Nickel Using 1-(2-Pyridylazo)-2-Naphthol in Mixed Micellar Solutions[J]. Anal. Chim., 2004, 94(7-8):591-599.
    [20] Kallithrakas K N. TXRF Heavy Metal Analysis after Immobilization as PAN Complexes[J]. X-Ray Spectrom., 2004, 33(1):12-15.
    [21] Karim N G, Saghatforoush L, Eshad S, et al. Application of Multivariate Calibration Techniques to Simultaneous Spectrophotometric Determination of Copper and Iron Using 1-(2-Pyridylazo)-2-Naphthol in AOT Micellar Solution[J]. Chin. J. Chem., 2008, 26(5):952-956.
    [22] Kaur A, Gupta U. Application of 1-(2-Pyridylazo)-2-Naphthol Anchored SiO_2 Nanoparticles for the Preconcentration of Trace Pb~(2+) from Different Water and Food Samples[J]. Chin. J. Chem., 2009, 27(9):1833-1838.
    [23] Pramanik K, Adhikari B. 1-(2'-Pyridylazo)-2-Naphtholate (PAN) Complexes of Rhodium(III): Synthesis, Structure and Spectral Studies[J]. Polyhedron, 2010, 29(3):1015-1022.
    [24] Keuren E V, Georgieva E, Adrian J. Kinetics of the Formation of Organic Molecular Nanocrystals[J]. Nano Lett., 2001, 1(3):141-144.
    [25] Oikawa H, Kasai H, Nakanishi H. Anisotropic Organic Materials: Approaches to Polar Order Edited by Rainer Glaser (University of Missouri-Columbia) and Piotr Kaszynski (Vanderbilt University). American Chemical Society: Washington, DC (distributed by Oxford University Press). ISBN 0-8412-3689-5[J]. J. Am. Chem. Soc., 2002, 124(19):5603-5603.
    [26] Zhang X J, Zhang X H, Zou K, et al. Single-Crystal Nanoribbons, Nanotubes, and Nanowires from Intramolecular Charge-Transfer Organic Molecules[J]. J. Am. Chem. Soc., 2007, 129(12):3527-3532.
    [27] Destrée C, Ghijsen J, Nagy J B. Preparation of Organic Nanoparticles Using Microemulsions: Their Potential Use in Transdermal Delivery[J]. Langmuir, 2008, 24(16):9181-9181.
    [28] Destrée C, Ghijsen J, Nagy J B. Preparation of Organic Nanoparticles Using Microemulsions:? Their Potential Use in Transdermal Delivery[J]. Langmuir, 2007, 23(4):1965-1973.
    [29] Bertorelle F, Rodrigues F, Fery Forgues S. Dendrimer-Tuned Formation of Fluorescent Organic Microcrystals. Influence of Dye Hydrophobicity and Dendrimer Charge[J]. Langmuir, 2006, 22(20):8523-8531.
    [30] B?rla ?L, Bertorelle F, Rodrigues F, et al. Effects of DNA on the Growth and Optical Properties of Luminescent Organic Microcrystals[J]. Langmuir, 2006, 22(14):6256-6265.
    [31] Bertorelle F, Lavabre D, Fery Forgues S. Dendrimer-Tuned Formation of Luminescent Organic Microcrystals[J]. J. Am. Chem. Soc., 2003, 125(20):6244-6253.
    [32] Yu H, Qi L M. Polymer-Assisted Crystallization and Optical Properties of Uniform Microrods of Organic Dye Sudan II[J]. Langmuir, 2009, 25(12):6781-6786.
    [33] Fu H B, Xiao D B, Yao J N, et al. Nanofibers of 1,3-Diphenyl-2-Pyrazoline Induced by Cetyltrimethylammonium Bromide Micelles[J]. Angew. Chem. Int. Ed., 2003, 42(25):2883-2886.
    [34] Lee S J, Malliakas C D, Kanatzidis M G, et al. Amphiphilic Porphyrin Nanocrystals: Morphology Tuning and Hierarchical Assembly[J]. Adv. Mater., 2008, 20(18):3543-3549.
    [35] Lee S J, Hupp J T, Nguyen S T. Growth of Narrowly Dispersed Porphyrin Nanowires and Their Hierarchical Assembly into Macroscopic Columns[J]. J. Am. Chem. Soc., 2008, 130(30):9632-9633.
    [36] Kang L T, Wang Z C, Cao Z W, et al. Colloid Chemical Reaction Route to the Preparation of Nearly Monodispersed Perylene Nanoparticles:? Size-Tunable Synthesis and Three-Dimensional Self-Organization[J]. J. Am. Chem. Soc., 2007, 129(23):7305-7312.
    [37] Heskins M, Guillet J E. Solution Properties of Poly(N-isopropylacrylamide)[J]. J. Macromol. Sci. Chem. Part A, 1968, 2(8 ):1441-1455.
    [38] Convertine A J, Lokitz B S, Vasileva Y, et al. Direct Synthesis of Thermally Responsive DMA/NIPAM Diblock and DMA/NIPAM/DMA Triblock Copolymers via Aqueous, Room Temperature RAFT Polymerization[J]. Macromolecules, 2006, 39(5):1724-1730.
    [39] Lokitz B S, York A W, Stempka J E, et al. Aqueous RAFT Synthesis of Micelle-Forming Amphiphilic Block Copolymers Containing N-Acryloylvaline. Dual Mode, Temperature/pH Responsiveness, and“Locking”of Micelle Structure through Interpolyelectrolyte Complexation[J]. Macromolecules, 2007, 40(18):6473-6480.
    [40] Tristani K M, Eckhardt C J. Influence of Crystal Fields on the Quasimetallic Reflection Spectra of Crystals: Optical Spectra of Polymorphs of a Squarylium Dye[J]. J. Chem. Phys., 1984, 81(3):1160-1173.
    [41] Tian Z Y, Chen Y, Yang W S, et al. Low-Dimensional Aggregates from Stilbazolium-Like Dyes[J]. Angew. Chem. Int. Ed., 2004, 43(31):4060-4063.
    [42] Winnik F M. Photophysics of Preassociated Pyrenes in Aqueous Polymer Solutions and in Other Organized Media[J]. Chem. Rev., 1993, 93(2):587-614.
    [43] Zhao Y S, Fu H B, Peng A D, et al. Low-Dimensional Nanomaterials Based on Small Organic Molecules: Preparation and Optoelectronic Properties[J]. Adv. Mater., 2008, 20(15):2859-2876.
    [44] Dong Y Q, Lam J W Y, Qin A J, et al. Aggregation-Induced and Crystallization-Enhanced Emissions of 1,2-Diphenyl-3,4-Bis(diphenylmethylene)-1-Cyclobutene[J]. Chem. Commun., 2007:3255-3257.
    [45] Bhongale C J, Chang C W, Wei G D E, et al. Formation of Nanostructures of Hexaphenylsilole with Enhanced Color-Tunable Emissions[J]. Chem. Phys. Lett., 2006, 419(4-6):444-449.
    [46] Lamère J F, Saffon N, Dos S I, et al. Aggregation-Induced Emission Enhancement in Organic Ion Pairs[J]. Langmuir, 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700