三维有序大孔HAlMnO_4锂离子筛的制备及其吸附特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂是人们生产生活中的重要金属。在过去的半个世纪里多种用于从盐湖卤水和海水中提取锂的方法如溶剂萃取法、沉淀法和离子交换吸附法等已被广泛地研究。其中吸附剂法由于某些特定的无机筛分材料展现出对Li+极高的选择性和环境友好效应被认为是最有前途的方法。多种锂锰氧化物特别是具有尖晶石相的锂锰氧化物吸附剂已经被研究和表征。然而粘结剂的堵塞和固相中的扩散阻力抑制了吸附剂的吸附特性,且在Li+的脱嵌过程中,锰的变价导致吸附剂容易发生溶损。为了克服这些缺点,本工作从材料的化学组成和结构两方面对吸附剂进行了改性研究。通过引进稳定的三价元素,改变材料的组成,提高了吸附剂的稳定性;把吸附剂制成三维有序大孔材料,改善了离子传输性能。本论文主要包括以下四个部分:胶体晶体模板的制备、三维有序大孔锂铝锰氧化物的制备、前驱物的酸处理和锂离子筛的吸附特性研究。
     分别通过微乳液聚合法、无皂乳液聚合法以及溶胶-凝胶法制备了单分散性聚甲基丙烯酸甲酯、聚苯乙烯和二氧化硅微球,经离心沉降和自然沉降组装了三维有序胶体晶体模板。考察了制备条件对微球直径的影响以及组装方法对胶体晶体模板品质的影响。在聚甲基丙烯酸甲酯胶体晶体模板中填充硝酸锂、硝酸铝和醋酸锰的混合溶液制备了铝掺入的三维有序大孔锂铝锰氧化物LiAlMnO4。材料的微观形貌和大孔尺寸使用场发射扫描电子显微镜(SEM)进行观察,观察前样品表面经过~100 s的喷金处理;样品的晶相和晶粒尺寸使用粉末X-射线衍射仪(XRD)测定;BET比表面积用表面积分析仪测定,吸附前样品在100℃过夜脱气处理。考察了制备条件对三维有序大孔锂铝锰氧化物的形貌和晶体结构的影响。
     样品经过盐酸和过硫酸铵溶液脱锂处理后,获得了相应的新型三维有序大孔锂离子筛HAlMnO_4。实验表明其孔径和孔壁厚度分别为240 nm和52 nm左右,X-射线衍射峰归属于纯尖晶石相。在0.1 mol/L HCl溶液中,锂离子的脱出率达到97%以上,同时锰和铝的溶损由于铝对三价锰的替代,有效抑制了Jahn-Teller效应对固体结构的影响,分别只有0.23%和0.45%。
     对所制备的吸附剂的吸附性能研究表明,锂离子的最大吸附量为45.5 mg/g,达到了HAlMnO4理论吸附量的96.3%。与此同时锂离子的吸附速率明显加快,在与Na~+、K+、Mg~(2+)和Ca~(2+)共存的溶液中吸附剂对Li+具有很高的选择性。因此该离子筛材料表现出优异的性质,有希望应用于从极稀溶液中锂的提取。
Lithium is an important metal of promoting the world forward. In the past half century, several methods like solvent extraction, precipitation, and ion exchange, etc. have been extensively investigated for lithium recovery from seawater and salt lake brine. Among them, the adsorption method is considered to be the most promising scheme because certain inorganic sieve materials exhibit an extremely high selectivity for Li+ and environmentally friendly effect. Multiple kinds of lithium manganese oxide especially including spinel phase have been studied and characterized. However, the blockage of binder and the diffusion resistance in solid phase suppress the adsorption capacities of adsorbents, and the variable valence of manganese is liable to dissolution in the Li+ extraction/insertion process. In order to overcome the shortcomings, chemical doping and three-dimensinally ordered macropores can be applied to improve the lithium ion-sieve. Chemical doping improved the stability of materials, and three-dimensinally ordered macropores enhanced the diffusion ability of Li+ and the ion-exchange capacity. This work includes four parts: preparation of colloidal crystal template; synthesis of three-dimensinally ordered macropore LiAlMnO4; acid treatment of precursor and adsorption properties of lithium ion-sieve.
     PMMA, PS and SiO2 monodisperse microsphere was prepared by the method of emulsion polymerization, emulsifier-free emulsion polymerization and sol-gel, respectively, and assembled to colloidal crystal template by centrifugal sedimentation or natural sedimentation. The influences of preparative conditions to the diameter of microspher and assembly methods to the quality of template had been investigated.
     The Al-incorporated three-dimensionally ordered macroporous lithium manganese oxide LiAlMnO4 is synthesized by the polymethyl methacrylate colloidal crystal template filled with the LiNO3, Al(NO3)3·9H2O and Mn(Ac)2·4H2O mixed solution. The microcosmic morphology and macroporous size were observed using a fieldemission scanning electron microscope (SEM), the sample surface being sprayed with gold for ~100 s as pretreatment. Powder X-ray diffractometry (XRD) was used for the characterization of crystal phase and the estimation of the crystalline size. The BET surface area was measured by using a surface area analyzer, samples being degassed at 100℃overnight before sorption measurements. The influences of preparative conditions to the morphology and crystal structure of three dimensinally ordered macoporous lithium manganese oxide had been studied.
     The corresponding HAlMnO4 as a lithium ion-sieve is obtained after extracting of Li+. The experiments show that the macroporous diameter and porous wall thickness are 240 nm and 52 nm or so, respectively, and the X-ray diffraction patterns of samples belong to the pure spinel phase. The Li+ extraction rate of LiAlMnO4 reaches above 97% in the 0.1 M HCl solution, while the solution losses of aluminum and manganese only have 0.45% and 0.23%, respectively, owing to the substitution of aluminium for tervalence manganese, the influence of the Jahn-Teller effect on the solid structure is suppressed effectively.
     The Li~+ maximum uptake capacity is equal to 45.5 mg/g, reaching 96.3% of the theoretical value of HAlMnO4. Meanwhile, the uptake speed of Li+ is obviously speeded up, and there is the quite high selectivity of Li+ in the solution containing K+, Na+, Mg2+ and Ca~(2+). Therefore, this material presents excellent properties and is promising in the lithium extraction from extremely dilute solution.
引文
[1]林大泽.锂的用途及其资源开发[J].中国安全科学学报, 2004, 14(9):72-76.
    [2]王秀莲,李金丽,张明杰. 21世纪的能源金属—金属锂在核聚变反应中的应用[J].黄金学报, 2001, 3(4):249-252.
    [3]袁俊生,纪志永.海水提锂研究进展[J].海湖盐与化工, 2003, 32(5):29-33.
    [4]游清治.锂在高新技术领域中的应用及进展[J].新疆有色金属, 2003(增刊):70-75.
    [5]游清治.锂在热核反应中的应用[J].新疆有色金属, 1996(1):112-114.
    [6]潘立玲,朱建华,李渝渝.锂资源及其开发技术进展[J].矿产综合利用, 2002, 11(2):30-32.
    [7]汪镜亮.锂矿产资源开发方向的变化[J].化工矿物与加工, 1999, 11(1):1-5.
    [8]郑春辉,董殿权,刘亦凡.卤水锂资源及其开发进展[J].化工技术与开发, 2006, 35(12):1-4.
    [9]戴自希,世界锂资源现状及开发利用趋势[J].中国有色冶金, 2008, 4(1):17-20.
    [10]赵武壮,我国锂资源的开发与利用[J].世界有色金属, 2008, 4(1):38-40.
    [11]黄维农,孙之南,王学魁,等.盐湖提锂研究和工业化进展[J].现代化工, 2008, 28(2):14-19.
    [12] Navarrete-Casas R, Navarrete-Guijosa A, Valenzuela-Calahorro C, et al. Study of lithium ion exchange by two synthetic zeolites: Kinetics and equilibrium [J]. J. Colloid. Interface. Sci., 2007, 306(2):345–353.
    [13] Chung K S, Lee J C, Kim W K, et al. Inorganic adsorbent containing polymeric membrane reservoir for the recovery of lithium from seawater [J]. J. Membr. Sci., 2008, 325(2):503–508.
    [14] Hamzaoui A H, M’nif A, Hammi H, et al. Contribution to the lithium recovery from brine [J]. Desalination, 2003, 158(1-3):221–224.
    [15] Tsuchiya S, Nakatani Y, Ibrahim R, et al. Highly efficient separation of lithium chloride from seawater [J]. J. Am. Chem. Soc., 2002, 124(18):4936–4937.
    [16]刘向磊,钟辉,唐中杰,盐湖卤水提锂工艺技术现状及存在的问题[J].无机盐工业, 2009, 41(6):4-6.
    [17]王日公,王军,王晓燕,等.从高镁锂比盐湖卤水中一步提取碳酸锂的方法:中国, 1502557 [P]. 2004– 06-09.
    [18] Boryta D A, Kullberg T F, Thurston A M, et al. Production of lithium compounds directly from lithium containing brines : US, 6921522 [ P ]. 2005– 07-26.
    [19]柳大纲,胡克源,程祖良,等.锂、镁铝酸盐沉淀化学与自卤水中直接提取微量锂盐研究.柳大纲科学论著选集,北京科学出版社, 1997:125-161.
    [20]刘元会,邓天龙.国内外从盐湖卤水中提锂工艺技术研究进展[J].世界科技研究与发展, 2006, 28(5):69-75.
    [21]马培华,邓小川.从盐湖卤水中分离镁和浓缩锂的方法:中国, 1 626 443A [ P]. 2005-07-14.
    [22]董茜,朴香兰,朱慎林.从盐湖卤水中提取锂的吸附技术及研究进展[J].盐业与化工, 2007, 36(3):31-34.
    [23]李丹,邓天龙,孙柏,无机离子交换法从卤水中提锂的研究进展[J].广东微量元素科学, 2007, 14(1):6-10.
    [24]雷家珩,尚建华,郭丽萍,等.锂锰氧化物离子筛及其研究进展[J].无机盐工业, 2002, 34(6):15-16,42.
    [25]黄齐名,罗穗莲,李伟善.锂离子电池锂锰氧化物正极的研究进展[J].电池工业, 1999, 4(3):102-105.
    [26]张霜华,康雪雅,戴永年,等.锂锰氧化物制备方法的研究与进展[J].新疆有色金属, 2007(1):22-24.
    [27] Siapkas D I, Mitsas C, Samaras I, et al. Synthesis and characterization of LiMn2O4 for use in Li-ion batteries [J]. J. Power Sources, 1998, 72(1):22-26.
    [28] Yoshio M, Noguchi H, Miyashita T, et al. Three V or 4 V Li-Mn composite as cathode in Li batteries prepared by LiNO3 method as Li source [J]. J. Power Sources, 1995, 54(2):483-486.
    [29]袁俊生,孟兴智,纪志永.尖晶石型锂离子筛吸附剂前驱体的合成研究[J].海湖盐与化工, 2005, 34(1): 6-9.
    [30]雷家珩,弓巧侠,尚建华,等.锂离子筛前驱体正尖晶石结构LiMn2O4的合成及其特性的研究[J].武汉大学学报:理学版, 2001, 47(6):707-711.
    [31]卢集政,赖琼钰.锂嵌脱化合物LiMn2O4的微波烧结研究[J].化学研究与应用, 1998, 10 (6):620-623.
    [32]康慨,戴受惠,万玉华.固相配位化学反应法合成LiMn2O4的研究[J].功能材料, 2000, 31(3):283-286.
    [33]童辉,孙育斌,陈永熙,等.溶胶_凝胶法合成锂离子筛前驱体LiMn2O4的研究[J].化工新型材料, 2004, 32(4): 33-35.
    [34]刘培松,刘兴泉.柠檬酸络合法合成锂离子电池正极材料Li1+XMn2O4[J].应用化学, 2000, 17(1):60-62.
    [35] Lee Y S, Sun Y K, Nahm K S. Synthesis of spinel LiMn2O4 cathode material prepared by an adipic acid-assisted sol-gel method for lithium secondary batteries [J]. Solid State Ionics, 1998, 109 (3-4): 285-294.
    [36] Sun Y K, Oh I H, Kim K Y. Synthesis of spinel LiMn2O4 by the sol-gel method for a cathode-active material in lithium secondary batteries [J]. Ind. Eng. Chem. Res., 1997, 36 (11):4839-4846.
    [37] Sun Y K, Kim D W, Choi Y M, et al. Synthesis and characterization of spinel LiMn2-XNiXO4 for lithium/polymer battery applications [J]. J. Power Sources, 1999, 79 (2):231-237.
    [38] Jaekook K, Manthiram A. Low temperature synthesis and electrode properties of Li4Mn5O12 [J]. J. Electrochem. Soc., 1998, 145(4):153-155.
    [39] Chitrakar R, Kanoh H, Miyai Y, et al. Recovery of lithium from seawater using manganese oxide adsorbent (H1.6Mn1.6O4) derived from Li1.6Mn1.6O4 [J]. Ind. Eng. Chem. Res., 2001, 40(9):2054-2058.
    [40]冯雄汉,刘凡,谭文峰,等.回流条件下钡镁锰矿的合成与表征[J].中国科学(D辑), 2003, 33(11):1084-1093.
    [41] Golden D C, Chen C C, Dixon J B. Transformation of birnessite to buserite, todorokite, and manganite under mild hydrothermal treatment [J]. Clay. Clay. Miner., 1987, 35:271-280.
    [42] Vileno E, Ma Y, Zhou H, et al. Facile synthesis of synthetic todorokite (OMS-1), co-precipitation reactions in the presence of a microwave field [J]. Microporous. Mesporous Mater., 1998, 20(1-3):3-15.
    [43] Stanton C, Katarzyna S, Krukowska, et al. A new synthetic route to todorokite-type manganese oxides [J]. Inorg. Chim. Acta., 1999, 294(2):123-132.
    [44]沈霞,方建慧,苏毅玲,等.锂离子筛的制备和应用[J].云南大学学报:自然科学版, 2005, 27(5A):465-467.
    [45]董庆洁,邵世香,郭星,等.离子筛型锂离子吸附剂的制备[J].海湖盐与化工, 2005, 34(6):6-8.
    [46]罗丽,程温莹,杨建元,等.二氧化锰离子筛分离并测定卤水中的锂[J].海盐湖与化工, 1997, 26(6):35-38.
    [47]袁俊生,李恒,孟兴智.离子筛型锂吸附剂的吸附性能研究[J].无机盐工业, 2006, 38(6):27-29.
    [48]雷家绗,弓巧侠,尚建华,等.锂离子筛前驱体正尖晶石结构LiMn2O4的合成及其特性研究[J].武汉大学学报:理学版, 2001, 47(6):707-711.
    [49]李艳,齐涛,王丽娜,等.离子筛材料的合成及其对盐湖卤水中锂的选择性吸附[J].过程工程学报, 2006, 6(5):724-728.
    [50] Tang Weiping, Hirofumi Kanoh, Yang Xiaojing, et al. Preparation of plate-form manganese oxide by selective lithium extraction from monoclinic Li2MnO3 under hydrothermal conditions [J]. Chem. Mater., 2000, 12(11):3271-3279.
    [51] Kim Y S, Kanoh H, Hirotsu T, Ooi K. Chemical bonding of ion-exchange type site in spinel-type manganese oxide Li1.33Mn1.67O4 [J]. Mater. Res. Bull., 2002, 37:391-396.
    [52] Chitrakar R, Kanoh H, Miyai Y, et al. A new type of manganese oxide (MnO2·0.5H2O) derived from Li1.6Mn1.6O4 and its lithium ion-sieve properties [J]. Chem. Mater., 2000, 12(10):3151-3157.
    [53] Sato K, Poojary D M, Clearfield A, et al. The surface structure of the proton-exchanged lithium manganese oxide spinels and their lithium-ion sieve properties [J]. J. Solid. State. Chem., 1997, 131(1):84-93.
    [54] Zhang Qinhui, Li Shaopeng, Sun Shuying, et al. LiMn2O4 spinel direct synthesis and lithium ion selective adsorption [J]. Chem. Eng. Sci., 2010, 65(1):169-173.
    [55] Tian Liyan, Ma Wei, Han Mei. Adsorption behavior of Li+ onto nano-lithium ion sieve from hybrid magnesium/lithium manganese oxide [J]. Chem. Eng. J. 2010, 156: 134-140.
    [56] Wang Lu, Ma Wei, Liu Ru, et al. Correlation between Li+ adsorption capacity and the preparation conditions of spinel lithium manganese precursor [J]. Solid State Ion.., 2006, 177:1421-1428.
    [57] Wang Lu, Meng Changgong, Han Mei, et al. Lithium uptake in fixed-pH solution by ion sieves [J], J. Colloid Interface Sci., 2008; 325(1): 31-40
    [58] Arora P. Popov B N, White R E. Electrochemical inversiga-tions of cobalt-doped material for lithium- ion batteries [J]. J. Electrochem. Soc., 1998, 145(3): 807-815.
    [59] Robertson A D, Lu S H, Howard W F. Mn3+ plus-modified LiMn2O4 spinel intercalation cathodesⅡ. Electrochemical stabilization by Cr3+ [J]. J. Electrochem Soc., 1997, 144 (10): 3505-3512.
    [60]周燕芳,钟辉.尖晶石LiMn2O4正极材料的研究进展[J].化工进展, 2003, 22(2):140-144.
    [61]常照荣,刘院英,郑洪河,等.尖晶石型锂锰氧化物的掺杂研究及其进展[J].化学世界, 2006, 47(6):54-57.
    [62] Velev O D, Jede T A, Lobo R F, et al. Porous silica via colloidal crystallization [J]. Nature, 1997, 389:447-448.
    [63] Velev O D, Tessier P M, Lenhoff A M, et al. A class of porous metallic nanostructures [J]. Nature, 1999, 401:548.
    [64] Velev O D, Jede T A, Lobo R F, et al. Microstructured porous silica obtained via colloidal crystal templates [J]. Chem. Mater., 1998, 10(11):3597-3602.
    [65]邬泉周,沈勇,李玉光.溶胶凝胶法制备三维规则排列大孔TiO2材料[J].中山大学学报, 2002, 41:121-122.
    [66] Yan Hongwei, Blanford C F, Holl B T, et al. General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion [J]. Chem.Mater., 2000, 12(4):1134-1141.
    [67]宋春霞,杨立新,陈小明,等.胶晶模板法制备3DOM尖晶石型LiMn2O4及表征[J].高等学校化学学报, 2007, 28(2):204-207.
    [68] Wijnhoven J E G J, Zevenhuizen S J M, Hendriks M A, et al. Electrochemical assembly of ordered macropores in gold [J]. Adv. Mater., 2000, 12(12):888-890.
    [69] Gu Zhongze, Hayami S, Kubo S, et al. Fabrication of structured porousfilm by electrophoresis [J]. J. Am. Chem. Soc., 2001, 123(1)175-176.
    [70] Meng Xiangdong, Al-Salman R, Zhao Jiupeng, et al. Electrodeposition of 3D ordered macroporous germanium from ionic liquids: A feasible method to make photonic crystals with a high dielectric constant [J]. Angew. Chem., 2009, 48(15):2703-2707.
    [71] Park S H, Xia Younan, Gates B. Macroporous membranes with highly ordered and three-dimensionally interconnected spherical pores [J]. Adv. Mater., 1998, 10(13):1045-1048.
    [72] Gates B, Xia Younan. Self-assembly approaches to three-dimen-sional photonic crystals [J]. Adv. Mater., 2001, 13(21):1605-1608.
    [73]匡代彬.低温合成纳米TiO2及其气相光催化氧化性能[博士学位论文].广州:中山大学, 2003.
    [74] Yoshio Sakka, Tang Fengqiu, Hiroshi Fudouzi, et al. Effect of polyethylenimine on the dispersion and electrophoretic deposition of nano-sized titania aqueous suspensions [J]. Sci. Technol. Adv. Mat., 2005, 6:915-920.
    [75] Zakhidov A A, Baughman R H, Zafar Iqbal, et al. Carbon structures with three-dimensional periodicity at optical wavelengths [J]. Science, 1998, 282(5390): 897-901.
    [76] Blanco A, Chomski E, Grabtchak S, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres [J]. Nature, 2000, 405:437-440.
    [77]孟祥东,李垚,赵九蓬,等.模板辅助电化学沉积三维有序大孔Fe-Ni合金膜.材料科学与工艺, 2009, 17(2):251-254.
    [78] Thakuria H, Borah B M, Das G. Macroporous metal oxides as an efficient heterogeneous catalyst for various organic transformations: A comparative study [J]. J. Molecular Catalysis A: Chemical, 2007, 274(1/2):1-10.
    [79] Johnson B J, Stein A. Surface modification of mesoporous, macroporous, and amorphous silica with catalytically active polyoxometalate clusters [J]. Inorg. Chem., 2001, 40(4):801-808.
    [80] Stein A, Schroden R C. Colloidal crystal templating of three-dimensionally ordered macroporous solidsmaterials for photonics and beyond [J]. Curr. Opin. S. T. M., 2001(5):553-564.
    [81]邬泉周,尹强,廖菊芳,等.三维有序大孔SiO2中的纳米银[J].中国化学, 2005, 23(6):689-692.
    [82]徐志兵,郭畅,隆兴兴,等.三维大孔TiO2光催化剂的制备及其催化性能[J].催化学报, 2006, 27(8):732-736.
    [83]东北师范大学.用于光催化降解有机污染物的多酸-二氧化钛复合材料及其制备方法:中国, 1504258 [P]. 2004-06-16.
    [84] Sadakane M, Asanuma T, Kubo J, et al. Facile procedure to prepare three-dimensionally ordered macroporous (3DOM) perovskite-type mixed metal oxides by colloidal crystal templating method [J]. Chem. Mater., 2005, 17(13):3546-3551.
    [85] Li Yuanzhi, Kunitake T. Fujikawa S. Efficient fabrication and enhaced photocatalytic activities of 3D-ordered films of titania hollow spheres [J]. J. Phys. Chem. B, 2006, 110(26):13000-13004.
    [86] Srinivasan M, White T. Degradation of methylene blue by three-dimensionally ordered macroporous Titania [J]. Environ.Sci. Technol., 2007, 41(12):4405-4409.
    [87] Wang C, Geng A, Guo Y, et al. A novel preparation of three-dimensionally ordered macroporous M/Ti (M=Zr or Ta) mixed oxide nanoparticles with enhanced photocatalytic activity [J]. J. Colloid Interface Sci., 2006, 301(1):236-247.
    [88]郭伊荇,杨宇,胡长文,等.三维有序大孔杂化材料SiW11O398--SiO2和γ-SiW10O368--SiO2的制备与表征[J].高等学校化学学报, 2002, 23(11):2035-2039.
    [89]尹强,廖菊芳,王崇太,等.三维有序大孔H3PW12O40-SiO2功能材料的制备,表征及催化性能研究[J].化学学报, 2007, 65(8):2103-2108.
    [90] Wu Quanzhou, Liao Jufang, Yin Qiang, et al. Synthesis, characterization and catalytic activity of ordered macroporous silicas functionalized with organosulfur groups [J/OL]. Mater. Res. Bull., 2008, 43(5):1209-1217.
    [91] Chai G S, Yoon S B, Yu J, et al. Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell [J]. J.Phys. Chem.B, 2004, 108(22):7074-7079.
    [92] Schroden R C, Al-Daous M, Sokolv S, et al. Hybrid macroporous materials for heavy metal ion adsorption [J]. J. Mater. Chem., 2002, 12(11):3261-3267.
    [93] Sorensen E M, Barry S J, Jung H, et al. Three-dimensionally ordered macroporous Li4Ti5O12: effect of wall structure on electrochemical properties [J]. Chem. Mater., 2006, 18(2):482-489.
    [94] Woo S W, Dokko K, Kanamura K. Preparation and characterization of three dimensionally ordered macroporous Li4Ti5O12 anode for Lithium batteries [J]. Electrochim. Acta., 2007, 53(1):79-82.
    [95] Sakamoto J S, Dunn B. Hierarchical battery electrodes based on inversed opal structures [J]. J. Mater. Chem., 2002, 12(10):2859-2861.
    [96] Zhao Yu, Zheng Mingbo, Cao Jieming, et al. Easy synthesis of ordered Meso/macroporous carbon monlith for use as electrode in electrochemical capacitors [J/OL]. Mater. Lett., 2008, 63(3):548-551.
    [97] Scott R W J, Yang S M, Chabanis G, et al. Ti dioxide opals and inverted opals:near-ideal microstructures for gas sensors [J]. Adv. Mater., 2001, 13(19):1468-1471.
    [98] Tian Shengjun, Wang Jianjun, Jonas U, et al. Inverse opals of polyaniline and its copolymers prepared by electrochemical techniques [J]. Chem. Mater., 2005, 17(23):5726-5730.
    [99] Li Xun, Tao Feifei, Jiang Yuan, et al. 3-D ordered macroporous cuprous oxide: fabrication, optical, and photoelectrochemical properties [J]. J. Colloid Interface Sci., 2007, 308(2):460-465.
    [100] Tessier P M, Velev O D, Kalambur A T, et al. Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced raman spectroscopy [J]. J. Am. Chem. Soc., 2000, 122(39):9554-9555.
    [101] Yang Linglu, Kang Juan, Guan Yuan, et al. 3D-ordered macroporous materials comprising DNA [J]. Langmuir, 2006, 22(26):11275-11278.
    [102] Krivorotov I N, Yan Hongwei, Dahlberg E D, et al. Exchange bias in macroporous Co/CoO [J]. J. Magn. Magn. Mater., 2001(226-230):1800-1802.
    [103] Chi E, Kim Y, Kim J, et al. A macroporous perovekite manganite from colloidal templates with a curie temperature of 320 K [J]. Chem. Mater., 2003, 15(10):1929-1931.
    [104] Zheng Zhongyu, Gao Kuiyi, Luo Yanhong, et al. Rapidly infrared-assisted cooperatively self-assembled highly ordered multiscale porous materials [J]. J. Am. Chem. Soc., 2008, 130(30):9785–9789.
    [105] Stein A, Li Fan, Denny N R. Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles [J]. Chem. Mater., 2008, 20(3):649–666.
    [106]赵魁,范益群,徐南平.以PMMA为模板剂制备大孔ZrO2膜的研究[J].南京工业大学学报, 2006, 28(1):67-70.
    [107]杨卫亚,郑经堂,张艳姝,等.模板法制备三维有序大孔CeO2[J].中国稀土学报, 2006, 24:128-131.
    [108]王晓冬,董鹏,仪桂云.制备高质量聚苯乙烯微球胶粒晶体的蒸发自组装法[J].物理学报, 2006, 55(4):2092-2098.
    [109]方俊,王秀峰,程冰.单分散SiO2胶体球制备及其胶体晶体组装[J].功能材料与器件学报, 2007, 13(4):394-398.
    [110]方俊,王秀峰,程冰,等.组装胶体晶体用单分散二氧化硅颗粒的制备[J].无机盐工业, 2007, 39(3):37-39.
    [111]周富荣,左海山,陈少锋,等.反向微乳法制备单分散纳米二氧化硅[J].江汉大学学报:自然科学版, 2006, 34(2):27-30.
    [112]宋娟.二氧化硅胶体晶体的制备与研究[J].泰州职业技术学院学报, 2006, 6(6):64-67.
    [113]艾桃桃.光子晶体及SiO2光子晶体的制备技术[J].江苏陶瓷, 2008, 41(1):6-9.
    [114] St?ber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range [J]. J. Colloid Interface Sci., 1968, 26(1):62-69.
    [115]阮建明,王亚东,伍秋美,等.单分散球形SiO2的制备及其分散体系的流变性能[J].中南大学学报:自然科学版, 2007, 38(5):825-829.
    [116] Zou D, Ma S, Guan R, et al. Model filled polymers. V. synthesis of crosslinked monodisperse polymethacrylate beads [J]. J. Polym. Sci. A Polym. Chem., 1992, 30(1):137–144.
    [117]张文敏,吴奇,魏涛,等.高浓度窄分布无皂高分子纳米粒子胶乳的制备[J].物理化学学报, 2000, 16(2):116-120.
    [118]王晨怿,钱达兴. SiO2单分散溶胶微球制备的工艺条件研究[J].玻璃与搪瓷, 2006, 34(1):14-18.
    [119] Woodcock L V. Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures [J]. Nature, 1997, 385:141-143.
    [120] Woodcock L. V. Glass-transition in the hard-sphere model and the kauzmann paradox [J]. Ann. N. Y. Acad. Sci., 1981, 371(1):274–298.
    [121]李彩华.高锰中铬高铝钢中铝的测定[J].湖南冶金, 2006, 34(1):43-44.
    [122] Feng Qi, Kanoh H, Ooi K. Manganese oxide porous crystals [J]. J. Mater. Chem., 1999, 9(2):319–333.
    [123]刘亦凡,大井健太.离子记忆无机离子交换体[J].离子交换与吸附, 1994, 10(3):264-269.
    [124] Hunter, James C. Preparation of a new crystal form of manganese dioxide:λ-MnO2 [J]. J. Solid State Chem., 1981, 39(2):142-147.
    [125]刘亦凡,冯旗,大井健太. Li+记忆尖晶石构造LiAlMnO4的合成及离子交换性能[J].离子交换与吸附, 1995, 11(3):216-222.
    [126] Tian, Liyan, Ma Wei, Han Mei. Adsorption behavior of Li+ onto nano-lithium ion sieve from hybrid magnesium/lithium manganese oxide [J]. Chem. Eng. J., 2010, 156(1):134–140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700