Notch1在实验性大鼠脑梗死后脑组织中的动态表达及姜黄素脑保护作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:缺血性脑血管病(cerebral ischemia)是临床常见病和多发病,具有发病率、致残率和病死率高的特点。缺血性脑血管病的损伤机制十分复杂,主要包括能量代谢障碍,兴奋性毒性氨基酸作用,氧自由基损伤,钙超载和炎症反应。至今,对急性缺血性脑血管病继发脑损伤的病理生理机制认识尚未完善,在缺血区和坏死区的过度炎性反应导致的炎性损伤是其复杂损伤机制之一。Notch是一个广泛分布,进化十分保守的跨膜受体蛋白家族。Notch信号通路由受体,配体和DNA结合蛋白3部分组成,它可以通过局部细胞间相互作用,释放胞内段活性成分入核,通过与DNA结合调控下游基因的转录,具有多种生物学功能,并与多种神经系统疾病密切相关。已有报道Notch通过与NF-κB(nuclear factor-κB)共同参与多种癌细胞的调控,并成为癌症的治疗靶点。由此,Notch与NF-κB在疾病的病理生理学过程中存在联系。作为促炎反应的核心因子,NF-κB在脑缺血后脑损伤中表达活跃,起重要作用,是缺血后炎症反应所致脑损伤的核心环节。Notch与NF-κB的相关性提示Notch可能参与脑缺血后炎症反应导致脑损伤。姜黄素具有抗炎、抗氧化、抗癌、抗血管粥样硬化及保护肝肾等多种生物学作用,在缺血性脑血管病中有一定作用,其具体药理机制尚未明确。
     本实验通过观察大鼠局灶性脑缺血损伤后缺血灶周围Notch1的动态表达及其与NF-κB表达的联系,探讨在脑缺血损伤后脑组织炎性反应中Notch1所起的作用,并进一步明确炎症反应在缺血性脑组织中的损伤机制。用姜黄素干预,观察其对Notch1及NF-κB表达的影响及脑含水量和梗死体积的变化,探讨姜黄素对抗炎症反应的脑保护机制。
     方法:实验分为两个部分:实验一,Notch1在实验性大鼠脑梗死后脑组织中的动态表达。实验二,姜黄素通过Notch信号通路发挥脑保护作用。
     实验一采用成年健康雄性Sprague-Dawley大鼠,随机分为正常对照组,假手术1组(sham operated)和大脑中动脉闭塞模型组(middle cerebral artery occlusion, MCAO),用改良线栓法制作MCAO模型,假手术组不插线栓。将MCAO组和sham1组分为6 h、12 h、24 h、48 h、72 h五个亚组,分别在相应时间点用Longa评分法和Berderson评分法对大鼠进行行为学评分,2或3分者纳入实验组。归组后将动物断头处死,取病变脑组织,利用免疫组织化学和Westen blot方法测定Notch1和NF-κB的动态表达。
     实验二采用成年健康雄性Sprague-Dawley大鼠,随机分为假手术2组(sham operated),溶剂对照组(vehicle-control),姜黄素组(CUR)。MCAO术后立即腹腔注射姜黄素溶液(80mg/kg),溶剂对照组及假手术2组给予同体积含0.5MNaOH的0.01PBS。根据不同时间点每组分为6 h、12 h、24 h、48 h、72 h五个亚组,分别在相应时间点进行神经功能学评分,2或3分者纳入实验组。归组后将动物断头处死,留取病变侧脑组织利用免疫组织化学测定Notch1和NF-κB的阳性细胞表达情况。各组仅取24 h一个时间点进行脑含水量测定及2%2,3,5-三苯基四唑氮红(triphenyltetrazolium chloride,TTC)染色观测梗死体积。
     结果:
     1 MCAO组术后各时间点Notch1表达高于sham组(P < 0.05),各点相比,Notch1在梗死后6 h表达已经升高,48 h达高峰,72 h有所回落,但较sham组相比仍较高。
     2 MCAO组术后各时间点NF-κB表达高于sham组(P < 0.05),各点相比,NF-κB在梗死后6 h表达已经升高,48 h达高峰,72 h有所回落,但较sham组相比仍较高。表达规律与Notch1一致。
     3脑组织含水量测定:用干湿重法测得的脑组织含水量结果显示:sham组脑含水量为78.16%±8.00%,vehicle-control组为83.71%±7.00%,CUR组的脑组织含水量较vehicle-control组有所下降,为80.42%±9.00%,差异有统计学意义(P < 0.05)。
     4脑梗死体积测定:TTC染色显示,sham组脑组织均匀红染无梗死灶,MCAO组可见大面积白色梗死灶,多位于右侧基底节、顶叶和颞叶皮质。脑梗死体积测定显示,CUR组脑梗死体积低于MCAO组,差异有统计学意义(P < 0.05)。
     5 CUR对Notch1和NF-κB表达的影响:免疫组织化学法显示,与vehicle-control组相比,CUR组中Notch1和NF-κB表达下调,差异有统计学意义(P < 0.05)。
     结论:Notch1在大鼠大脑中动脉闭塞后脑组织中早期既有表达增高,48小时达高峰,随后有所下降,其动态表达规律和NF-κB有相似性。姜黄素干预后,MCAO模型病变脑组织含水量降低,梗死体积减小,Notch1和NF-κB表达水平同步下调,推测姜黄素有脑保护作用,Notch1通过与NF-κB相互作用参与缺血后炎症反应所致的脑损伤,姜黄素可能通过抑制Notch1和NF-κB的表达对缺血性脑组织起到脑保护作用。
Objective: Cerebral ischemia, with high mortality and serious disability, is the most common type of cerebral vascular disease. The mechanism of impairment in acute ischemia is so complicated that it is not totally understood. It is the excessive inflammatory reaction residing in necrosis and ischemic region that participates in the complex pathogenesis. Notch is a protein family of conservative transmembrane receptors in a wide distribution. Notch signaling pathway is related with many nervous system diseases by modulating the intercellular reaction. It has been reported that Notch is associated with NF-κB in some way. As a radical factor of inflammation, NF-κB plays an important role in cerebral ischemic pathogenesis. It can be speculated that Notch signaling pathway takes part in the inflammatory reaction that causes the brain damage. Curcumin is extractive confirmed to possess a variety of biological activities including antiinflammatory, antioxidant and anticancer.
     This study tested the dynamic expression of Notch1 and the relationship between the dynamic expression of Notch1 and NF-κB in rat MCAO modelin order to detect the role of Notch1 in cerebral ischema. Also, this study evaluated the influence of curcumin on brain water content, infarction volume and the expresion of Notch1 and NF-κB to testify the neuroprotective effect of curcumin on cerebral ischemia and the underlying mechanism.
     Methods: This study included two parts: Part one evaluated the dynamic expression of Notch1 and NF-κB in rat MCAO model. Part two detected the influence of curcumin on brain water content, infarction volume and the expresion of Notch1 and NF-κB.
     Part one: Male Sprague-Dawley rats were randomly divided into normal control group, sham1 group and MCAO group. Each group was assigned to 5 subgroups randomly: 6 h, 12 h, 24 h, 48 h and 72 h after operation. MCAO animal model was established by modified Longa method. neurological deficit was evaluated at each time point before the rats was sacrificed, 2 or 3 scores were brought into this study. Immunohistochemistry and Westen blot were used to analyse the expression of Notch1 and NF-κB.
     Part two: Male Sprague-Dawley rats were randomly divided into sham2 group, vehicle control group and curcumin group (80 mg/kg). Curcumin solution was administrated by intraperitoneal injection immediately after MCAO, sham2 group and vehicle control accepted equal volumn 0.01PBS with 0.5M NaOH. The rats, which were evaluated neurological deficit, were sacrificed at 6 h, 12 h, 24 h, 48 h and 72 h after operation. the ischemic brain tissues were used for analyse the expression of Notch1 and NF-κB. At 24 h after operation, brain water content and infarct size was analyzed.
     Results:
     1 Notch1 expression in MCAO group is higher than sham group at each time point. The elevation was found at 6 h , peaking at 48 h, and decreased at 72 h, still higher than sham group.
     2 NF-κB expression in MCAO group is higher than sham group at each time point. the expressive regulation of NF-κB is consistent with the expression of Notch1.
     3 Brain water content measurement:brain water content in curcumin group was lower than vehicle control group, the difference was statistically significant (P < 0.05) .
     4 Infarct size analysis:Compared with vehicle control group, curcumin group significantly decreased the infarct size.
     5 Curcumin's effect on the expression of Notch1 and NF-κB:Curcumin down regulated the expression of Notch1 and NF-κB,the difference was statistically significant(P < 0.05) .
     Conclusions:Notch1 were induced at the early stage after MCAO, the expressive regulation of Notch1 is consistent with NF-κB. Curcumin protected the brain damage caused by MCAO, decreased the brain water content and infarct size, down regulated the expression of Notch1 and NF-κB. Notch1 could take part in the inflammatory reaction by interacting with NF-κB, curcumin may protect the brain against ischemic injury through down regulating Notch signaling pathway.
引文
1 Lucas SM, Rothwell NJ, Gibson RM, et a1. The role of inflammation in CNS injury and disease. Br J Pharmacol, 2006, 147: 232 - 240
    2 Zhang XJ,Li HY,Hu SC,et a1. Brain edema after intracerebral hemorrhage in rats:The role of inflammation.Neurology India, 2006, 54: 402 - 407
    3 Vila N, Jose C, Davalos A, et a1. Proinflammatory Cytokindes and Early Neurological Worsening in Ischemic Stroke. Stroke, 2000, 31: 2325 - 2329
    4 Kojika S, Griffin J D. Notch receptors and hematopoiesis. Exp Hematol, 2001, 29: 1041 - 1052
    5 Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science,1999, 284: 770 - 776
    6 Nam Y, Weng AP, Aster JC, et a1. Structural requirements for assembly of the CSL intracellular Notch1 Mastermind-like-transcriptional activation complex. J Bio Chem, 2003, 278: 21232 - 21239
    7 BaronM, Aslam H, FlaszaM, et al. Multiple levels of Notch signal regulation. Mol Membr Biol, 2002, 19: 27 - 38
    8 Baron M. An overview of the Notch signalling pathway. Semin Cell Dev Biol, 2003, 14: 113 - 116
    9 Hadchouel M. Notch signalling pathway and human diseases. J Hepatol, 2000, 32: l - 2
    10 Nagarsheth MH, Viehman A, Lippa SM, et al. Notch-1 immunoexpression is increased in Alzheimer’s and Pick’s disease. J Neurol Sci, 2006, 244: 111 - 116
    11 Purow BW, Haque RM, Noel MW, et al. Expression of Notch-1 and itsligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res, 2005, 65: 2353 - 2363
    12 Axelson H. Notch signaling and cancer: emerging complexity.Semin Cancer Biol, 2004, 14: 317 - 319
    13 Oya S, Yoshikawa G, Takai K, et al. Attenuation of Notch Signaling Promotes the Differentiation of Neural Progenitors into Neurons in the Hippocampal CA1 Region after Ischimic Injury. Neuroscience, 2009, 158: 683– 692
    14 Chen JL, Zacharek A, Li A, et al. Atorvastatin Promotes Presenilin-1 Expression and Notch1 Activity and Increases Neural Progenitor Cell Proliferation After Stroke. Stroke, 2008, 39: 220 - 226
    15 Hellstrom M, Phng LK, Hofmann J, et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature, 2007, 455: 776 - 780
    16 Arumugam T, Chan SL, Jo DG, et al. Gamma secretase–mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke. Nature Medicine, 2006, 12: 621 - 623
    17 Nemir M, Croquelois A, Pedrazzini T, et al. Induction of cardiogenesis in embryonic stem cells via downregulation of Notch1 signaling. Circ Res, 2006, 98: 1471 - 1478
    18 Krebs LT, Xue Y, Norton CR, et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev, 2000, 14: 1343 - 1352
    19 Song LL, Peng Y, Yun J, et a1. Notch-l associates with IKKa and regulates IKK activity in cervical cancer cells. Oncogene, 2008, 27: 5833 - 5844
    20 Berti R, Williams AJ, Moffett JR, et a1. Quantitative real-time RT-PCR analysis of inflammatory gene expression associated with ischemia-reperfusion brain injury. J Cereb Blood Flow Metab, 2002, 22: 1068 - 1079
    21 Nurmi A, Vartiainen N, Pihlaja R. Pyrrolidine dithiocarbamate inhibits translocation of nuclear factor kappa-B in neurons and protects against brain ischaemia with a wide therapeutic time window. J Neurochem, 2004,91: 755 - 765
    22 Hee YK, Eun JP. Curcumin suppresses janus kinase-STAT inflammatory signaling through activation of src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol, 2003, 171: 6072 - 6279
    23 Chan WH, Wu HJ, Protective effects of curcumin on methylglyoxal induced oxidative DNA damage and cell injury in human mononuclear cells. Acta Pharmacol Sin, 2006, 27: 1192 - 1198
    24 Tong QS, Zheng LG, Lu P, et al. Apoptosis-inducing effects of curcumin derivatives in human baldder cancer cells. Anti-Cancer Drugs, 2006, 17: 279 - 287
    25 Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniotomy in rats. Stroke, 1989, 20: 84 - 91
    26 Bederson JB, Pitts LH, and Daves RL, et al. Rat middles cerebral artery occlusion: Evaluation of the model and development of a neurologic examination. Stroke, 1986,17: 472 - 476
    27 Huang J, Upadhyay UM, Tamargo RJ. Inflammation in stroke and focal cerebral ischemia. Surg Neurol. 2006, 66: 232 - 245
    28 Yi JH, Park SW, Kapadia R, et al. Role of transcription factors in mediating post-ischemic cerebral inflammation and brain damage. Neurochem Int. 2007, 50: 1014 - 1027
    29 Schwaninger M, Inta I, Herrmann O. NF-kappaB signalling in cerebral ischaemia. Biochem Soc Trans, 2006,34: 1291 - 1294
    30 Mizutani K, Yoon K, Dang L, et a1. Differential Notch signaling distinguishes neural stem cells from intermediate progenitors. Nature, 2007, 449: 351 - 355
    31 Basak O, Taylor V. Identification of self-replicating multipotent progenitors in the embryonic nervous system by high Notch activity and Hes5 expression. Eur J Neurosei, 2007, 25: 1006 - 1022
    32 Sahlgren C, Lendahl U. Notch signaling and its integration with other signaling mechanisms. Regen Med, 2006, l: 195 - 205
    33 Hoyne G. Notch signaling in the immune system. Journal of LeukocyteBiology, 2003, 74:971 - 981
    34 Grandbarbe L, Michelucci A, Heurtaux T, et al. Notch Signaling Modulates the Activation of Microglial Cells. GLIA, 2007, 55: 1519 - 1530
    35 Vigouroux S, Yvon E, Wagner HJ, et al. Induction of antigen-specific regulatory T cells following overexp ression of a Notch ligand by human B lymphocytes. J V irol, 2003, 77: 10872 - 10880
    36 Uyguner ZO, Siva A, Kayserili H, et al. The R110C mutation in Notch3 causes variable clinical features in two Turkish families with CADASIL syndrome. J Neurol Sci, 2006, 246: 123 - 130
    37 Brunkan AL, Goate AM. Presenilin function and gamma-secretase activity. J Neurochem, 2005, 93: 769 - 792
    38周建松,叶枫,谢幸.宫颈癌NOTCH1相关信号路径的研究进展.国际妇产科学杂志, 2009, 36: 238 - 241
    39夏美慧,谷爽,孙际童, et al.姜黄素通过Notch途径抑制人宫颈癌细胞株HeLa细胞增殖.中国妇幼保健, 2008, 23: 2588 - 2590
    1 Bayramoglu M, Karatas M, Leblebici B, et al. Hemorrhagic Transformation in Stroke Patients. American Journal of Physical Medicine & Rehabilitation. 2003, 82: 48 - 52
    2 Fiorelli M, Bastianello S, von Kummer R, et al. Hemorrhagic transformation within 36 hours of a cerebral infarct relationship s with early clinical deterioration and 3 - month outcome in the European Cooperative Acute Stroke StudyⅠ( ECASSⅠ) cohort. Stroke, 1999, 30: 2280 - 2284.
    3王新德.神经系统血管性疾病[M].北京:人民军医出版社, 2001. 123 - 129
    4 Yang Y, Zhang Xj, Yin J, et al. Brain damage related to hemorrhagic transformation following cerebral ischemia and the role of KATP channels. Brain Research, 2008, 1241: 168 - 175
    5 Wang Xy, Tsuji K. Mechanisms of Hemorrhagic Transformation After Tissue Plasminogen Activator Reperfusion Therapy for Ischemic Stroke. Stroke, 2004, 35: 2726 - 2730
    6 Rosenberg GA, Navratil M. Metalloproteinase inhibition blocks edema inintracerebral hemorrhage in the rat. Neurology, 1997, 48: 921 - 926
    7 Rosenberg GA. Ischemic brain edema. Prog Cardiovasc Dis, 1999, 42: 209 - 216
    8 Hamann GF, del Zoppo GJ, von Kummer R. Hemorrhagic transformation of cerebral infarction: possible mechanisms . Thromb Haemost, 1999, 82: 92 - 94
    9 Del Zoppo GJ, von Kummer R, Hamann GF. Ischaemic damage of brain microvessels: inherent risks for thrombolytic treatment in stroke. J Neurol Neurosurg Psychiatry, 1998, 65: 1 - 9
    10 Hamann GF, Okada Y, del Zoppo GJ. Hemorrhagic transformation and microvascular integrity during focal cerebral ischemia/reperfusion. J Cereb Blood Flow Metab, 1996, 16: 1373 - 1378
    11 Castellanos M, Leira R, Serena J, et al. Plasma metalloproteinase - 9 concentrationp redicts hemorrhagic transformation in acute ischemic stroke. Stroke, 2003, 34: 40 - 46
    12 Tejima E, Katayama Y, Suzuki Y, et al. Hemorrhagic transformation after fibrinolysis with tissue plasminogen activator: evaluation of role of hypertension with rat thromboembolic stroke model. Stroke, 2001, 32: 1336 - 1340
    13 Montaner J, Molina CA, Monasterio J, et al. Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation, 2003, 107: 598 - 603
    14 Hamann GF. Unriddling the role of matrixmetallop roteinases in human cerebral stroke. Stroke, 2003, 34: 40 - 46
    15 Hynes RO. Fibronectins. Sci Am, 1986, 254: 42 - 51
    16 Peters JH, Maunder RJ, Woolf AD, et al. Elevated plasma levels of ED1_ (“cellular”) fibronectin in patients with vascular injury. J Lab Clin Med, 1989, 113: 586 - 597
    17 Kanters SD, Banga JD, Algra A, et al. Plasma levels of cellular fibronectin in diabetes. Diabetes Care, 2000, 24: 323 - 327
    18 Castellanos M, Leira R, Serena J, et al. Plasma Cellular-Fibronectin Concentration Predicts Hemorrhagic Transformation After Thrombolytic Therapy in Acute Ischemic Stroke. Stroke, 2004, 35: 1671 - 1676
    19 Zimmer DB, Van Eldik LJ. Tissue distribution of rat S100 alpha and S100 beta and S100-binding proteins. Am J Physiol, 1987, 252: 285 - 289
    20 Mercier F, Hatton GI. Immunocytochemical basis for a meningeo-glial network. J Comp Neurol, 2000, 420: 445 - 465
    21 Kapural M, Krizanac-Bengez L, Barnett G, et al. Serum S-100beta as a possible marker of blood-brain barrier disruption. Brain Res, 2002, 940: 102 - 104
    22 Kanner AA, Marchi N, Fazio V, et al. Serum S100beta: a noninvasive marker of blood– brain barrier function and brain lesions. Cancer, 2003, 97: 2806 - 2813
    23 Missler U, Wiesmann M, Friedrich C, et al. S-100 Protein and Neuron-Specific Enolase Concentrations in Blood as Indicators of Infarction Volume and Prognosis in Acute Ischemic Stroke. Stroke, 1997, 28: 1956 - 1960
    24 Foerch C, Wunderlich M, Dvorak F, et al. Elevated Serum S100B Levels Indicate a Higher Risk of Hemorrhagic Transformation After Thrombolytic Therapy in Acute Stroke. Stroke, 2007, 38: 2491 - 2495
    25 Yuyun MF, Khaw KT, Luben R, et al. Microalbuminuria and stroke in a British population: the European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk) population study. J Intern Med, 2004, 255: 247 - 256
    26 Klausen K, Borch-Johnsen K, Feldt-Rasmussen B, et al. Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes. Circulation, 2004,110: 32 - 35
    27 Rodriguez yanez, Castellanos, Blanco, et al. Micro - and macroalbuminuria predict hemorrhagic transformation in acute ischemic stroke. Neurology, 2006, 67: 1172 - 1117
    28 Dziedzic T, Slowik A, Szczudlik A. Urine albumin excretion in acute ischaemic stroke is related to serum interleukin-6. Clin Chem Lab Med, 2004, 42: 182 - 185
    29 Ribo M, Montaner J, Molina C, et al. Admission Fibrinolytic Profile Is Associated With Symptomatic Hemorrhagic Transformation in Stroke Patients Treated With Tissue Plasminogen Activator. Stroke, 2004, 35: 2123 - 2127
    30 Zhang Xj, Li Hy, Hu Sc, et al. Brain edema after intracerebral hemorrhage in rats: The role of inflammation. Neurology India, 2006, 54: 402 - 407
    31 Lansberg MG, Albers GW, Wijman CA .Symptomatic intracerebral hemorrhage following thrombolytic therapy for acute ischemic stroke: a review of the risk factors. Cerebrovasc Dis, 2007, 24: 1 - 10
    32 Larrue V, von Kummer RR, Muller A, et al. Risk factors for severehemorrhagic transformation in ischemic stroke patients treated withrecombinant tissue plasminogen activator: a secondary analysis of theEuropean-Australasian Acute Stroke Study (ECASS II). Stroke, 2001, 32: 438 - 441
    33 Singer OC, Fiehler J, Berkefeld J, et al. Stroke MRI for risk assessment of intracerebral hemorrhage associated with thrombolytic therapy. Nervenarzt, 2009, 80: 130, 132 - 136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700