基于小波及DQ算法的电压暂降检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电压暂降是动态电能质量问题中最受关注的热点之一。如今,大量新型电力电子设备得到广泛使用,这些设备特别是敏感电力电子设备的正常工作对电网电能质量(主要是电压暂降)的要求越来越高,而且电压暂降在电网中又具有一定的传播性。因此,无论从电网还是用户都迫切需要对电压暂降进行研究和治理。对电压暂降的检测是解决电压暂降的前提条件,其检测精度、速度及抗干扰能力直接关系到电压暂降的分析、控制和补偿。故本论文主要对电压暂降的检测方法进行研究。
     动态电压恢复器(DVR)是应用于电压暂降最有效,也是应用得最多的设备。DVR采用的检测方法是虚构的三相DQ分解法,本文对此方法进行分析总结后指出了它的一些不足。在总结分析目前应用于电压暂降的检测方法的基础上提出了一种新的电压暂降的检测方法,即基于小波及DQ算法的电压暂降检测方法。围绕电压暂降的所有特征量展开,进行理论推导,新DQ算法是利用单相电压进行构造来求解,它具有数据无延时的特点。而虚构三相DQ分解法是用单相数据延迟60度并经过一定的处理得到另外两相电压。进行比较得出的结论是此新方法可以克服原虚构三相DQ分解法的不足。
     基于理论分析对小波及DQ算法的电压暂降检测方法进行仿真,考虑了与电压暂降的相关扰动。以小波在奇异性检测方面的独特优势对电压暂降信号中的噪声进行预处理,同时对电压暂降信号进行精确定位,利用小波的分频特性提取电压暂降信号中的低频扰动。仿真验证了新方法对原三相DQ分解法不能处理信号起始60度范围内数据的同步性、此范围内存在的扰动的判定及暂降过程中的低频扰动等问题的有效性。另外,新DQ算法在检测的精度上也有了提高,表现在精确检测到暂降的起始和结束时间。并且此小波与新DQ算法结合的方法可以完整地实现对电压暂降幅值、持续时间、相角偏移、电网频率偏移、噪声干扰等的检测。在仿真中还发现,原虚构三相DQ变换在检测电压暂降时,起始时刻和暂降的开始与结束时刻均存在扰动,且扰动幅度较大,到达稳定的时间较长。而采用新方法后,检测暂降幅值和相角均很快达到平稳状态。
The voltage sag is one of most hot topics in dynamic electric energy problems. Nowadays, masses of new power and electron facilities have been put into use widely by people, and the normal working of those facilities, especially those sensitive ones, require a high quality of electric network and power, chiefly the voltage sag. Moreover, the voltage sag can spread in the electric network. So people have every reason to research and develop the voltage sag. However, before developing the voltage sag, people have to test it, because the results of the test would directly influence its development. On account of the above, this essay will chiefly focus on the test methods of the voltage sags.
     DVR is the most effective and popular equipment in the voltage sag. And it uses the fictitious three-phase DQ decomposition method. For having found some deficiencies of that method, this essay puts forward a new kind of the voltage sag test method—based on the wavelet and DQ algorithm .This new DQ algorithm grounds on unidirectional voltage’s no time prolong structure, nevertheless, the fictitious three-phase DQ decomposition method can only get the other two voltage depends on the processing single-phase data. According to their different principles, the conclusion can be drew that the new method can overcome the latter’s shortage.
     Taking the voltage sag related perturbation into consideration, during the progress of emulation, people can use the small wave’s unique dominance in singularity testing to preprocess the voltage sag signal noise, and to pinpoint the voltage sag signal at the same time, and then utilize small wave’s frequency division to extract low-frequency perturbation among the voltage sag signal. The emulation of this new method proves the lack of the synchronism and availability in the three-phase DQ decomposition method. On the other hand, the new DQ algorithm increases the testing accuracy, and the combination of the small wave and the new DQ algorithm can test the voltage sag completely in many aspects, such as the time of duration, phase-angle offset, noise interference and so on. The emulation also shows the small wave and DQ algorithm based method can arrived stable condition sooner than the fictitious three-phase DQ decomposition method.
引文
[1]全国电压电流等级和频率标准化技术委员会.电压电流频率和电能质量国家标准应用手册.中国电力出版社, 2001, 5.
    [2]肖湘宁,韩民晓,徐永海等.电能质量分析与控制[M],北京:中国电力出版社, 2004.
    [3]“Review of Power Quality Applications of Energy Storage Systems”. Contractor report. Sandia National laboratories. SAND98-I513 Unlimited Release, July 1998.
    [4]林海雪,徐静.电能质量国家标准介绍.上海电力, 2005 (3) : 221-227.
    [5] Prudenzi A, Quaia S, Zaninelli D. Surveying PQ aspects in Italianindusu-ial customers[C]. Transmission and Distribution Conference and Exposition, Dallas, USA, IEEE PES, 2003(1) :211-216.
    [6] Lai Jisheng, Peng Fangzheng. Multilevel converter a new breed of power converters[J]. IEEE Trans on Industry Applications, 1996, 32(3):509-517.
    [7] Nielsen J G, Newman M, Nielsen H, et al. Control and testing of a dynamic voltage restorer(DVR) at medium voltage level[J]. IEEE Trans on Power Electronics, 2004, 19(3): 806-813.
    [8] Choi S S, Li B H, Vilathgamuwa D M. Design and analysis of the inverter-side filter used in the dynamic voltage restorer[J]. IEEE Trans on Power Delivery, 2002, 17(3):857- 864.
    [9]肖湘宁,徐永海.电能质量问题剖析[J].电网技术, 2001, 25(3): 66-69.
    [10]张斌,刘晓川.基于变换的电能质量分析方法[J].电网技术, 2001,25(11): 26-29.
    [11]杨洪耕,肖先勇,刘俊勇.电能质量问题的研究和技术进展(三)--电力系统的电压凹[J].电力自动化设备, 2003, 23.
    [12]沈广,陈允平,李欣.基于电能质量实时监测系统的电压暂降研究[J].高电压技术, 2006, 32(5):97-99.
    [13] Heine P. Pohjanheimo P. Lehtonen Metal. A method for estimating the frequency and cost of voltage sags[J]. IEEE Trans. on Power Systems, 2002, 17(2): 290-296.
    [14]尹忠东,周丽霞,于坤山. 2MVA无串联变压器级联多电平动态电压调节器的系统设计与仿真[J].电网技术, 2006,30(1): 80-84.
    [15] Samotyj M J, Mielczarski W. Wasiluk-Hassa M M. Electric power for the digital age[C]. loth International Conference on Harmonics and Quality of Power, Brazil. 2002, 9(3):276-282.
    [16]李成章.如何为计算机网络选配UPS电源[J].电源世界,2000(2):16-19.
    [17]肖遥,李澎森.供电系统的电压下凹[[J].电网技术, 2001, 25(1): 73-77.
    [18] Math H.J.Bo11en. Understanding Power Quality Problems: Voltage Sags and Interruptions. IEEE, Inc, New York, 2000.
    [19] N.S. Tunaboylu, E.R. Collins, R. Sarikaya. The Missing Voltage Technique for Evaluating Voltage Sags.
    [20] SIEMENS. Series Voltage Injection for Voltage Sag Mitigation. Power Quality Panel Session IEEE, Summer Power Meeting San Diego, July 1998.
    [21] H.mokhtari, S.B.Dewan, and M.R.Travani. Performance evaluation of thyristor based static transfer switch. IEEE Trans. On Power Delivery, Vo1.15, No.3, pp960-966, July 2000.
    [22] Sarmiento H G, Estrada E. A voltage sag study in an industry with adjustable speed drives[J]. IEEE Industry Applications Magazine, 1996, 2(1): 16-19.
    [23] Bollen M H J, Qader M R, Allan R N. Stochastical and statistical assessment of voltage dips[C], IEEE Colloquium on Tools and Techniques for Dealing with Uncertainty, UK, 1998.
    [24] Radhakrishna C, Eshwardas M, Chebiyam G Impact of voltage sags in practical power system networks[A]. Proceedings of IEEE/PES Transmission and Distribution Conference and Exposition[C] Atlanta, USA, 2007.
    [25] Didden M. Belrmans R.D haeseleer W Cost—Benefit analysis of voltage sag mitigation methods in fiber extrusion plants[J].European Transactions on Electrical Power. 2003, 13(2): 73-78.
    [26] Bollen M H J. Method of critical distances for stochastic assessment of voltage sags [J].IEEE Proceedings Generation, Transmission and Distribution, 1998, 145(1): 70-76.
    [27] Qader M R, Bollen M H J, Allan R N. Stocliastic prediction of voltage sags in a large ransmission system[J]. IEEE Transactions on Tndustrv Annlications. 1999. 35(1): 152-162.
    [28]李妍,段余平,邱军.环网配电网络电压暂降分析的临界比距法[J].电网技术,2006, 30(11):51-55.
    [29]束洪春,王晶,陈学允.动态电能质量扰动的多刻度形态学分析[J].中国电机工程学报, 2004,24(4):63-67.
    [30]李庚银,罗艳,周明等.基于数学形态学和网格分形的电能质量扰动检测及定位[J].中国电机程学报,2006, 26(3): 25-30.
    [31]赵青春,邹力,刘沛.基于短窗自相关算法和数学形态学的电能质量扰动信号检测和定位新方法[J].电网技术, 2005, 29(6) : 6-10.
    [32]曾纪勇,丁洪发,段献忠.基于数学形态学的谐波检测与电能质量扰动定位方法[J].中国电机工程学报, 2005, 25(21): 57-62.
    [33]王楠,律方成.数学形态学滤波预处理tanδ在线监测数据[J].高电压技术, 2003, 29(7): 32-33+49.
    [34]王晶,束洪春,陈学允.动态电能质量的分形指数小波分析方法[J].中国电机工程学报, 2004, 24(5):40-44.
    [35] Gu YH, Bollen H J. Time-frequency and time-scale domananalysis of voltage sturbances[J]. IEEE Trans on Power Delivery . 2000. 15 (4):1279-1284.
    [36]王兆安,杨君,刘进军.谐波抑制和无功功率补偿,北京:机械工业出版社, 1998.
    [37]王兆安,李民.三相电路瞬时无功功率理论的研究[J],电工技术学报, 1992,7(8):55-59.
    [38]魏磊,张伏生,耿中行等.基于瞬时无功功率理论的电能质量扰动检测?定位与分类方法[J].电网技术, 2004, 28(6): 53-58.
    [39]李军浩,汪晓明,王晶,牟磊.基于小波变换模极大值的SPD故障诊断技术[J].高电压技术, 2006, 32 (3): 40-41+48.
    [40]沈申生,杨奕.小波包变换在电能质量扰动检测中的应用[J].高电压技术,2006 32(7):116-119.
    [41]耿云玲,王群,何怡刚.基于复数小波相位信息的电能质量扰动的检测?定位与分类[J].电工技术学报, 2006 ,21(8):112-116.
    [42] Ece D G, Gerek O N. Power quality event detection using joint 2-D-wavelet subspaces [J]. IEEE Transactions on Instrumentation and Measurements, 2004, 53 (4): 1040-1046.
    [43]刘守亮,先勇,杨洪耕.基于S变换模时频矩阵相似度的短时电能质量扰动分类[J].电网技术. 2006, 30(5):68-71.
    [44] Stockwell R G. Mansinha L. Lowe R P Localization of the Complex Spectrum: the S Transform[J]. IEEE Trans on Signal Processing, 1996 , 44 (4): 998-1001.
    [45]赵凤展,杨仁刚.基于S变换和时域分析的电能质量扰动识别[J].电网技术, 2006, 30(15):90-94.
    [46] LeeI W C,Dash PK. S-transform-based intelligent system for classification of power quality disturbance signals [J] .IEEE Trans. on Industrial Electronics 2003, 50 (4): 800-805.
    [47] Chilukuri M V,Dash P K. Multiresolution S-transform based fuzzy recognition system for power quality events [J]. IEEE Trans on Power Delivery, 2004, 19(1): 323-330.
    [48]李天云,赵妍,李楠,等.基于HHT的电能质量检测新方法[J].中国电机工程学报, 2005, 25(17) : 52-56.
    [49]徐义亨,刘华美,许小燕.控制系统供电设计中有关抗干扰的几个问题[J].电气时代2006, 3:128-130.
    [50]李曼生,王浩.小波变换应用于信号去噪研究.河西学院学报[J]. 2007,23(5):23-26.
    [51]周小勇,叶银忠.小波多尺度分析故障检测方法的应用研究[J].控制工程. 2007, 7(14): 65-67.
    [52]杜天军,陈光,雷勇.基于混叠补偿小波变换的电力系统谐波检测方法[J].中国电机工程学报,2005,25(3):54-59+134.
    [53]杜天军,陈光,谢永乐,袁海英,殷时蓉.基于频域内插抗混叠Shannon小波包变换的谐波检测方法[J].电网技术,2005,29(11):14-19.
    [54]刘天琪,邱晓燕.电力系统分析理论[M].北京:科学出版社,2004.
    [55] Divid L .Donoho“,Denoising by soft-threshold”,IEEE Trans. On IT, May 1995, 41(3):612-617.
    [56]周荣光.电力系统故障分析[M].北京:清华大学出版社. 2000.
    [57]徐永海,肖湘宁,杨以涵,陈学允等.基于dq换和ANN的电能质量扰动辨识[J],电力系统自动化. 2001, 7(25):24-27.
    [58]何正友,钱清泉.电力系统暂态信号分析中小波基的选择原则[J].电力系统自动化2003,27(10): 45-48.
    [59] PARAMES WARIAH C,COX. M,“Frequency characteristics of Wavelets”, IEEE Transactions on Power Delivery. 2002, 17 (3):800-803.
    [60]夏明节,何友,苏峰.基于多小波分析的图像融合算法[J].电光与控制, 2005, 12(2):19-21+30.
    [61]许娟,徐长发. Daubechies小波双尺度方程的简捷推导[J].计算机与数字工程. 2002, 30:36-40.
    [62]刘应梅,白晓民等.基于最小极大法的电力扰动信号压缩[J].电网技术. 2004, 28(3):33-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700