淹水条件下不同中、微量元素和有益元素对土壤镉有效性和水稻吸收镉的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的快速发展,人类生存环境承受了前所未有的污染压力。在众多污染元素中,重金属镉(Cd)污染最具典型性,受Cd污染的土地面积和农产品(如水稻、小麦)Cd超标的数量远高于其他有害元素,四川省的情况也不例外。土壤一旦被Cd污染,其治理难度之大,治理时间之长,治理代价之高,通常超出常人的想象。在农业生产中,不良的土地利用方式、农耕农作模式、农田管理、特别是肥料品种和施用方法不当时,往往会显著提高土壤Cd的有效性和作物吸收量,增加农产品Cd超标的几率。因此,开展Cd污染土壤上影响土壤Cd有效性的变化因子及其调控措施,特别是不同肥料对Cd有效性的影响与作物吸收,对我国的食品安全和人类健康,意义重大。
     施用肥料会影响土壤的某些理化性状,从而影响土壤镉的形态变化及植物对镉的吸收和积累。在过去的研究中,国内外作者已对一些中、微量元素和有益元素如Ca、Zn、Si、Se进行了研究,但在同一条件下中、微量元素和有益元素对土壤重金属生物有效性影响的系统比较的研究鲜见报道。因此,本试验旨在系统研究不同中微量及有益元素对土壤镉有效性的影响及其对水稻生长和吸收镉的影响。本研究采用土壤室内培养试验研究了淹水条件下不同中微量及有益元素肥料对土壤镉有效性的影响,采用网室盆栽试验研究了淹水条件下不同中微量及有益元素肥料对水稻生长及吸收镉的影响和不同水分管理方式下三种中微量元素肥料对水稻生长和吸收Cd的影响,在此基础上初步提出了水稻优化施肥技术。本试验取得的主要研究结果如下:
     1.淹水培养试验结果表明,不同中微量元素和有益元素对土壤pH和Cd有效性的影响存在显著差异。淹水后,土壤pH由6.4迅速上升至7.0,维持一段时间后缓慢回落,60d时降至6.7;土壤Cd的有效性经历了与pH相反的变化过程。Ca2+、Mg2+、S、硅酸钠和碳酸钙等能显著降低土壤中有效Cd含量,而Zn2+、Cu2+和Fe3+能显著增加土壤有效Cd含量。因此,建议在镉污染土壤上种植水稻时,在选择中微量元素及有益元素肥料时,宜施用碳酸钙、硅酸钠和含硫肥料,慎重使用铜肥和锌肥。如果必须施用这些元素时,应把用量控制在生产推荐量以下。
     2.盆栽土培试验表明,在所有测试的元素和施用方法中,硅酸钠叶面喷施显著增加稻谷产量,而碳酸钙、硼酸、硅酸钠土施和亚硒酸钠显著降低了稻谷产量。镁、锌、铁的盐酸盐形态对水稻籽粒的增产效果优于硫酸盐形态,而钙、铜的硫酸盐形态增产效果略高于盐酸盐形态。在钙、镁、硫三种中量元素中,钙增加了水稻籽粒中的Cd浓度和吸收量,而镁和硫则降低了籽粒中的Cd浓度和吸收量,以硫磺粉处理为最低。稻草中的Cd浓度和总量均以氯化镁处理为最高,硫磺粉处理最低。镁能有效抑制Cd从秸秆向籽粒的转移,其盐酸盐优于硫酸盐。在微量元素中,锌对水稻Cd的吸收抑制作用最为显著,其次是铜,而有益元素肥料硅酸钠叶面喷施则显著增加了稻谷中的Cd浓度和吸收量。硫酸亚铁、氯化锰、氯化铜、硼酸和硼砂处理都能有效地抑制Cd从秸秆向籽粒的转移,而硅酸钠叶面喷施和锌处理则促进了Cd的转移。在Cd污染土壤上选用适宜的中微量和有益元素肥料及其施用方法,能有效降低水稻对镉的吸收和稻米中的Cd含量。
     3.不同水分管理方式下S、Fe、Zn盆栽试验研究表明,在三种水分管理方式中,晒田水稻产量最高,其次为淹水,最低为湿润灌溉。淹水处理比湿润灌溉显著降低了水稻籽粒中的Cd浓度,其中以Zn处理最为显著。淹水处理明显抑制了Cd从秸秆向籽粒的转移,与之相反,湿润灌溉处理促进了Cd从秸秆向籽粒的转移。因此,在Cd污染土壤上,水稻栽培应尽量采用全生育期淹水的水分管理方式,污染程度较轻的稻田亦可考虑在灌浆期进行晒田,但不宜水稻旱作。采用Cd抗性品种,结合优化的肥、水管理措施,可以使稻米中Cd含量低于国家无公害大米的限量指标。
With rapid development in social and economics, the living environment of human being is facing the unprecedented pressures from various types of pollution. Among the different pollutants, cadmium (Cd) is typical for its widespread pollution areas and higher number of suffered agricultural produces (eg., rice and wheat) than the other risky elements. Once the soil is polluted by Cd, it is very difficult to remediate due to time-consuming and high cost of the recovering processes that are beyond imagination of the ordinary people. In the agricultural production, improper land use, crop cultivation, farmland management and sources of fertilizers and application methods in particular tend to significantly enhance availability of soil Cd and crop uptake, leading to higher probability of polluted agricultural produces. Therefore, it is of great importance to conduct research on the factors that can reduce quantity of soil available Cd and the measures that can control soil Cd availability to safeguard food safety and human health.
     Past research on some of the secondary, micro-and beneficial elements has been conducted both at home and abroad, however, there is lack of systematic studies with comparisons between different secondary, micro-and beneficial elements affecting the availability of soil Cd under the same conditions. Thus, the objectives of this study were to systematically investigate effects of secondary, micro-and beneficial elements on availability of soil Cd and Cd uptake by rice under waterlogged condition. The availability of soil Cd and Cd uptake by rice as affected by different secondary, micro-and beneficial elements were investigated by incubation studies and pot experiments under waterlogged condition as well, The availability of soil Cd and Cd uptake by rice as effects of water management methods and three secondary and microelements were investigated by incubation studies and pot experiments.On the basis of these studies, some optimized fertilizer practices that are effective in controlling Cd availability on the Cd polluted soil were concluded.
     1. The results of incubation experiments revealed that different fertilizers significantly affected soil pH and Cd availability. As the soil was flooded, soil pH rose rapidly from 6.4 to 7.0, maintained for a period of time and then dropped down to 6.7 at 60d, while the soil Cd availability underwent a reverse change. Ca2+, Mg2+, S, sodium silicate and calcium carbonate were highly effective in reducing amounts of Cd extracted, while the micro-elements of Zn2+, Cu2+ and Fe3+ significantly increased the extractable Cd. Thus, the authors suggest that when making fertilizer recommendations of secondary, micro-and beneficial elements to the Cd polluted soils in rice growing season, sodium silicate and S bearing materials are most preferred while use of Cu and Zn should be cautious by strictly controlling its rates following recommendations.
     2. The results of soil pot experiments revealed that folia application of sodium silicate significantly increased rice grain yield, while calcium carbonate, boric acid and sodium silicate incorporated into soil significantly reduced rice grain yield. The chloride forms of magnesium (Mg), zinc (Zn) and iron (Fe) were more favorable to enhance rice grain yield than the sulfate salts of the three elements, while the sulfate forms of calcium (Ca) and cupper (Cu) just behaved in an opposite manner. Among the three secondary elements of Ca, Mg and sulfur (S), Ca enhanced but Mg and S in particular reduced the concentrations and uptake of Cd in grain. In straw, the concentrations and uptake of Cd were minimized by magnesium chloride and S in particular. It was found that Mg retarded transferring Cd from straw to grain, with magnesium chloride more effective than the magnesium sulfate. Among the micro-elements studied, Zn was most effective in blocking Cd uptake by rice, and followed by Cu, while folia application of the beneficial element of Si as sodium silicate topped the all the treatments in concentrations and uptake of Cd in grain. The treatments of ferrous sulfate, magnesium chloride, cupper chloride, boric acid and borax effectively depressed but the treatments of Zn and folia application of sodium silicate promoted the transfer of Cd from straw to grain, indicating the mechanism of Si blocking Cd uptake by rice was most likely to occur in soil rather than within plant or in the aboveground portions of the plant. It implies that selecting appropriate forms of secondary, micro-and beneficial elements and using proper application methods could effectively reduce Cd uptake by and Cd content in grain in the Cd polluted soil.
     3. Effects of water management methods and S、Fe、Zn elements in a pot experiment revealed that among the three water management methods, water drained out at maximal tillering stage (drain-out) produced the highest rice yield, and followed by flooding through the rice growing season (flooding) and non-flooding at all (non-flooding). The flooding management significantly reduced Cd concentration and total content, especially in the Zn treatment, in grain compared to the non-flooding management, and effectively inhibited transfer of Cd from rice straw to grain. On contrary, the non-flooding management promoted Cd transfer. Thus, it is suggested that flooding water management should be used all time when possible for rice grown on a Cd polluted soil, the drain-out management can be adopted on soils with slight Cd pollution, and non-flooding management should avoided as possible. Use of Cd-resistant rice cultivars in combination with optimized nutrient and water management practices can produce rice product containing Cd below the permit levels by the state.
引文
[1]陈怀满.土壤—植物系统中的重金属污染.科学出版社[M].北京:科学出版社,1996.
    [2]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报,2004,35(3):366-370.
    [3]Miner G S,Gutierrez R,King L D.Soil factors affecting plant concentrations of cadmium,copper,and zinc in sludge-amended soils[J].Journal of Environmental Quality,1997,26:989-994.
    [4]Jinadasa K B P N,Milham P J,Hawkins C A,et al.Cadmium in vegetables and the soils in which they were grown in the Greater Sydney Region[J]. Journal of Environmental Quality,1997,26:924-933.
    [5]王先进.中国权威人士论中国怎样养活养好中国人[M].北京:中国财经出版社,1997:203-204.
    [6]吴燕玉,陈涛.沈阳张士灌区Cd污染生态研究[J].生态学报,1989,9(1):21-26.
    [7]姚学良,廖远安.成都市金牛区土壤重金属污染状况——浅谈土壤生态环境治理的紧迫性问题[J].四川地质学报,2002,22(3):158-160.
    [8]罗晓梅,张义蓉,杨定清.成都地区蔬菜中重金属污染分析与评价[J].四川环境,2003,22(2):49-51.
    [9]刘世亮,刘忠珍,介晓磊,等.施磷肥对Cd污染土壤中油麦菜生长及吸收重金属的影响[J].河南农业大学学报,2005,39(1):30-34.
    [10]Alvarez-Ayuso E. Cadmium in soil-plant systems:an overview. Int. J. Environment and Pollution, 2008,33(2):275-291.
    [11]Makino T, Kamiya T, Takano H, Itou T, Sekiya N, Sasaki K, Maejima Y and Sugahara K. Remediation of cadmium-contaminated paddy soils by washing with calcium chloride: Verification of on-site washing. Environ. Pollution,2007,147(1):112-119.
    [12]Landber T and Greger M. Influence of selenium on uptake and toxicity of copper and cadmium in pea (Pisum sativum) and wheat (Triticum aestivum). Physiologia Plantarum,1994, 90(4):637-644.
    [13]Issa A A and Adam M S. Influence of selenium on toxicity of some heavy metals in the green alga Scenedesmus obliquus. Folia Microbiologica,1999,44(4):406-410.
    [14]Skopikova A, Kral' ova K and Masarovicova E. Effect of cd-se interference on cadmium and selenium bioaccumulation in pea seedlings. Proceedings of ECOpole,2008,2(1):135-139.
    [15]魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨[J].生态学杂志,2004,23(1)65-72.
    [16]A Tessier,P G C Compbell,M Bisson. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals.Analytical Chemistry,1979,51(7):844-850.
    [17]Gambrell R P.Trace and Toxic Metals in Wet land A Review. Journal of Environment Quality, 1994, (23):883-819.
    [18]Sauman L M.Fractionation Method for Soil Microelements.Soil Science,1985,(140):11-22.
    [19]QUERAUVLLER P H,RAURET G,GR IEP UK B.Single and sequential extraction in sediments and soils.Intern.J.Environ. Anal.Chem.,1993,51,231.
    [20]韩凤样,胡霭堂,秦怀英,等.土壤痕迹元素形态分级提取方法的研究[J].农业环境保护,1989,8(5):26-29.
    [21]莫争,王春霞,陈琴,等.重金属Cu、Pb、Zn、Cr、Cd在土壤中的形态分布和转化[J].农业环境保护,2002,21(1):9-12.
    [22]罗金发,孟维奇,夏增禄.土壤重金属(镉、铅、铜)化学形态的地理分异研究.地理研究,1998,17(3):266-272.
    [23]李宗利,薛澄泽.污灌土壤中Pb,Cd形态的研究[J].农业环境保护,1994,13(4):152-157.
    [24]郑绍建,胡鹤堂,成杰民.冶炼厂区镉污染土壤中镉的形态分配及其影响因素[J].南京农业大学报,1994,17(3):69-74.
    [25]韩凤祥,胡霭堂,秦怀英,等.不同土壤环境中镉的形态分配及活性研究.环境化学,1990,9(1):49-53.
    [26]王新,周启星.外源镉铅铜锌在土壤中形态分布特性及改性剂的影响[J].农业环境科学学报,2003,22(5):541-545.
    [27]夏增禄.北京东郊土壤中某些重金属含量、形态、相互关系及其在环境质量评价中的意义[J].环境科学学报,1983,3(2):132-139.
    [28]朱嫌婉,沈壬水,钱钦文.土壤重金属元素五个组分的连续提取法[J].土壤,1989,10(5):163-166.
    [29]孙敬亮,武文钧,赵瑞雪,等.重金属土壤污染及植物修复技术[J].长春理工大学报,2003,26(4):46-48.
    [30]吴新民,潘根兴.影响城市土壤重金属污染因子的关联度分析[J].土壤学报,2003,40(6):921-929.
    [31]杨元根,Paterson E,Canpbell C.城市土壤中重金属元素的积累及微生物效应[J].环境科学,2001,22(3):44-48.
    [32]周国华,黄怀曾,何红蓼,等.北京市东南郊自然土壤和模拟污染影响下Cd赋存形态及其变化[J].农业环境科学学报,2003,22(1):25-27.
    [33]姜利兵,张建强.土壤重金属污染的形态分析及生物有效性探讨[J].云南农业大学学报,2007,22(1):122-126.
    [34]刘玉荣,党志,尚爱安.污染土壤中重金属生物有效性的植物指示法研究[J].环境污染与防治,2003,25(4):215-217,242.
    [35]陈怀满,王宏康.农业环境中重金属污染的生物效应研究进展、环境中污染物及其生物效应研究文集.中国地理学会编,北京:科学出版社,1992.
    [36]张磊,宋凤斌.土壤吸附重金属的影响因素研究现状及展望[J].土壤通报,2005,36(4):628-631.
    [37]Abd-Elfattah A,Wada K.Adsorption of lead,copper,zinc,cobalt and cadmium by soils that differ in cation-exchange materials[J].Journal of Soil Science,1981,32:271-283.
    [38]陈媛.土壤中镉及镉的赋存形态研究进展[J].广东微量元素科学,2007,14(7):7-12.
    [39]廖敏,黄昌勇,谢正苗.pH对镉在土水系统中的迁移和形态的影响[J].环境科学学报,1999,9(10):81-86.
    [40]杨忠芳,陈岳龙,钱鑂等.土壤pH对镉存在形态影响的模拟实验研究[J].地质前缘,2005,12(1):252-260.
    [41]周鑫斌,黄建国,赖凡.pH和有机酸对酸性紫色土吸附-解吸镉的影响[J].水土保持学报,2007,21(6):139-142.
    [42]夏运生,王凯荣,张格丽.土壤镉生物毒性的影响因素研究进展[J].农业环境保护,2002,21(3):272-275.
    [43]高山,陈建斌,王果.淹水条件下有机物料对潮土外源镉形态及化学性质的影响[J].植物营养与肥料学报,2003,9(1):1022-1051.
    [44]华璐,陈世宝,白玲玉,等.有机肥对镉、锌污染土壤的改良效应[J].农业环境护,1998,17(2):55-59.
    [45]张亚丽,沈其荣,姜洋.有机肥料对镉污染土壤的改良效应[J].土壤学报,2002,38(2):212-218.
    [46]Shuman L M.Effect of organic waste amendments on cadmium and lead in soil fractions of two soils[J].Common Soil Sci., Plant Anal,1998,29(19&20):2939-2952.
    [47]陈建斌,陈必群,邓朝祥.有机物料对土壤中外源镉形态与生物有效性的影响研究[J].中国生态农业学报,2004,12(3):105-108.
    [48]于天仁,刘志光.水稻土的氧化还原过程及其与水稻生长的关系[J].土壤学报,1964,12(4):380-389.
    [49]马耀华,刘树应,环境土壤学[M].西安:陕西科学技术出版社,1998:198-201.
    [50]陈涛,吴燕玉,张学询,等.张土灌区镉土改良和水稻镉污染防治研究[J].环境科学.1980,1(5):7-11.
    [51]余国营,吴燕玉.土壤环境中重金属元素的相互作用及其对吸持特性的影响[J],环境化 学,1997,16(1):30-36.
    [52]尚爱安,刘玉荣,梁重山,等.土壤中重金属的生物有效性研究进展[J].土壤,2000,(6):294-314.
    [53]Zhu Y G, Zhao Z Q, Li H Y, et al. Effect of Zinc-Cadmium Interactions on the Uptake of Zinc and Cadmium by Winter Wheat (Triticum aestivum) Grown in Pot Culture[J]. Bulletin of Environmental Contamination and Toxicology,2003,71:1289-1296.
    [54]周启星,高拯民.作物籽实中Cd与Zn的交互作用及其机理的研究[J].农业环境保护,1994,13(4):148-151.
    [55]王新,梁仁禄,周启星.Cd-Pb复合污染在土壤-水稻系统中生态效应的研究[J].农村生态环境,2001,17(2):41-44.
    [56]陆景陵,植物营养学(上册).北京:北京农业出版社[M],1994.
    [57]JarvisS.C.,Jones L.H..P.,Hopper M.J.,Cadium uptake from solution by Plnats and its transport from roots to shoots.Plant and Soil 1976,44:179-191.
    [58]Hosono M.RiiP,Tachibona.Y.,Ohta.Y.,The effect of calcium in alleviating heavy metal toxicities in crop Paints.I.Eeffct of cacium concentration in nurtrient solution on the retarded growth of rice and tomato Plants.Soil Science and Plnat Nurtrition 1979,25:466-471.
    [59]Andersson A and Nilsson K O.Influence of lime and soil pH on Cd availability to plantss[J]. Am.Bio.,1974,3:1981.
    [60]席玉英,郭栋生,宋玉仙,等.钙、锌对玉米幼苗吸收镉、铅的影响[J].山西大学学报,1994,17(Ⅰ):101-103.
    [61]周卫,汪洪,林葆,等.镉胁迫下钙对镉在玉米细胞中的分布及对叶绿体结构与酶活性的影响[J].植物营养与肥料学报,1999,5(4):335-340.
    [62]周卫,汪洪,等.添加碳酸钙对土壤中镉形态转化与玉米叶片镉组分的影响[J].土壤学报,2001,38(2):219-225.
    [63]汪洪,周卫,林葆,等.钙对镉胁迫下玉米生长及生理特性的影响[J].植物营养与肥料学报,2001,7(1):78-87.
    [64]汪洪,周卫,林葆,等.碳酸钙对土壤镉吸附及解吸的影响[J].生态学报,200,12(16):932-937.
    [65]Mclaughlin M.J.,Andrew S.J.,Smart M.K.,Effects of sulfate on cadium uptake by swiss chard:I.Effects of complexation and calcium in nutrient solutions.Plant and Soil, 1998,202:211-216.
    [66]郭栋生,席玉荣,丁香串,等镧、锌对玉米幼苗中镉、铅含量的影响[J].农业环境保 护,1994,13(3):135-136.
    [67]Oliver D.P,Hannam R,TillerK.G,et al.The effects of zinc fertilization on cadmium concentration in wheat grain. J.Environ.Qual.,1994,23:705-711.
    [68]Guo D S, Xi Y Y,Ding X C,et al.Effect of La and Zn on content of Cd and Pb in M aize seedlings. A gro-environ-mental Protection,1994,135-136.
    [69]Chaney R L,Ryan J A, Li YM, et al.Transfer of cadmium through plants to the food chain.In:Syers J K and Goldfeld M, Eds. Environmental Cadmium in the Food Chain:Source, Pathways and Risks.Proceeding of the SCPOPE Work shop. Scientific Committee on Problems of the Environment/International Council of Scientific Unions (SCOPE/ICSU).Sep. 3-16,2000.Brussels,Belgium.Paris:SCOPE,2001.76-81.
    [70]傅桂平,衣纯真,张福锁,等.潮土中锌对油菜吸收镉的影响[J].中国农业大学学报,1996,1(5):85-88.
    [71]朱永官,锌肥对不同基因型大麦吸收积累镉的影响[J].应用生态学报,2003,14(11):1985-1988.
    [72]Li H F, Zheng Z Y, Zhang F S, et al. Effect of iron on up take of different forms of Cd by wheat.A cta Ecologica Sinica,1999,19(2):170-173.
    [73]LiuW J,Zhang X K and Zhang F S. The mobilization of root exudates on CdS in rice rhizo sphere and their effect on Cd uptake and transport. A cta Ecologica Sinica,2000,20(3) 448-451.
    [74]王海鸥,钟广蓉,刘晓峰.小麦在铜、镉胁迫下体内含巯基物质对解毒机制的研究.华北农学报[J].2008,23(3):158-161.
    [75]Qin F,shan X.Q,WeiB.Eeffcst of low-molecular-weihgt organic acids and residence time on desorption of Cu,Cd and Pb from soils[J].Chemosphere,2004,57:253-263.
    [76]SahaU.K,taniguchi,S,Sakurai,K.Simultaneous adsorption of cadmium,zinc,and lead onhydroxyaluminum-and hydroxyaluminosilicate-montmorillonite complexes[J].Soil Sci.Soc..Am.J.2002,66,117-128.
    [77]APPel C.Ma,L.Concentration,PH,and surface charge effects on cadmium and lead sorption in three tropical soils[J].Environ.Qual.2002,31,581-589.
    [78]施益华,刘鹏.锰在植物体内生理功能研究进展[J].江西林业科技,2003,(2):26-28.
    [79]冯雄汉,翟丽梅,谭文峰,等.几种氧化锰矿物的合成及其对重金属的吸附和氧化特性[J].岩石矿物学杂志,2005,24(6):531-538.
    [80]黄秋蝉,韦友欢,黎晓峰.硅对镉胁迫下水稻幼苗生长及其生理特性的影响[J].湖北农业科学, 2007,46(3):354-357.
    [81]秦淑琴,黄庆辉.硅对水稻吸收镐的影响新疆环境保护[J].1997,19(3):51-53.
    [82]周建华,王永锐.1999.硅营养缓解水稻幼苗Cd、Cr毒害的生理研究[J].应用与环境生物学报,5(1):11-15.
    [83]郑文娟,邓波儿.1993.铬和镉对作物品质的影响[J].土壤.25(6):324-326.
    [84]夏增禄.1988.土壤环境容量及其应用[M].北京:气象出版社.23-30,65,147.
    [85]陈平,余土元,等.硒对镉胁迫下水稻幼苗生长及生理特性的影响[J].广西植物,2002,22(3):277-282.
    [86]陈平,吴秀峰,等.硒对镉胁迫下水稻幼苗叶片元素含量的影响[J].中国生态农业学报,2006,14(3):114-117.
    [87]Leustek T, Saito K. Sulfate transport and assimilation in plants. Plant Physiol[J].1999,120:637-643.
    [88]王云,张海军,唐为忠.硫对镉胁迫下小麦幼苗生长和一些生理特性的影响.农业环境科学学报[J].2008,27(3):1029-1032.
    [89]拉飞克,施国新等.硼对镉胁迫下槐叶萍生理生化特性的影响[J].南京师大学报(自然科学版),2003,26(3):72-75.
    [90]Ponnamperuma,F.N.,The chemistry of submerged soil.Advances in Agronomy[J].1972,24:29-96.
    [91]Gong Zitong,Origin,evolution and classification of paddy soils in China[J].Soil Science,1986,5: 179-200.
    [92]郑绍建,胡蔼堂.淹水对污染土壤镉形态转化的影响[J].环境科学学报,1995,15(2):142-147.
    [93]肖思思,李恋卿,潘根兴,等.持续淹水和干湿交替预培养对2种水稻土中Cd形态分配及高丹草Cd吸收的影响[J].环境科学,2006,17(2):351-355.
    [94]Takijima Y, Katsumi F, Takerawak K. Cadmium contamination of soils and rice. plants caused by zinc mining[J].Soil Science and Plant Nutrition,1973,19:173-182.
    [95]Imura K. Heavy metal problems in paddy soils[A].In:Kitagishi K, Yamane I, ed. Heavy Metal Pollution in Soils of Japan. Japan Scientific Societies Press,1981.
    [96]张丽娜,宗良纲,付世景,等.水分管理方式对水稻在Cd污染土壤上生长及其吸收Cd的影响[J].安全与环境学报,2006,6(5):49-52
    [97]Kashem M.A.,Singh B R. Metal availability in contaminated soils:Ⅱ. Uptake of Cd, Ni and Zn in rice plants grown under flooded culture with organic matter addition[J].Nutrient Cycling in Agroecosystems,2001,61(3):257-266.
    [98]曾翔,张玉烛,等.镉对水稻种子萌发的影响[J].应用生态学报,2007,18(7):1665-1668.
    [99]田艳芬,史锟.镉对水稻等作物的毒害作用[J].土壤肥料,2005(5):26-28.
    [100]白嵩.模拟水体镉污染对水稻幼苗某些酶类活性的影响[J].河北农业大学学报,2006,29(3):1-4.
    [101]李坤权,刘建国,陆小龙,等.水稻不同品种对镉吸收及分配的差异[J].农业环境科学报,2003,22:529-532.
    [102]王琴儿,曾英,李丽美.镉毒害对水稻生理生态效应的研究进展[J].北方水稻,2007,(4):12-16.
    [103]程旺大,姚海根,张国平,等.镉胁迫对水稻生长和营养代谢的影响[J].中国农业科学,2005,38(3):528-537.
    [104]杨春刚,朱智伟,章秀福,等.重金属镉对水稻生长影响和矿质元素代谢的关系[J].中国农学通报,2005,21(11):176-178.
    [105]Hendry G A F, Baker A J M, Ewart C F. Cadmium tolerance and toxicity:oxygen radical processes and molecular damage in cadmium tolerant and cadmium sensitive of Holcus lanatus L [J]. Acta Bol Necrl,1992,41:271-281
    [106]邵国胜,MUHAMMADJ H,章秀福等.镉胁迫对不同水稻基因型植株生长和抗氧化酶系统的影响[J].中国水稻科学,2004,18(3):239-241.
    [107]章秀福,王丹英,储开富,等.镉胁迫下水稻SOD活性和MDA含量的变化及其基因型差异[J].中国水稻科学,2006,20(2):194-198
    [108]陈平,余土元,陈惠阳,等.硒对镉胁迫下水稻幼苗生长及生理特性的影响[J].广西植物,2002,22(30):277-282.
    [109]葛才林,骆剑峰,刘冲,等.重金属对水稻光合作用和同化物输配的影响[J].核农学报,2005,19(3):214-218.
    [110]Naidu R,Bolan N S,Kookana R S,Tiller K G.Ionic-strength and pH effects on the sorption and the surface charge of soils[J]. European journal of soil science,1994,45:419-429.
    [111]赵步洪,张洪熙,奚岭林,等.杂交水稻不同器官镉浓度与累积量[J].中国水稻科学,2006,20(3):306-312.
    [112]Gray C W,Mclaren R G,C Roberts A H,Condron L M.Solubility,sorption and desorption of native and added cadmium in relation to properties of soils in New Zealand[J].European journal of soil science,1999,50:127-137.
    [113]林贤青,周伟军,等.稻田水分管理方式对水稻光合速率和水分利用效率的影响[J].中国水稻科学,2004,18(4):333-338.
    [114]沈阿林,刘春增,等.不同水分管理对水稻生长与氮素利用的影响[J].植物营养与肥料学报,1997,3(2):111-116.
    [115]陈小山,张舒,等.不同水分管理模式对水稻病虫发生及产量的影响[J].湖北农业科学.2009,48(7):1571-1573.
    [116]周启星,魏树和,刁春燕.土壤污染生态修复基本原理及研究进展[J].农业环境科学学报,2007,26(2):419-424.
    [117]彭星辉,谢晓阳.稻田镉(Cd)污染的土壤修复技术研究进展[J].湖南农业科学,2007,(2):67-69.
    [118]易建春,汪模辉,李锡坤.土壤中镉的污染及治理[J].广东微量元素科学,2006,13(9):11-15.
    [119]王凯荣.我国农田镉污染现状及其治理利用对策[J].农业环境保护,1997,16(6):274-278.
    [120]徐应明.污染土壤修复、诊断与标准体系建立的探讨[J].农业环境科学学报,2007,26(2):413-418.
    [121]李振厅(译).美国科学家采用电化法净化土壤[J].环境与科学动态,1990,3:31.
    [122]魏树和,周启星,王新,等.一种新发现的镉超积累植物龙葵(Solanum nigrum L)[J].科学通报,2004,49(24):2568-2573.
    [123]刘威,束文圣,蓝崇钰.宝山堇菜(Viola baoshanensis)一种新的镉超富集植物[J].科学通报,2003,48(19):2046-2049.
    [124]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004.
    [126]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [126]Tessier A, Campbell P, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Anal.Chem,1979,51:844-851.
    [127]Russell E W. Soil conditions and plant growth [M]. London:Longman Publishing Press,1973.
    [128]国际水稻所学术讨论会论文选译.土壤与水稻[M].浙江:浙江科学技术出版社,1981,89-109.
    [129]甲卡拉铁,喻华等.淹水条件下不同氮磷钾肥对土壤pH和镉有效性的影响研究.环境科学,2009,30(11):300-307.
    [130]Zasoski R J and Burau R G. Sorption and Sorptive Interaction of Cadmium and Zinc on Hydrous Manganese Oxide[J]. Soil Sci. Soc. Am. J.,1988,52:81-87.
    [131]侯秀等.铁锰氧化矿物添加对土壤镉有效态及生物效应的影响[J].农业环境科学学报,2009,28(11):2313-2317.
    [132]Konopka A E, Miller R H, and Sommers L E. Microbiology of the sulfur cycle. In Tabatabai (ed.) Sulfur in agriculture. ASA, CSSA, and SSSA Publisher, Madison, Wisconsin, USA,1986.
    [133]Liang Y C, Wong J W C, and Wei L. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere,2005, 58(4):475-483.
    [134]Kirkhama M B. Cadmium in plants on polluted soils:Effects of soil factors, hyperaccumulation, and amendments. Geoderma,2006,137(1-2):19-32.
    [135]唐永康,曹一平.喷施不同形态硅对水稻生长与抗逆性的影响[J].土壤肥料,2003,(2):16-20.
    [136]Dou H., Liang Y. C., et al. Influence of silicon on cadmium availability and cadmium uptake by maize in cadmium-contaminated soil. Scientia Agri. Sinica,2005,38(1):116-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700