纳米Pd催化剂的制备、表征及CO氧化反应活性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三效催化剂(Three Way Catalysts,简称TWCs),对汽车尾气中CO、HC和NOx等主要污染物可以同时具有很高的催化转化效率。而贵金属资源有限,新的机动车尾气排放法规日益严格,因此需要TWCs具有相对低的贵金属含量且具有较高的催化活性,需要在传统的TWCs制备方法上做出改进,找到新的突破。本文研究了超声膜扩散法(ultrasonic-assisted membrane reduction,UAMR)制备Pd纳米粒子,并从Pd纳米溶胶出发,制备了系列负载型纳米Pd催化剂,对其进行表征,考察其在三效催化模型反应中的反应性能。
     首先,采用正交试验设计探究UAMR法制备Pd纳米粒子的制备条件,并采用SEM,TEM和激光粒度仪对Pd纳米粒子进行了表征,确定UAMR法的制备最佳条件。结果表明,UAMR法制备的Pd纳米粒子形状为球形,单分散性较好。在平流泵流速10 mL·min-1,输液泵流速取100 r·min-1,金属溶液浓度取4×10-4 mol·L-1,还原剂摩尔比例取5:1,保护剂摩尔比取20:1,超声波频率取0 Hz,膜管尺寸为40 nm的条件下制备得到的Pd纳米粒子粒径最小,分散性好。
     然后从制备Pd纳米溶胶出发,选取γ-Al2O3、TiO2、SiO2、CeO2和Ce0.5Zr0.5O2五种不同载体,制备负载型纳米Pd催化剂,采用N2吸-脱附,XRD,TPR和ICP对催化剂进行了表征,并考察比较了各催化剂对CO+O2的催化活性差别。结果表明,催化剂Pd/Ce0.5Zr0.5O2具有较高的活性,其金属负载量最低,仅为0.27 wt%,为提高催化剂活性的同时降低贵金属用量提供了可能。
     最后研究催化剂Pd/Ce0.5Zr0.5O2和Pd/Al2O3,负载量为1 wt%为采用不同的方法制备了系列负载型Pd催化剂,深入研究催化剂的结构、形貌以及活性组分的结构组成、价态,金属分散度对催化活性的影响。结果表明,催化剂的活性与催化剂表面活性组分的氧化态和表面相对含量有关。Pd的高氧化态有利于CO催化氧化反应,催化剂表面的Pd物种对催化活性起到重要作用。
Three-way catalyst can convert CO, NOx and hydrocarbons in the automotive exhaust gas to nonhazardous substances simultaneously with high efficiency. However, due to the shortage of noble metal resources and the increasingly strict vehicle emission control regulations. Therefore, the TWCs should preserve lower content of precious metals with higher catalytic activity than the TWCs prepared by traditional method. The traditional method of preparing TWCs should be improved. Hereon, we investigated the synthesis of Pd colloids by UAMR (ultrasonic-assisted membrane reduction , UAMR) method, the preparation of supported Pd nanocatalysts from a typical nano-sized Pd colloid, then characterized, and investigated its catalytic performance in the three way model reactions.
     Firstly, the orthogonal test method was used to explore the conditions for preparing Pd nanoparticles by the UAMR method, and the obtained Pd nanoparticles were characterized by SEM, TEM and laser particle size analyzer, to obtain the best conditions of the UAMR method to prepare Pd nanoparticles. The results showed that Pd nanoparticles with a nearly spherical shape and narrow particle size distribution can be achieved by UAMR method. The nano-sized and narrowly dispersed Pd nanoparticles could be synthesized under such conditions: the flow rate of the constant flow pump is about 10 mL·min-1, the rotating speed of the peristaltic pump is about 100 r·min-1, the solution concentration is 4×10-4 mol·L-1, the molar ratio of NaBH4/Pd is about 5:1, the molar ratio of PVP/Pd is 20:1, the ultrasonic frequency is 0 Hz and the micropore size of membrane is 40 nm.
     Secondly, the fabrication of supported Pd catalyst from a typical nano-sized Pd colloid with 1 wt% Pd loading was studied; several carriers such as Al2O3, TiO2, SiO2, CeO2, and Ce0.5Zr0.5O2 were selected. The catalysts were characterized by a combination of N2 adsorption/desorption, X-ray diffraction (XRD), Temperature-Programmed Reduction by H2 (H2-TPR) and Inductively Coupled Plasma-atom Emission Spectrometer (ICP-AES), and the catalytic behavior of the samples in the CO oxidation reaction was investigated. The results showed that the catalyst of Pd/Ce0.5Zr0.5O2 exhibited the lowest metal loading, the best catalytic activity for CO oxidation among the prepared supported Pd catalysts. This method of preparing catalyst provides a chance to reduce the usage of precious metal and to improve the catalytic activity of supported Pd catalysts.
     Finally, the investigation on several Pd/Al2O3 and Pd/Ce0.5Zr0.5O2 catalysts prepared by different processes was carried out. The effect of the catalysts structure, morphology, active components composition, chemical state (oxidized or reduced), and metal dispersion on the activity of supported catalysts was investigated. The results showed that the catalytic activity was effected by the oxidation state and the surface relative content of the surface active component. The high oxidation state of Pd was conducive to high CO oxidation reaction on the catalyst surface, the Pd species on the surface of the catalyst play an important role in catalytic activity.
引文
1 H. S. Gandhi, G. W. Graham, R. W. McCabe. Automotive Exhaust Catalysis. J. Catal. 2003, (216): 433~442
    2 M. Shelef, R. W. McCabe. Twenty-Five Years after Introduction of Automotive Catalysts: What next? Catal. Today. 2000, (62): 35~50
    3 Shin’ichi Matsumoto. RecentAadvances in Automobile Exhaust Catalysts. Catal. Today. 2004 (90): 183~190
    4 H. Birgersson, M. Boutonnet, F. Klingstedt, D. Y. Murzin, P. Stefanov, A. Naydenov. An Investigation of a New Regeneration Method of Commercial Aged Three-Way Catalyst. Appl. Catal. B. 2006 (65): 93~100
    5 www.greencarcongress.com
    6何洪,戴洪兴,訾学红,中国发明专利:无机氧化物或金属纳米粒子的制备方法及设备. ZL 200610088817.4
    7 H. He, H. X. Dai, X. H. Zi. US patent: Apparatus and Process for Metal Oxides and Metal Nanoparticles Synthesis, Appl. No.: 11777090
    8何洪,关晓,戴洪兴,訾学红,中国发明专利:一种负载型纳米金属催化剂的制备方法及设备.公开号: CN101081364
    9何洪,关晓,李志美,戴洪兴,訾学红,中国发明专利:高活性负载型RhxAu1-x/Y纳米催化剂的制备方法,申请号: 200710177974.7
    10 X. Guan, H. He, Z. M. Li, H. X. Dai, X. H. Zi, W. G. Qiu. A Promising Way to Reduce the High Cost for Three-Way Catalysts: RhAu Alloy Catalysts Prepared by the UAMR Method. 3rd China-Japan Workshop on Environmental Catalysis and Eco-Materials, 2007, Beijing, China
    11辛勤.固体催化剂研究方法(下).科学出版社, 2004: 550~551
    12 NSF Workshop Report on“Future Directions in Catalysis: Structures that Function on the Nanoscale”NSF Headquarters, Arlington, VA June 19-20, 2003
    13 M. Haruta, T. Kobayashi, H. Sano. Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature for Below 0℃. Chen. Lett. 1987: 405~408
    14 M. S. Chen, D. W. Goodman. Structure–Activity Relationships in Supported Au Catalysts. Catal. Today. 2006, (111): 22~33
    15 K. Niesz, M. Grass, G. A. Somorjai. Precise Control of the Pt Nanoparticle Size by Seeded Growth Using EO13PO30EO13 Triblock Copolymers as Protective Agents. Nano Lett. 2005, (5): 2238~2240
    16 S. M. Humphrey, M. E. Grass, S. E. Habas, K. Niesz, Gabor A. Somorjai, T. D. Tilley.Rhodium Nanoparticles from Cluster Seeds: Control of Size and Shape by Precursor Addition Rate. Nano Lett. 2007, (7): 785~790
    17 J. N. Kuhn, W. Y. Huang, C. K. Tsung, Y. W. Zhang, G. A. Somorjai. Structure Sensitivity of Carbon-Nitrogen Ring Opening: Impact of Platinum Particle Size from below 1 to 5 nm upon Pyrrole Hydrogenation Product Selectivity over Monodisperse Platinum Nanoparticles Loaded onto Mesoporous Silica. J. Am. Chem. Soc. 2008, (130): 14026~14027
    18 H. Wennerstr?m, S. Lidin. Chemical Processes on Solid Surfaces. Scientific Background on the Nobel Prize in Chemistry 2007, The Royal Swedish Academy of Sciences, 10 Oct. 2007
    19 C. Beta, A. S. Mikhailov, H. H. Rotermund, G. Ertl. Defect-Mediated Turbulence in a Catalytic Surface Rreaction. Europhys. Lett. 2006, (75): 868~874
    20 G. A. Somorjai, R. M. Rioux, High Technology Ccatalysts Towards 100% Selectivity Fabrication, Characterization and Reaction Studies. Catal. Today. 2005, (100): 201~215
    21 J. Lahann, S. Mitragotri, T. N. Tran, H. Kaido, J. Sundaram, I. S. Choi, S. Hoffer, G. A. Somorjai, R. Langer. A Reversibly Switching Surface. Science. 2003, (299): 371~374
    22 M. E. Tuckerman, P. J. Ungar, T. V. Rosenvinge,M. L. Klein. Ab Initio Molecular Dynamics Simulations. J. Phys. Chem. 1996, (100): 12878~12887
    23 Y. Feng, L. Liu, J. T. Wang, H. Huang, Q. X. Guo. Assessment of Experimental Bond Dissociation Energies Using Composite ab Initio Methods and Evaluation of the Performances of Density Functional Methods in the Calculation of Bond Dissociation Energies. J. Chem. Inf. Comput. Sci. 2003, (43): 2005~013
    24 D. Selassie, D. Davis, J. Dahlin, E. Feise, G. Haman, D. S. Sholl, D. Kohen. Atomistic Simulations of CO2 and N2 Diffusion in Silica Zeolites: The Impact of Pore Size and Shape. J. Phys. Chem. C. 2008, (112): 16521~16531
    25 D. S. Sholl. Predicting Single-Component Permeance through Macroscopic Zeolite Membranes from Atomistic Simulations. Ind. Eng. Chem. Res. 2000, (39): 3737~3746
    26 A. Milchev, K. Binder. Static and Dynamic Properties of Adsorbed Chains at Surfaces: Monte Carlo Simulation of a Bead-Spring Model. Macromolecules. 1996, (29): 343~354
    27 M. Baldauf, D. M. Kolb. A hydrogen Adsorption and Absorption Study with Ultrathin Palladium Overlayers on Gold(111) and Au(100). Electrochim. Acta. 1993, (38): 2145~2153
    28 N. Hoshi, K. Kida, M. Nakamura, M. Nakada, K. Osada. Structural Effects of Electrochemical Oxidation of Formic Acid on Single Crystal Electrodes of Palladium. J. Phys. Chem. B. 2006, (110): 12480~12484
    29 D. J. Qian, T. Wakayama, C. Nakamura, J. Miyake. Single Pd(0) Atom Encapsulated in Multiporphyrin Arrays as a Highly Efficient Heterogeneous Catalyst. J. Phys. Chem. B. 2003, (107): 15, 3333~3335
    30 F. Wen, W. Q.Zhang, G. W. Wei, Y. Wang, J. Z. Zhang, M. C. Zhang, L. Q. Shi. Synthesis ofNoble Metal Nanoparticles Embedded in the Shell Layer of Core-Shell Poly(styrene-co-4-vinylpyridine) Micospheres and Their Application in Catalysis. Chem. Mater. 2008, (20): 2144~2150
    31 G. Glaspell, H. M. A. Hassan, A. Elzatahry, V. Abdalsayed, M. S. El-Shall. Nanocatalysis on Supported Oxides for CO Oxidation. Top. Catal. 2008, (47): 22~31
    32 H. Y. Lee, S. Ryu, H. Kang, Y. W. Junb, J. Cheon. Selective Catalytic Activity of Ball-Shaped Pd@MCM-48 Nanocatalysts. Chem. Commun. 2006: 1325~1327
    33 A. J. Akande, R. O. Idem, A. K. Dalai. Synthesis, Characterization and Performance Evaluation of Ni/Al2 O 3 Catalysts for Reforming of Crude Ethanol for Hydrogen Production. Appl. Catal. A. 2005, (287): 159~175
    34 A. I. Kozlov, A. P. Kozlova, K. Asakura, Y. Matsui, T. Kogure, T. Shido, Y. Iwasawa. Supported Gold Catalysts Prepared from a Gold Phosphine Precursor and As-Precipitated Mtal-Hydroxide Precursors: Effect of Preparation Conditions on the Catalytic Performance. J. Catal. 2000, (196): 56~65
    35 J. J. Ge, W. Xing, X. Z. Xue, C. P. Liu, T. H. Lu, J. H. Liao. Controllable Synthesis of Pd Nanocatalysts for Direct Formic Acid Fuel Cell(DFAFC) Application: From Pd Hollow Nanospheres to Pd Nanoparticles. J. Phys. Chem. C. 2007, (111): 46, 17305~17310
    36 F. Bonet, V. Delmas, S. Grugeon, R. H. Urbina, P. Y. Silvert, K. Tekaia-Elhsissen. Synthesis of Monodisperse Au, Pt, Pd, Ru and Ir Nanoparticles in Ethylene Glycol. NanoStruct. Mater., 1999, (11): 8, 1277~1284
    37 D. L. Boxall, C. M. Lukehart. Rapid Synthesis of Pt or Pd/Carbon Nanocomposites Using Microwave Irradiation. Chem. Mater. 2001, (13): 806~810
    38 V. G. Pol, H. Grisaru, A. Gedanken. Coating Noble Metal Nanocrystals (Ag, Au, Pd, and Pt) on Polystyrene Spheres via Ultrasound Irradiation. Langmuir. 2005, (21): 3635~3640
    39 B. Yoon, C. M. Wai. Microemulsion-Templated Synthesis of Carbon Nanotube-Supported Pd and Rh Nanoparticles for Catalytic Applications. J. Am. Chem. Soc. 2005, (127): 17174~17175
    40 B.A. Silletti, R.T. Adams, S.M. Sigmon, A. Nikolopoulos, J.J. Spivey, H.H. Lamb. A Novel Pd/MgAlOx Catalyst for NOx Storage-Reduction. Catal. Today. 2006, (114): 64~71
    41 C. Amorim, M. A. Keane. Palladium Supported on Structured and Nonstructured Carbon:A Cnsideration of Pd Particle Size and the Nature of Reactive Hydrogen. J. Colloid Interface Sci. 2008, (322): 196~208
    42 J. Aran, P. Ramirez de la Piscina, J. Llorca, J. Sales, N. Homs. Bimetallic Silica-Supported Catalysts Based on Ni-Sn, Pd-Sn, and Pt-Sn as Materials in the CO Oxidation Reaction. Chem. Mater. 1998, (10), 1333~1342
    43 F. Menegazzo, T. Fantinel, M. Signoretto, F. Pinna. Metal Dispersion and Distribution in Pd-Based PTA Catalysts. Chem. Commun. 2007, (8): 876~879
    44 A. I. Kozlov, A. P. Kozlova, K. Asakura, Y. Matsui, T. Kogure, T. Shido, Y. Iwasawa. Supported Gold Catalysts Prepared from a Gold Phosphine Precursor and As-Precipitated Metal-Hydroxide Precursors: Effect of Preparation Conditions on the Catalytic Performance. J. Catal. 2000, (196), 56~65
    45 P. Claus, A. Bruckner, C. Mohr, H. Hofmeister. Supported Gold Nanoparticles from Quantum Dot to Mesoscopic Size Scale: Effect of Electronic and Structural Properties on Catalytic Hydrogenation of Conjugated Functional Froups. J. Am. Chem. Soc. 2000, (122): 11430~11439
    46 M. Haruta. Size- and Support-Dependency in the Catalysis of Gold. Catal. Today. 1997, (36): 153~166
    47 A. Wolf, F. Schuth. A Systematic Study of the Synthesis Conditions for the Preparation of Highly Active Gold Catalysts. Appl. Catal. A Gen. 2002, (226), 1~13
    48 J. C. Garcia-Martinez, R. W. J. Scott, R. M. Crooks. Extraction of Monodisperse Palladium Nanoparticles from Dendrimer Templates. J. AM. CHEM. SOC. 2003, (125): 11190~11191
    49 R. W. J. Scott, H. Ye, R. R. Henriquez, R. M. Crooks. Synthesis, Characterization, and Stability of Dendrimer-Encapsulated Palladium Nanoparticles. Chem. Mater. 2003, (15): 3873~3878
    50 B. C. Gates. Supported Metal Clusters: Synthesis, Structure, and Catalysis. Chem. Rev, 1995, (95):511~522
    51 K. A. Flanagan, J. A. Sullivan, H. Mueller-Bunz. Preparation and Characterization of 4-Dimethylaminopyridine-Stabilized Palladium Nanoparticles. Langmuir. 2007, (23):12508~12520
    52 T. Teranishi, M. Miyake. Size Control of Palladium Nanoparticles and Their Crystal Structures. Chem. Mater. 1998, (10): 594~600
    53 M. Adlim, M. A. Bakar, K. Y. Liew, J. Ismail. Synthesis of Chitosan-Stabilized Platinum and Palladium Nanoparticles and Their Hydrogenation Activity. J. Mol. Catal. A. 2004, (212): 141~149
    54 L. S. Zhong, J. S. Hu, Z. M. Cui, L. J. Wan, W. G. Song. In-Situ Loading of Noble Metal Nanoparticles on Hydroxyl-Group-Rich Titania Precursor and Their Catalytic Applications. Chem. Mater. 2007, (19): 4557~4562
    55 M. N. Nadagouda, R. S. Varma. A Greener Synthesis of Core (Fe, Cu)-Shell (Au, Pt, Pd, and Ag) Nanocrystals Using Aqueous Vitamin. Cryst. Growth Des. 2007, (7): 2582~2587
    56 W. Lu, B. Wang, K. D. Wang, X. P. Wang, J. G. Hou. Synthesis and Characterization of Crystalline and Amorphous Palladium Nanoparticles. Langmuir. 2003, (19): 5887~5891
    57 G. Glaspell, L. Fuoco, M. S. El-Shall. Microwave Synthesis of Supported Au and Pd Nanoparticle Catalysts for CO Oxidation. J. Phys. Chem. B. 2005, (109): 17350~17355
    58 F. Cheng, S. M. Kelly, N. A. Young, C. N. Hope, K. Beverley, M. G. Francesconi, S. Clark, J. S. Bradley, F. Lefebvre. Preparation of Mesoporous Pd/Si3N4 Nanocomposites as Heterogeneous Catalysts via Three Different Chemical Routes. Chem. Mater. 2006, (18): 5996~6005
    59 J. Kim, G. W. Roberts, D. J. Kiserow. Supported Pd Catalyst Preparation Using Liquid Carbon Dioxide. Chem. Mater. 2006, (18): 4710~4712
    60 .G.Glaspell, H. M. A. Hassan, A. Elzatahry, L. Fuoco, N. R. E. Radwan, M. S. El-Shall. Nanocatalysis on Tailored Shape Supports: Au and Pd Nanoparticles Supported on MgO Nanocubes and ZnO Nanobelts. J. Phys. Chem. B. 2006, (110): 21387~21393
    61 Y. Guo, G. Z. Lu, Z.G. Zhang, L. Z. Jiang, X. H. Wang, S. B. Li, B. Zhang, J. Z. Niu. Effects of ZrO2/Al2O3 Properties on the Catalytic Activity of Pd Catalysts for Methane Combustion and CO Oxidation. Catal. Today. 2007, (126): 441~448
    62 Y. Mei, Y. Lu, F. Polzer, M. Ballauff. Catalytic Activity of Palladium Nanoparticles Encapsulated in Spherical Polyelectrolyte Brushes and Core-Shell Microgels. Chem. Mater. 2007, (19): 1062~1069
    63 B. Stasinska, A. Machocki, K. Antoniak, M. Rotko, J. L. Figueiredo, F. Goncalves. Importance of palladium dispersion in Pd/Al2O3 catalysts for complete oxidation of humid low-methane–air mixtures. Catal. Today. 2008, (137): 329~334
    64 K. V.R. Chary, D. Naresh, V. Vishwanathan, M. Sadakane, W. Ueda. Vapour Phase Hydrogenation of Phenol over Pd/C Catalysts: A Relationship Between Dispersion, Metal Area and Hydrogenation Activity. Catal. Commun. 2007, (8): 471~477
    65 V.Z. Radkevich, T.L. Senko, K. Wilson, L.M. Grishenko, A.N. Zaderko, V.Y. Diyuk. The Influence of Surface Functionalization of Activated Carbon on Palladium Dispersion and Catalytic Activity in Hydrogen Oxidation. Appl. Catal. A. 2008, (335): 241~251
    66 Y. Li, E. Boone, M. A. El-Sayed Size Effects of PVP-Pd Nanoparticles on the Catalytic Suzuki Reactions in Aqueous Solution. Langmuir. 2002, (18): 4921~4925
    67 W. P. Zhou, A. Lewera, R. Larsen, R. I. Masel, P. S. Bagus, A. Wieckowski. Size Effects in Electronic and Catalytic Properties of Unsupported Palladium Nanoparticles in Electrooxidation of Formic acid. J. Phys. Chem. B. 2006, (110): 13393~13398
    68 W. J. Zhou, J. Y. Lee. Particle Size Effects in Pd-Catalyzed Electrooxidation of Formic Acid. J. Phys. Chem. C. 2008, (112): 3789~3793
    69 O. Demoulin, G. Rupprechter, I. Seunier, B. L. Clef, M. Navez, P. Ruiz. Investigation of Parameters Influencing the Activation of a Pd/γ-Alumina Catalyst during Methane Combustion. J. Phys. Chem. B. 2005, (109): 20454~20462
    70 I. Meusel, J. Hoffmann, J. Hartmann, J. Libuda, H. J. Freund. Size Dependent Reaction Kinetics on Supported Model Catalysts: A Molecular Beam/IRAS Study of the CO Oxidation on Alumina-Supported Pd Particles. J. Phys. Chem. B. 2001, (105): 3567~3576
    71 Y. W. Jun, J. W. Seo, S. J. Oh, J. Cheon. RecentAdvances in the Shape Control of Inorganic Nano-Building Blocks. Coord. Chem. Rev. 2005, (249): 1766~1775
    72 H. L. Su, Q. Dong, J. Han, D. Zhang, Q. X. Guo. Biogenic Synthesis and Photocatalysis of Pd-PdO Nanoclusters Reinforced Hierarchical TiO2 Films with Interwoven and Tubular Conformations. Biomacromolecules. 2008, (9): 499~504
    73 S. Alayoglu, A. U. Nilekar, M. Mavrikakis, B. Eichhorn. Ru–Pt Core–Shell Nanoparticles for Preferential Oxidation of Carbon Monoxide in Hydrogen. Nat. Mater. 2008, (7): 333~338
    74 N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, Z. L. Wang. Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity. Science. 2007, (316): 732~735.
    75 B. K. H. Yen, A. Gnther, M. A. Schmidt, K.F. Jensen, and M. G. Bawendi. A Microfabricated Gas–Liquid Segmented Flow Reactor for High-Temperature Synthesis: The Case of CdSe Quantum Dots. Angew. Chem. Int. Ed. 2005, (44): 5447~5451
    76 A. J. deMello1. Control and Detection of Chemical Reactions in Microfluidic Systems. Nature. 2006, (442): 394~402
    77 Y. Song, C. S. S. R. Kumar, J. Hormes. Synthesis of Pd Nanoparticles Using a Continuous Flow Polymeric Micro Reactor. J. Nanosci. Nanotech. 2004, (4): 788~793
    78 S. He. Effects of Interior Wall on Continuous Fabrication of Silver Nanoparticles in Microcapillary Reactor. Chem. Lett. 2005, (34): 748~749
    79 X. Z. Lin, A. D. Terepka, H. Yang. Synthesis of Silver Nanoparticles in a Continuous-Flow Tubular Microreactor. Nano Lett. 2004, (4): 2227~2232
    80 J. Wagner, T. Kirner, G. Mayer, J. A. Albert, J. M. K?ler. Generation of Metal Nanoparticles in a Microchannel Reactor. Chem. Eng. J. 2004, (101): 251~260
    81 Y. Song. Investigations into sulfobetaine-stabilized Cu nanoparticle formation: toward development of a microfluidic synthesis. J. Phys. Chem. B. 2005, (109): 9330~9338
    82 H. He, X. Guan, Z. Y.Wang, H. X. Dai, L. Liu, X. H. Zi, W. G. Qiu. Ultrasound-Assisted Membrane Reaction -A Novel Way to Fabricate Metal Nanoparticles: Application in Nanocatalysts Preparation. Poster presentation at the workshop of International Symposium on Relations between Homogeneous and Heterogeneous Catalysis, Berkeley, 2007
    83 L. C. Liu, T. Wei, X. Guan, X. H. Zi, H. He, H. X. Dai. Size and Morphology Adjustment of PVP-Stabilized Silver and Gold Nanocrystals Synthesized by Hydrodynamic Assisted Self-Assembly. J. Phys. Chem. C. 2009, (113): 8595~8600
    84徐向菊,余雪里,夏晓红,贾志杰. CVD法制备纳米石墨棒.新型炭材料. 2006, (21): 273~275
    85 Y. Tan, X. Dai, Y. Li, D. Zhu. Preparation of Gold, Platinum, Palladium and Silver Nanoparticles by the Reduction of Their Salts with a Weak Reductant-Potassium Bitartrate. J. Mater. Chem. 2003, (13): 1069~1075
    86 S. Cheng, Y. Wei, Q. Feng, K. Y. Qiu, J. B. Pang, S. A. Jansen, R. Yin, K. Ong. Facial Synthesis of Mesoporous Gold-Silica Nanocomposite Materials with Sol-Gel Progress with Nonsurfactant Tmplates. Chem. Mater. 2003, (15): 1560~1566
    87 E. E. Carpenter, J. A. Sims, J. A. Wienmann, W. L. Zhou, C. J. O’Connor. Magnetic Properties of iron and Iron Platinum Alloys Synthesized via Microemulsion Techniques. J. Appl. Phys. 2000, (87): 5615~5617
    88 K. Kamata, Y. Lu, Y. N. Xia. Synthesis and Characterization of Monodispersed Core-Shell Spherical Colloids with Movable cores. J. Amer. Chem. Soc. 2003, (125): 2384~2385
    89任露泉.试验优化技术.机械工业出版社, 1987
    90 L. D. Marks. Experimental Studies of Small Particle Structures. Reports on Progress in Physics. 1994, (57): 603~649
    91 Y. Xiong, J. Chen, B. Wiley, Y. N. Xia, S. Aloni, Y. Yin. Understanding the Role of Oxidative Etching in the Polyol Synthesis of Pd Nanoparticles with Uniform Shape and Size [J]. J. Amer. Chem. Soc. 2005, (127): 7332~7333
    92 M. T. Reetz, M. Winter, B. Tesche. Self-Assembly of Tetraalkylammonium Salt-Stabilized Giant Palladium Clusters on Surfaces. Chem. Commun. 1997: 147~148
    93 A. Nemamcha, J. L. Rehspringer, D. Khatmi. Synthesis of Palladium Nanoparticles by Sonochemical Reduction of Palladium(II) Nitrate in Aqueous Solution. J. Phys. Chem. B. 2006, (110): 383~387
    94 T. Yonezawa, K. Imamura, N. Kimizuka. Direct Preparation and Size Control of Palladium Nanoparticle Hydrosols by Water-Soluble Isocyanide Ligands. Langmuir. 2001, (17): 4701~4703
    95 P. F. Ho, K. M. Chi. Size-Controlled Synthesis of Pd Nanoparticles fromβ-Diketonato Complexes of Palladium. Nanotechnology. 2004, (15): 1059~1064
    96 K. Okitsu, H. Bandow, Y. Maeda. Sonochemical Preparation of Ultrafine Palladium Particles. Chem. Mater. 1996, (8): 315~317
    97 D. Lu, K. Tanaka. Au, Cu, Ag, Ni, and Pd Particles Grown in Solution at Different ElectrodePotentials. J. Phys. Chem. B. 1997, (101): 4030~4034
    98高正中.实用催化.化学工业出版社, 1996: 232
    99 W. Lin, Y.X. Zhu, N.Z. Wu, Y.C. Xie, I. Murwani, E. Kemnitz. Total Oxidation of Methane at Low Temperature over Pd/TiO2 / Al 2O 3 : Effects of the Support and Residual Chlorine ions. Appl. Catal. B. 2004, (50): 59~66
    100 V. Ferrer, A. Moronta, J. Sánchez, R. Solano, S. Bernal, D. Finol. Effect of the Reduction Temperature on the Catalytic Activity of Pd-Supported Catalysts. Catal. Today. 2005, (107-108): 487~492
    101 J. Vinod Kumar, N. Lingaiah, K.S. Rama Rao, S.P. Ramnani, S. Sabharwal, P.S. Sai Prasad. Investigation of Palladium Species in Pd/Al 2O 3 Catalysts Prepared by Radiolysis Method. Catal. Commun. 2009, (10): 1149~1152
    102 B. Yue, R. Zhou, Y. Wang, X. Zheng. Study of the Methane Combustion and TPR/TPO Properties of Pd/Ce–Zr–M/Al2 O 3 Catalysts with M = Mg, Ca, Sr, Ba. J. Mol. Catal. A. 2005, (238): 241~249
    103 L. F. Chen, G. González, J. A. Wang, L. E. Noreńa, A. Toledo, S. Castillo, M. Morán-Pineda. Surfactant-Controlled Synthesis of Pd/Ce Zr O Catalyst for NO Reduction by CO with Excess Oxygen
    0.6 0.4 2. Appl. Surf. Sci. 2005, (243): 319~328
    104 C. Amorim, M. A. Keane. Palladium Supported on Structured and Nonstructured Carbon: A Consideration of Pd Particle Size and the Nature of Reactive Hydrogen. J. Colloid Interface Sci. 2008, (322): 196~208
    105 F. Pinna, F. Menegazzo, M. Signoretto, P. Canton, G. Fagherazzi, N. Pernicone. Consecutive Hydrogenation of Benzaldehyde over Pd Catalysts: Influence of Supports and Sulfur Poisoning. Appl. Catal. A. 2001, (219): 195~200
    106 M. Cobo, A. Quintero, C. M. Correa. Liquid Phase Dioxin Hydrodechlorination over Pd/γ–Al2 O3. Catal. Today. 2008, (133-135): 509~519
    107 A. Barrera, M. Viniegra, P. Bosch, V. H. Lara, S. Fuentes. Pd/Al2O3-La2O3 Catalysts Prepared by Sol-Gel: Characterization and Catalytic Activity in the NO Reduction by H2. Appl. Catal. B. 2001, (34): 97~111
    108 H. Zhu, Z. Qin, W. Shan, W. Shen, J. Wang. Pd/CeO -TiO Catalyst for CO Oxidation at Low Temperature: a TPR Study with H and CO as Reducing Agents. J. Catal. 2004, (225): 267~277
    109 M. Q. Shen, M. Yang, J. Wang, J. Wen, M. W. Zhao, W. L. Wang. Pd/Support Interface-Promoted Pd-CeZrO-AlO Automobile Three-Way Catalysts: Studying the Dynamic Oxygen Storage Capacity and CO, C3H8, and NO Conversion. J. Phys. Chem. C. 2009, (113): 3212~3221
    110 Y. Guo, G. Z. Lu, Z. G. Zhang, S. H. Zhang, Y. Qi, Y. Liu. Preparation of CexZr1-xO2 (x = 0.75, 0.62) Solid Solution and its Application in Pd-Only Three-Way Catalysts. Catal. Today. 2007, (126): 296~302
    111 M. Q. Shen, J. Q. Wang, J. C. Shang, Y. An, J. Wang, W. L. Wang. Modification Ceria-Zirconia Mixed Oxides by Doping Sr Using the Reversed Microemulsion for Improved Pd-Only Three-Way Catalytic Performance. J. Phys. Chem. C. 2009, (113): 1543~1551
    112 X. D. Wu, J. Fan, R. Ran, D. Weng. Effect of Preparation Methods on the Structure and Redox Behavior of Platinum-Ceria-Zirconia Catalysts. Chem. Eng. J. 2005, (109): 133~139
    113 J. Goetz, M. A. Volpe, A. M. Sica, C. E. Gigola, R. Touroude. Low-Loaded Palladium onα-Alumina Catalysts: Characterization by Chemisorption, Electron-Microscopy, and Photoelectron Spectroscopy. J. Catal. 1995, (153): 86~93
    114 M. F. Luo, Z. Y. Hou, X. X. Yuan, X. M. Zheng. Characterization Study of CeO2 Supported Pd Catalyst for Low-Temperature Carbon Monoxide Oxidation. Catal. Lett. 1998, (50): 205~209 H. Q. Zhu, Z. F. Qin, W. J. Shan, J. G. Wang. CO Oxidation at Low Temperature Over Pd Supported on CeO2-TiO2 Composite Oxide. Catal. Today. 2007, (126): 382~386

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700