南昌城乡梯度森林土壤磷形态时空分布格局
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤磷素(P)既是植物生长的关键限制性因子,也是环境污染的潜在来源。城市化作为全球变化的重要内容,如何影响森林生态系统P循环和土壤P含量还知之甚少。本研究以南昌城区-郊区-农村生态梯度的灌丛林、马尾松(Pinus massoniana)林、湿地松(Pinus elliottii)林、针阔混交林、常绿阔叶林、毛竹(Phyllostachys edulis)林为研究对象,采用改进Hedley的P连续浸提法分析了土壤不同功能P形态的时空规律,以及湿地松针叶P含量的季节动态和再吸收效率。结果表明:
     (1)位于南昌城区-郊区-农村梯度上的39块林地土壤全P及各功能P形态总体上表现城区含量较高,郊区居中,农村较低,说明城市化会导致森林土壤全P及不同功能形态P的积累。
     (2)位于南昌城乡梯度上的灌丛林、马尾松林、针阔混交林、常绿阔叶林、毛竹林林地土壤不同功能P形态的平均值表现为:HCl-P是城区土壤P功能形态的主要成分,达到36%,NaOH-P是郊区和农村的主体,分别为42%和50%;而位于城区、郊区和农村的湿地松林土壤不同功能P形态的年均值均表现为NaOH-P是主体,分别占52%、58%和53%。这说明城乡森林土壤P输入形态有别,且城区外源性P输入具有很高的空间异质性。
     (3)位于南昌城乡梯度上的5种中亚热带森林演替典型阶段的30块林地土壤不同功能P形态的平均值总体上表现为:人为活动较高频率的灌丛林和毛竹林显著高于人为活动较低的马尾松林、针阔混交林、常绿阔叶林,说明人为干扰是影响土壤P含量及其形态组成的关键因素,而森林的自然演替对P循环及土壤P有效性的增加影响缓慢。
     (4)通过对位于城区-郊区-农村梯度上9块湿地松人工林新鲜针叶和凋落针叶为期12个月的定位监测,结果表明:针叶P含量年均值为城区(0.94 g kg-1)和郊区(1.03 g kg-1)高于农村(0.78 g kg-1);而P再吸收效率为城区(75%)和郊区(74%)低于农村(84%)。说明城市化影响树木P的吸收过程和利用效率。
     总之,城市化过程易导致城市森林土壤全P及不同功能P形态的积累,从而影响城区树木P吸收和利用,以及森林生态系统的P循环。建议控制人为干扰强度和频度,减少外源性P的输入,维持城市森林生态系统的健康。
Soil phosporus (P) is not only one of the major limiting factors affecting plant growth, but also a potential source of environmental pollution. We know a little that P cycling and accumulation is influenced by the urbanization, a global problem. Soils in shrubs, Pinus massoniana, P. elliottii, conifer and broadleaf mixed, everygreen broadleaved, Phyllostachys edulis forests in the mid-subtropical region along an urban-rural gradient in Nanchang city, southern China, were analyzed for total P and P fractions using the modified Hedley P sequential fractionation method, while the seasonal variation of foliar P concentrations and resorption efficiency were studied in P. elliottii forests. The main results are as follows:
     (1) In general, soil total P and all P fractions concentration were highest in urban, lowest in rural under 39 sites in six forest types along an urban-rural gradient in Nanchang City, the result indicates that urbanization increase with the addition of P in urban soils.
     (2) Mean values of topsoil all P fractions in five typical forest successional stages(shrubs, Pinus massoniana, conifer and broadleaf mixed, everygreen broadleaved, Phyllostachys edulis forest) along an urban-rural gradient in Nanchang City were analyzed, our findings suggest that the relative abundance of HCl-P in urban forest soils (36%) was the highest among five P fractions, with NaOH-P as the dominant form in suburban (41%) and rural soils (50%); but the annual mean values of all fractions in P. elliottii forest show that NaOH-P is the dominant among five fractions in urban, suburban and rural (52%,58% and 53%, respectively). It can be seen that soil P fractions input is different among all the forests along urban-rural gradient, extraneous P input has spatial heterogeneity.
     (3) In five typical forest along urban-rural gradient in Nanchang City, mean values of soil all P fractions is higher in shrub and Ph. edulis forest than P. massoniana, conifer and broadleaf mixed, everygreen broadleaved forest, shrub and Ph. edulis forest are intensively anthropogenic disturbed. This means that anthropogenic disturbances can be an important factor for P accumulation, while increases in soil P pool and its availability were not significantly increased by the biological process of forest succession.
     (4) Leaves in 9 sites of P. elliottii forest an urban-rural gradient in Nanchang city, were analyzed for P concentration and its resorption efficiency and proficiency. The findings show mean values of leaf P concentration is higher in urban (0.94 g kg-1) and suburban (1.03 g kg-1) than rural (0.78 g kg-1), while PRE is lower in urban(75%) and suburban (74%) than rural (84%). These results suggest that urbanization affects plants P absorbability and availability.
     On the whole, urbanization would lead to soil total P and all P fractions accumulation which affect the cycle of P and plant absorbability in urban forest systems. Therefore, it is necessary to control anthropogenic disturbances and decrease extraneous P input in order to ensure the health of the forest ecological systems.
引文
[1]丁善文.城市化对城市土壤性质的影响[J].现代农业科技,2007,(12):190-190
    [2]何兴元.城市森林分类探讨[J].生态学杂志,2004,23(5):175-178
    [3]何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,(2):61-69
    [4]蒋有绪.城市森林是现代化健全的城市生态系统的基础[J].中国城市林业,2004,2(2):4-7
    [5]江泽慧.加怏城市森林建设,走生态化城市发展道路[J].中国城市林业,2003,1(1):4-11
    [6]刘光崧.土壤理化分析与剖面描述[M].北京:中国标准出版社,1996
    [7]刘乃瑜,马小凡,谢忠雷.长春市城市土壤中重金属元素的积累及其微生物特性研究[J].吉林大学学报(地球科学版),2004,(S1):134-138
    [8]彭少麟.中国南亚热带退化生态系统的恢复及其生态效应[J].应用与环境生物学报,1995,(4):403-414
    [9]彭镇华,江泽慧.中国林森生态网络系统工程[J].应用生态学报,1999,1:1-5
    [10]宋永昌,由文辉,王祥荣.城市生态学[M].上海:华东师范大学出版社,2000
    [11]苏永春,勾影波.我国东北寒冷地区农田土壤磷代谢的生态特征研究[J].土壤肥料,2005,(1):32-34
    [12]王成,蔡春菊,陶康华.城市森林的概念!范围及其研究[J].世界林业研究,2004,17(2):23-27
    [13]王道吉,樊三宝.南昌城市森林的理论与实践[J].中国林业出版社,2002,23-24
    [14]王献薄.城市化对生物多样性的影响[J].农村生态环境,1996,12(4):32-36
    [15]杨玉盛,陈光水,谢锦升,何宗明,陈银秀,黄荣珍.杉木—观光木混交林群落N、P养分循环的研究[J].植物生态学报,2002,26(4):437-480
    [16]杨元根,Parterson YE, Compbell C.苏格兰阿伯丁城市土壤的微生物特性研究[J].矿物学报,2000,20(4):342-348
    [17]余明泉.2009.城乡梯度森林土壤氮素转化与供应的变异性[D].江西农业大学博士学位论文.
    [18]余明泉,袁平成,陈伏生,胡小飞,杜天真.城市化对人工湿地松林氮素供应的影响[J].应用态生学报,2009,20(3):531-536.
    [19]赵琼.2007.科尔沁沙地东南部固沙林土壤磷素研究[D].中国科学院沈阳应用生态研究所博士学位论文.
    [20]赵琼,曾德慧.陆地生态系统磷素循环及其影响因素[J].植物生态学报,2005,29(1):153-163
    [21]郑思轶,刘树华.北京城市化发展对温度、相对湿度和降水的影响[J].气候与环境研究,2008,13(2):123-133
    [22]祝宁,柴一新,李敏.论城市森林生态研究框架[J].中国城市林业,2003,1(3):46-50
    [23]詹书侠,陈伏生,胡小飞,甘露,朱友林.中亚热带丘林红壤区森林演替典型阶段土壤氮磷有效性[J].生态学报,2009,29(9):4673-4680
    [24]中国大陆市长协会组织.《(2001-2002)中国城市发展报告》[R].北京:西苑出版社,2002
    [25]Adamas MB, Campbell RG, Allen HL, Davey CB. Root and foliar nutrient concent rations in loblolly pine:Effects of season, site and fertilization[J]. Forest Science,1987,33:984-996
    [26]Aerts R. Nitrogen partitioning between resorption and decomposition pathways:A trade-off between nitrogen use efficiency and litter decomposability[J]. Oikos,1997,80:603-606
    [27]Agbenin JO, Tiessen H. Phosphorus forms in particle-size fractions of a toposequence from northeast Brazil[J]. Soil Science Society of America Journal,1995,59:1687-1693
    [28]Airola TM, Buchholz K. Species structure and soil characteristics of 5 urban forest sites along the New-Jersey Palisades[J]. Urban Ecology,1984,8:149-164
    [29]Alexandrovskaya El, Alexandrovskiy AL. History of the cultural layer in Moscow and ccumulation of anthropogenic substances in it[J]. Catena,2002,41:249-259
    [30]Asner GP, Townsend A, Riley WJ, Matson PA, Nef JC, Clevel CC. Physical and biogeochemical controls over terrestrial ecosystem responses to nitrogen deposition[J]. Biogeochemistry,2001,54:1-39
    [31]Atmis, E., Ozden, S. and Lise, W. Urbanization pressures on the natural forests in Turkey:An overview[J]. Urban Forestry and Urban Greening,2007,6:83-92
    [32]Beck MA, Sanchez PA. Soil phosphorus fraction dynamics during 18 years of cultivation on a Typic Paleudult[J]. Soil Science Society of America Journal,1994,58:1424-1431
    [33]Bedford BL, Walbridge MR, Aldous A. Patterns in nutrient availability and plant diversity of temperate North American wet lands[J]. Ecology,1999,80:2151-2169
    [34]Bennett EM, Carpenter SR, Clayton M. Soil phosphorus variability:scale-dependence in an urbanizing agricultural landscape[J]. Landscape Ecology,2004,20:389-400
    [35]Bennett EM. Soil phosphorus concentrations in Dane county, Wisconsin, USA:an evaluation of the urban-rural gradient paradigm[J]. Environmental Management,2003,32:476-487
    [36]Bertin RI. Losses of native plant species from Worcester, Massachusetts[J]. Rhodora,2002, 104:325-349
    [37]Breuste J, Feldmann H, Uhlmann O. Urban Ecology[M]. Berlin:Springer,1998
    [38]Brookes PC, Powlson DS, Jenkinson DS. Measurement of microbial biomass phosphorus in soil[J]. Soil Biology & Biochemistry,1982,14:319-329
    [39]Bruijnzeel LA. Nutrient input-output budgets of tropical forest ecosystems, a review[J]. Journa of Tropical Ecology,1991,7:1-24
    [40]Cao W, Zhu H, Chen S. Impacts of Urbanization on Topsoil Nutrient balances-A Case Study at A Provincial Scale from Fujian, China[J]. Catena,2007,69:36-43
    [41]Carreiro MM, Tripler CE. Forest remnants along urban-rural gradient: Examining their potential for global change research[J]. Ecosystems,2005,8(5):568-582
    [42]Chen FS, Li X, Greg'N, Zhan SX. Topsoil phosphorus signature in five types forest along urban-rural gradient in Nanchang, southern china[J]. Journal of Forestry Research,2010a, 21:39-44
    [43]Chen FS, Fahey TJ,Yuan MY, Gan L. Key nitrogen cycling processes in pine plantations along a short urban-rural gradient in Nanchang, China[J]. Forest Ecology and Management, 2010b,259:477-486
    [44]Chen HJ. Phosphatase activity and P fractions in soils of an 18-year old Chinese fir plantation[J]. Forest Ecology and Management,2003,178:301-310
    [45]Collins JP, Kinzig A, Grimm NB, Fagan WF, Hope D, Wu JG, Borer ET. A new urban ecology[J]. Science,2000,88:416-425
    [46]Compton JE, Cole DW. Phosphorus cycling and soil P fractions in Douglas-fir and red alder stands[J]. Forest Ecology and Management.1998,110:101-112
    [47]Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM. Changes in soil phosphorus fractions and ecosystem dynamics across long chronosequence in Hawaii[J]. Ecology,1995,76:1407-1424
    [48]DeCandido R, Muir AA, Gargiullo M B. A first approximation of the historial and extant vascular flora of New York City:implications for native plant species conservation[J]. Journal of the Torrey Botanical Society,2004,131:243-251
    [49]Foy RH, Lennox SD, Gibson CE. Changing perspectives on the importance of urban phosphorus inputs as the cause of nutrient enrichment in Lough Neagh[J]. Science of the Total Environment,2003,310:87-99
    [50]Frossard E, Condron LM, Oberson A, Sinaj S, Fadeau JC. Process governing phosphorus availability in temperate soils[J]. Journal of Environmental Quality,2000,29:15-23
    [51]Gahoonia TS, Nielsen NE.The effect of root-induced pH changes on the depletion of inorganic and organic phosphorus in the rhizospheer[J]. Plant and Soil,1992,143:185-191
    [52]Grierson PF, Adams MA. Plant species affect acid phosphatase, ergosterol and microbial P in Jarrah (Eucalyptus marginata Donn ex Sm.) forest in south-western Australia[J]. Soil Biology & Biochemistry,2000,32:817-827
    [53]Guppy CN, Menzies NW, Moody PW. A simplified, sequential phosphorus fractionation method[J]. Communications in Soil Science & Plant Analysis,2000,31(11214):1981-1991
    [54]Heckrath G, Brookes PC, Poulton PR, Goulding KWT. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment[J]. Journal of Environmental Quality,1995,24:904-910
    [55]Hedley MJ, Steward JWB. Changes in inorganic and organic soil phosphorous fractions induced by cultivation practices and by laboratory incubations[J]. Soil science,1982,46: 970-976
    [56]He YQ, Zhu YG, Smith SE, South FA. Interactions between soil moisture content and phosphorus supply in spring wheat plants grown in pot culture[J]. Journal of Plant Nutrition, 2002,25:913-925.
    [57]Holford ICR, Mattingly GEG. High-energy and low energy phosphate adsorbing surface in calcareous soils[J]. Journal of Soil Science,1975,26:407-417
    [58]Hoogstra MA, Schanz H, Wiersum KF. The future of European forestry-between urbanization and rural development[J]. Forest Policy and Economics,2004,6:441-445
    [59]Iverson LR, Cook EA. Urban forest cover of the Chicago-region and its relation to household density and income[J]. Urban Ecosystems,2000,4:105-124
    [60]Kalnay E, Cai M. Impact of urbanization and land use change on climate[J]. Nature,2003, 425(6953):102-102
    [61]Kellogg LE, Bridgham SD. Phosphorus retention and movement across an ombrotrophic-minerotorphic peatland gradient[J]. Biogeochemistry,2003,63:299-315
    [62]Killingbeck KT. Nutrients in senesced leaves:Keys to the search for potential resorption and resorption proficiency[J]. Ecology,1996,77:1716-1727
    [63]Kobe RK, Lepczyk CA, Iyer M. Resorpting efficiency decreases with increasing green leaf nutrients in a global data set[J]. Ecology,2005,86(10),2780-2792
    [64]Kouno K, Lukito HP, Ando T, Brookes PC. Microbial biomass P dynamics in soil[J]. Transaction of 15th World Congress of Soil Science,1994,5:85-86
    [65]Likens GE, Bormann FH, Pierce RS, Eaton JS, Johnson NM. Biogeochemistry of a Forested Ecosystem[M]. New York:Springer-Verlag.1977
    [66]Larsen JB. Ecological stability of forests and sustainable silviculture[J]. Forest Ecology and Management,1995,73:85-96
    [67]Leonardi G, Miglavacca M, Nardi S. Soil phosphorus analysis as an integrative tool for recognizing buried ancient ploughsoils[J]. Journal of Archaeological Science,1999,26: 343-352
    [68]Lovett GM, Traynor MM, Pouyat RV, Carreiro MM, Zhu WX, Baxter JW. Atmospheric deposition to oak forests along an urban-rural gradient[J]. Environment Science & Technology,2000,34:4294-4300
    [69]Mack AR, Baeker SA. A bath for soil temperature control in pot culture work[J]. Agronomy Journal,1960,52:299-304
    [70]Magid J, Nielsen NE. Seasonal variations in organic and in organic phosphorus fractions of temperate-climate sandy soils[J]. Plant and Soil,1992,144:155-165
    [71]McKinney M L.Urbanization as a major cause of biotic homogenization[J]. Biological Conservation,2006,127:247-260
    [72]Medley KE, McDonnd MJ, Pickett STA. Forest-landscape structure along an urban-to-rural gradient[J]. The Professional Geographer,1995,47:159-168
    [73]McDonell MJ, Picket STA. Ecosystem structure and function along urban-rural gradients:an unexploited opportunty for ecolgoy[J]. Ecology,1990,71:1291-1237
    [74]McDonnell MJ, Pouyat RV, Zipperer WC, Groffman P, Bohlen P, Parmelee RW, Carreiro MM, Medley K. Ecosystem processes along an urban-to-rural gradient[J]. Urban Ecosystems, 1997,1:21-36
    [75]Motavalli PP, Miles RJ. Soil phosphorus fractions after 111 years of animal manure and fertilizer applications[J]. Biology and Fertility of Soils,2002,36:35-42
    [76]Okalebo JR, Gathua KW, Woomer PL. Tropical Soil Biology and Fertility Programme, Nairobi, Kenya[M]. Laboratory methods of soil and plant analysis:a working manual.1993
    [77 ParfitR L. Anion adsorption by soils and soil minerals[J]. Advances in Agronomy,1978,30: 1-50
    [78]Parfit RL, Atkinson RJ, Smart RSC. The mechanism of phosphate fixation by iron oxides[J]. Soil Science Society of American Proceedings,1975,39:837-841
    [79]Pataki DE, Alig RJ, Fung AS. Urban ecosystems and the North American carbon cycle[J]. Global Change Biology,2006,12(11):2092-2102
    [80]Pickett STA, Cadenasso ML, Grove JM, Nilon CH, Pouyat RV, Zipperer WC, Costanza R. Urban Ecological System:Linking Terrestrial Ecological, Physical, and Socioeconomic Components of Metropolitan Areas[J]. Annual Review of Ecology, Evolution, and Systemitics, 2001,12:2092-2102
    [81]Pouyat R, Goffman P, Yesilonis I. Soil carbon pools and fluxes in urban ecosystems[J]. Environmental Pollution,2002,116:107-118
    [82]Reich PB, Grigal DF, Aber JD. Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soil[J]. Ecology,1997,78:335-347
    [83]Rekolainen S, Salt CA, Barlund I, Tattari S, Culligan-Dunsmore M. Impacts of the management of radioactively contaminated land on soil and phosphorus losses in Finland and Scotland[J]. Water, Air, and Soil Pollution,2002,139:115-136
    [84]Schachtman DP, Reid RJ, Ayling SM. Phosphorus uptake by plants, from soil to cell[J]. Plant Physiology,1998,116:447-453
    [85]Schlesinger WH. Biogeochemistry:an analysis of global change[M].2nd ed. San Diego, California:Academic Press.1997
    [86]Schlezinger DR, Howes BL. Organic phosphorus and elemental ratios as indicators of prehistoric human occupation[J]. Journal of Archaeological Science,2000,27:479-492
    [87]SPSS Inc. SPSS for Windows (10.0). Chicago, IL, USA.2001
    [88]Standley LA. Flora of Needham, Massachusetts-100years of floristic change[J]. Rhodora, 2003,105:354-378
    [89]Syers JK, Smillie GW, Williams JDH. Calcium fluoride formation during extraction of calcareous soils with fluoride:Implications of inorganic P fractionation schemes[J]. Soil Science Society of American Journal.1972,36:20-25
    [90]Tiessen H, Moir JO. Characterization of available P by sequential extraction[M]. In:Carter MR. (ed.) Soil sampling and methods of analysis. Florida: Lewis, Boca Raton.1993,75-86
    [91]Tiessen H, Stewart JWB, Cole CV. Pathways of phosphorus transformations in soils of differing pedogenesis[J]. Soil Science Society of America Journal,1984,48:853-858
    [92]Turrion MB, Glaser B, Solomon D, Ni A, Zech W. Effects of deforestation on phosphorus pools in mountain soils of the Alay range, Khyrgyzia[J]. Biology and Fertility of Soils,2000, 31:134-142
    [93]Vitousek PM, Farrington H. Nutrient limitation and soil development:experimental test of a biogeochemical theory[J]. Biogeochemistry,1997,37:63-75
    [94]Walker TW, Syers JK. The fate of P during pedogenesis[J]. Geoderma,1976,15:1-19
    [95]Walbridge R. Phosphorus biogeochemistry[J]. Ecology,2000,81:1474-1475
    [96]Wood T, Bormann FH, Voigt GT. P cycling in a northern hardwood forest:biological and chemical control[J]. Science,1984,223:391-393
    [97]World Resources Institute. World Resources:A Guide to the Global Environment[M]. New York:Oxford University Press,1996
    [98]Yuan DG, Zhang GL, Gong ZT, Burghardt W. Variations of soil phosphorus accumulation in Nanjing, China as affected by urban development[J]. Journal Plant Nutrition and Soil Science,2007,170:244-249.
    [99]Zhang GL, Burghardt W, Lu Y, Gong ZT. Phosphorus enriched soils of urban and suburban Nanjing and their effect on groundwater phosphorus[J]. Journal Plant Nutrition and Soil Science,2001,164:295-301
    [100]Zhang GL, Burghardt W, Yang JL. Chemical criteria to assess risk of phosphorous leaching from urban soils[J]. Pedosphere,2005,15:72-77
    [101]Zhang KH, Song SF. Rural-Urban Migration and Urbanization in China:Evidence from Time-Series and Across-Section Analyses[J]. China Economic Review,2003,14(4):386-400
    [102]Zhang MK. Phosphorus accumulation in soils along an urban-rural land use gradient in Hangzhou southeast, China[J]. Communications in Soils and Plant analysis,2004,35: 819-833
    [103]Zhu PY, Zhang YQ. Demand for urban forests in United States cities[J]. Landscape and Urban Planning,2008,84:293-300
    [104]Zhang L, Wu J, Zhen, Y, Shu, J. A Gis-based gradient analysis of urban landscape Pattern of Shanghai metropolitan area, China[J]. Landscape and Urban Planning,2004,69:1-16
    [105]Zhu WX, Carreiro MM. Chemoautotrophic nitrification in acidic forest soils along an urban-to-rural transect[J]. Soil Biology & Biochemistry,1999,31:1091-1100
    [106]Zhu WX, Carreiro MM. Temporal and spatial variations in nitrogen transformations in deciduous forest ecosystems along an urban-rural gradient[J]. Soil Biology & Biochemistry, 2004,36:267-278

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700