医用稀土镁合金支架基体材料制备及力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多冠状动脉严重狭窄的冠心病患者,药物治疗不能有效逆转冠状动脉狭窄,需介入治疗或开胸搭桥手术,而介入治疗的优势在于既能有效解决冠脉狭窄,又能降低手术风险,目前,介入材料如钴合金,钛合金,不锈钢材料长期植入血管后可导致血管内膜增生,从而增加晚期血栓事件,而生物可降解聚乳酸等高分子材料,由于其血管支撑性能达不到要求,限制了这类材料的使用范围。为了解决上述材料存在的问题,本课题研发一种能够生物可降解稀土镁合金支架基体材料。
     本文以具有良好生物相容性的稀土镁合金为研究对象,设计了以Mg-Y-Zr(WY=4.2%,WZr=0.5%)为基体合金,研究了不同添加量Nd, Ce(La)稀土元素对其组织与性能的影响,制备出性能优良的Mg-4.2Y-2.4Nd-0.6Ce (La)-0.5Zr,即WE43合金,并系统研究了其铸态、热处理态及挤压态的显微组织结构、生物力学性能及断裂机制。
     WE43铸态显微组织结构观察发现,镁合金中添加适量的稀土元素Nd,Ce(La)具有良好细化晶粒作用,稀土相富集在晶界。合金经过T4处理热处理后,稀土元素固溶到a-Mg基体中,起到了固溶强化的作用;经T6热处理后,T6态合金的显微组织结构均匀,基体内析出大量弥散的Mg-Re相,时效强化效果明显,其生物力学综合性能得到较大提高,特别是高温下的延伸率比铸态时提高了近两倍多为13.5%。铸态合金经均匀退火后热挤压变形,结果发现,试样横截面组织发生了动态再结晶,晶粒更加细小,纵截面组织发生不完全动态再结晶,存在纤维组织和孪晶组织;挤压态经T6热处理后,合金发生完全再结晶,孪晶组织消失,第二相呈球状,沿挤压方向呈细条状分布,其生物力学性能抗拉强度进一步得到提高为270.2MPa。WE43合金的断裂机制由铸态的准解理断裂,至热处理态的趋向韧性断裂,再至挤压态及高温下的韧性断裂演变。
     本文对WE43合金的成分设计、熔铸、热处理工艺及挤压工艺作了细致的探究,论证了WE43合金可作为可控降解生物支架基体材料的生物力学相容性的可行性。
For coronary heart disease patients with severe coronary artery stenosis, drug therapy can not effectively reverse the coronary arteries, so thoracic intervention or bypass surgery is required. And the advantage of interventional treatment is not only the effective solution to coronary stenosis but also the reduction of surgical risk. At present, the intervention materials such as cobalt, titanium, stainless steel may lead to vascular intimal hyperplasia and increase late thrombotic events after long-term implantation; and polymers such as biodegradable polylactic acid, due to their failure to meet the requirements of blood vessels supporting performance, the use of such materials is restricted. To address these material problems, this study has developed biodegradable magnesium alloy stent matrix material.
     This paper takes rare-earth-magnesium alloy with good biocompa-tibility as the subject of the study, and has adopted Mg-Y-Zr (WY=4.2%, WZr=0.5%) as the base alloy, analyze the influence of different amounts of Nd, Ce (La) Rare Earth Elements on microstructure and properties, and has prepared Mg-4.2Y-2.4Nd-0.6Ce (La)-0.5Zr (i.e.the WE43 alloy) with excellent performance.The study has also systematically analyzed the microstructure, biomechanical properties and fracture mechanisms of its cast, extruded and heat treatment state.
     According to the microstructure observation of WE43-cast,adding appropriate amount of rare earth elements Nd, Ce (La) into magnesium alloys can cause good grain refinement effect. The eutectic phase of rare earth gets enriched in the grain boundary. After T4 treatment, the rare earth element in the alloy solutes into the a-Mg matrix which strengthens the solid solution;after the T6 heat treatment, T6 condition alloy's microstructure is uniform.Grains precipitate a large number of dispersed Mg-Re phase,the age strengthening effect is obvious,its biomechanics overall performance is greatly improved,especially the elongation at high temperature is raised Cast alloy is deformed by hot extrusion after even annealing.It is found that there is follows the three steps:quasi-cleavage fracture of cast state,tendency ductile fracture of heat treatment state,then ductile fracture of extruded state and under high temperature.
     This paper has made detailed inquiry about the composition design, casting, heat treatment and extrusion of WE43 alloy and demonstrated the feasibility of bio-mechanical compatibility that the WE43 alloy can be used as controllable.
引文
[1]左铁镛.21世纪的轻质结构材料—镁及镁合金的发展.新材料产业,2007(12):22-23.
    [2]Cottrell, An Introduction to Metallurgy,2nd edition.UK:Edward Arnold,1975.
    [3]Robert.S.Buck, Magnesium Products Design, New York:Marcel Dekker, INC.,1987.
    [4]Kojima Y., Platform science and technology for advanced magnesium alloy Materials, Materials Science Forum,2000,350-351,3-18.
    [5]KitfelC., Introduction to Solid State Physics,5thed. NewYork:WiLeg.1976.
    [6]曾小勤,王渠东,吕宜振,等.镁合金应用新进展.铸造,1998,(11):39-42
    [7]赖华清,徐翔.镁合金在汽车中的应用.天津汽车,2003(4):20-22
    [8]姚素娟,张英,褚丙武,等.镁及镁合金的应用与研究.有色金属,2005,1:26-30.
    [9]刘英,李元元.镁合金的研究进展和应用前景.轻金属,2002(8):56-61
    [10]Polmear I.J., Magnesium alloys and applications, Mater. Sci. and Tech-nol., 1994,10(1),1-16.
    [11]ASM International, Magnesium and Magnesium Alloy, OH:Metal Patk,1999.
    [12]肖林.密排六方金属的塑性变形.稀有金属材料与工程,1995,24(6),21-28.
    [13]吕宜振.Mg-Al-Zn合金组织、性能、变形和断裂行为研究:[上海交通大学博士学位论文].上海:上海交通大学,2001.
    [14]Yoo M.H., Slip, twining and fracture in hexagonal close-pacted metals, Trans. A, 1981,12A,409-418.
    [15]Partridge P.G., The Crystallography and deformation modes of hexag-onal close-pacted metals,Metall.Rev.,1967,12,169-194.
    [16]Siethoff H.and Ahlborn K.,Steady-state deformation of the hcp metals at high and intermediate temperature,Z.Metallkde,1985,76(9),627-634.
    [17]Vitek V.and Igarash M.,Care structure of 1/3<1120>screw dislocations on vassal and prismatic planes in h.c.p.metals:an atomic study, Phil. Mag. A,1991,63(5), 1059-1075.
    [18]余琨.稀土变形镁合金组织性能及加工工艺研究:[中南大学博士学位论文].长沙,中南大学,2002.
    [19]Bohlen J.,Chmelik F.,Dobron P.,et al., Acoustic emission during tensile deformation of hot rolled magnesium alloy AZ31,J.Alloys Comp.,2004,378, 214-219.
    [20]陈振华,夏伟军,程永奇,等,镁合金织构与各向异性,中国有色金属学报,2005,15(1):1-11.
    [21]Jager A.,Lukac P.,et al.,Tensile properties of hot rolled AZ31 Mg alloy sheets at elevated temperatures,J.Alloys Comp.,2004,378,184-187.
    [22]余琨,黎文献,王日初,等.变形镁合金的研究、开发及应用,中国有色金属学报2003,13(2),277-288.
    [23]1.J.Polmear, Mater, Sei.&Teeh.1994,Vol.10:1.
    [24]K.AGsehneidner.Jr. Rare Earth Alloy, NewYork:DvanNostranflne,1961.
    [25]余琨,黎文献.含稀土镁合金的研究与开发.特种铸造及有色合金,2001(1):41-43.
    [26]徐光宪.稀土.北京:北京冶金工业出版社,2005.
    [27]王渠东等,稀土在铸造镁合金中的应用.特种铸造及有色合金,1999(1)40-43.
    [28]中山大学金属系.稀土物理化学常数[M].北京:冶金工业出版社,1978.
    [29]杜挺,韩其勇,王常珍.稀土碱土等元素的物理化学及其在材料中的应用.北京:科学出版社,1995.
    [30]Taniike S, Kitaguchi Y, Kamado S, et al. Forge ability of Mg-heavy rare earth metal alloys and aging characteristics and tensile properties of their forged material. Journal of Japan Institute of Light Metals,1997,47(5):261266.
    [31]陈建美,张新明,邓运来,等.镁合金熔炼的热力学.中南大学学报,2006,37(3):428-430.
    [32]Ferro R, Saccone A, Borzone G. Rare Earth Metasi Light Alloys. Alloy&Compounds,1995,220(1-2):161-1666.
    [33]Saccone A, Maccio D, Delfino R.The Inter polated Tm-Mg Phase Diagram. J. Alloy & Compounds,1995,220(1-2):161-1667.
    [34]Roklin L L, Nikitinal N I. Magnesium-Gadolinium and Magnesium-Ga dolinium-Yttrium Alloys. Z. Metallkde.1994,85:819-8238.
    [35]Flandorfer H. The Ce-Mg-Y System. Metal.&Mater.Trans,1997,A28 (2):265~ 2769.
    [36]Heublein B, Rohde R, Kaese V, et al. Bio-corrosion of Magnesium Alloys:a new principle in cardiovascular implant technology. Heart,2003,89:651.
    [37]Zartner P, Cesnjevar R, Singer H, et al, First successful implantation of a preterm baby. Catheterization and Cardiovascular Interventions,2005,66:590.
    [38]Wite F,Fiseher J, Nellesen J,Crostack HA,Kaese V,Piseh A,Beckmann F, Windhagen H.In vitro and in vivo corrosion measurements of magnesium alloys.Biomaterials,2006,27:1013-1018
    [39]Wite F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth C, Windhagen H. In vivo corrosion of four magnesium alloys and the associated bone response.Biomaterials,2005,26:3557-3563.
    [40]于国宁,温久全,潘峰,等.体内镁合金的降解和成骨反应的动物实验探索.中国矫形外科杂志,2008,16(16):1256-1258.
    [41]马志新,李德富,李彦利.Mg-Y-Nd-Zr合金加工工艺与组织演化研究.稀有金属,2006,30(6):721-723.
    [42]迟大钊,吉泽升,梁维中.Mg-Nd-Zr-Zn合金的制备及钕对合金组织性能的影响.中国稀土学报,2004,22(2):252-253
    [43]Aghion E,Gueta Y, Moscovitch N, Bron B, Effect of yttrium additions on the properties of grain-refined Mg-3%Nd alloy.Mater Science,2008 (43):4870-4875.
    [44]卢志文,汪凌云,潘复生,等.变形镁合金及其成形工艺.材料导报,2004,18(9):41-42.
    [45]NieJ F, MuddleBC. Characterization of strengthening precipitate phases in a Mg-Y-Nd alloy. Acta Material,2000,48(11):1691-1703.
    [46]李龙川,高家诚,王勇.医用镁合金的腐蚀行为与表面改性.材料导报,2003,17(10):29-30.
    [47]李英虹,许光明,崔建忠.电磁场对镁合金熔体的净化作用.轻合金加工技术,2008,36(7):19
    [48]严炎祥,姚 敏.用SF6混合气体保护镁合金熔液,特种铸造及有色合金,1996(4):41-43.
    [49]王喜峰,齐公台,蔡启舟,等.混合稀土对AZ91镁合金在NacL溶液中的腐蚀行为影响,材料开发与应用,2002,17(5):34
    [50]Song GL, Atrens A, Understanding Magnesium Corrosion, Adv Eng Mater,2003, 12:837.
    [51]Amyl R, Carmel B, Florian M. The corrosion protection afforded by rare earth conversion coatings applied to magnesium. Corrosion science,2000(42):275.
    [52]Makar GL, Kruger J. Corrosion of magnesium. Int Mater Rev,1993,38 (3):138.
    [53]萨维茨基ИM.稀土金属学,莫斯科:莫斯科科学出版社,1975.
    [54]王渠东,吕宜振.稀土在铸造镁合金中的应用.特种铸造及有色合金,1999(1):40-43.
    [55]赵志远.铸造稀土镁合金在我国航空工业中的应用.材料工程,1993(7):8-10.
    [56]陈晓,傅高升,钱匡武.铸造镁合金的研究与发展现状.铸造技术,2004,25(11):855-858.
    [57]俞耀庭,张兴栋.生物医用材料.天津:天津大学出版社,2000.
    [58]SujataV.Bhat. Biomaterials. Pangbourne England, AIPha Science International Ltd,2002.
    [59]杨晓芳,奚廷斐.生物相容性评价的发展趋势.国外医学生物医学工程分册,1999,22(4):237-242.
    [60]颜廷亭,谭丽丽,熊党生,等.医用镁金属材料的研究进展.材料导报,2008(1):110-112.
    [61]赵霖,鲍善芬.镁在生物医学中的应用.解放军医学情报,1992,6(3):138-140.
    [62]任伊宾,黄晶晶,杨柯,等.纯镁的生物腐蚀研究.金属学报,2005,41(11):1228-1232.
    [63]Oddmund Wallevik, Jan B, Ronhang.Method and furnace for Refining of Magnesium, US Patent:4385931, Oct 29,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700