明基床开孔沉箱垂直方向波浪力试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进人21世纪后,随着经济全球化涌现的大吨位的LNG、大吞吐量的深水码头、超长距离的跨海大桥等迫切需要海洋工程走向外海深水域,传统的海工建筑物已经不能适应新工程的要求。而开孔直墙式防波堤有着良好的工程应用前景,对海洋事业的发展起着至关重要的作用,对于开孔直墙式防波堤结构及其水动力特性的研究一直备受国内外研究者的关注。针对海床地质良好的工程,完全可以采用明基床形式,使基床顶高程明显高于海床面,减少开孔沉箱的高度,进一步节省造价。但是由于明基床的存在,海底边界条件发生局部变化,势必影响开孔沉箱前的波浪场,有关于考虑基床影响下的反射系数和波浪力的理论研究及可应用于工程实际的计算方法还很少,因此,对明基床上开孔沉箱结构进行系统地分析研究势在必行。
     本文通过二维物理模型试验,对规则波和不规则波作用下明基床开孔沉箱所受到垂直方向的波浪力、力臂、力矩进行了系统的研究,并结合了相同试验条件下的暗基床开孔沉箱的相关数据进行分析比较。试验是在大连理工大学海岸和近海工程国家重点实验室的浑水水槽中进行的;试验模型设计考虑了不同的消浪室宽度、开孔率及基床高度的影响,为了便于分析比较,分别进行了低基床、中基床上的实体直墙及开孔沉箱结构的试验。
     通过对试验数据的单因次相关分析,找出相对基床高度、消浪室相对宽度、相对水深、波陡及开孔率等影响因素与浮托力、总垂直力、总垂直力的力臂和总垂直力的力矩之间的关系,采用最小二乘法拟合它们之间的经验关系式。这些经验关系式表达形式简单、直观,计算方便,计算结果与试验数据符合较好,在试验条件变化范围内,可供明基床开孔沉箱进一步研究和工程设计时参考。
     随着计算机运算能力的迅猛发展,人工智能及模糊理论应用的范围越来越广。人工神经网络是一类基于生理学的智能仿生模型,是由大量处理单元组成非线性自适应动态系统,具有良好的自适应性、自组织性及很强的学习、联想、容错和抗干扰能力。本文也应用神经网络对试验数据进行了分析并且与拟合公式的结果进行了对比。
In the 21st century, with the emergence of economic globalization, the large tonnage of LNG, the high-throughput deepwater dock, and projects of ultra-long-distance bridges, traditional marine buildings have not adapt to new project requirements and thus can not meet this urgent need. The perforated caisson has a good application prospect and plays a vital role in the development of the marine industry. There have been many systematic researches, made by both domestic and foreign researchers, on the structure of perforated caissons and their dynamic characteristics. For foundation with high quality, the form of open bedding could be applied, that is the height of bedding being obviously higher than that of the seabed, in order to reduce the height of perforated caissons and to further save costs. As a result, the existence open bedding and the local changes in seabed boundary conditions, will certainly affect the waves in front of perforated caissons. However, the systematic research on reflection coefficients and wave forces under influence of and their computational methods in practical engineering are relatively few, so it becomes imperative to take a systematic research on the perforated caisson with rubble foundation.
     In this paper, through two-dimensional physical model tests, a systematic research on wave forces, arms and torques on perforated caisson with open bedding under regular and irregular waves has been introduced and comparisons have been made to data of perforated caisson without open bedding under the same experimental conditions. The physical model tests were carried out in the wave tank for suspension material test at the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology. The test models were designed to consider different influences of the width of wave absorbing room, the porosity and the height of bedding; in order to facilitate analysis and comparison, the solid conventional structure and the perforated caisson each with low and middle foundation were tested respectively.
     Based on single-dimensional correlation analysis, the relationships between influence factors, such as width of wave absorbing room, the porosity and the height of bedding, etc., and the total horizontal force and the total vertical force were identified. The empirical formulae of these relationships were also presented for theoretical study and practice by use of the Ordinary Least Square Estimation. The resulting expressions were simple, intuitive and easy to calculate; the results were in good agreement with the experimental data; and thus could provide valuable reference to further research and engineering design for perforated caisson.
     With the rapid development of computing capacity, the Artificial Intelligence and Fuzzy Theory are increasingly widely used. Artificial neural networks are a class of intelligent bionic model based on physiology, and composed of nonlinear adaptive dynamic system with a large number of processing units; it possesses good capabilities of self-organized, powerful learning, fault tolerance and anti-jamming. The present paper also analyzed the obtained experimental results and compared the fitting empirical formulas with the use of neural network analysis.
引文
[1]Cox R J, Horton P R and Bettington S H. Double Walled, Low Reflection Wave Barriers[C]. Proceedings of 26th Coastal Engineering Conference, Copenhagen, ASCE,1998,2: 2221-2234.
    [2]Bergmann H and Oumeraci H. Wave Pressure Distribution on Permeable Vertical Walls[C]. Proceedings of the 26th Coastal Engineering Conference, Copenhagen, ASCE,1998,2: 2042-2055.
    [3]Goda Y. Random Seas and Design of Maritime Structures[M].1985, University of Tokyo Press.
    [4]Franco L, De Gerloni M., Passoni G and Zacconi D. Wave Forces on Solid and Perforated Caisson[C]. Breakwaters:Comparison of Field and Laboratory Measurements. Proceedings of the 26th Coastal Engineering Conference, Copenhagen, ASCE,1998, Vol.2:1945-1958.
    [5]Neelamani S, Koether G, Schuettrumpf H, Muttray M and Oumeraci H. Wave Forces on, and Water-Surface Fluctuations around a Vertical Cylinder Encircled by a Perforated Square Caisson[J]. Ocean Engineering,2000,27(7):775-800.
    [6]Terret F L, Osorio J D C and Lean G H. Model Studies of a Perforated Breakwater. [C]Proceedings of 11th Coastal Engineering Conference, London, ASCE,1968, Vol.3: 1104-1120.
    [7]Tabet-Aoul E H, Rousset J M and Belorgey M. Analysis of Horizontal Forces Acting on Vertical Walls of Perforated Breakwater[C]. Proceedings of the 9th International Offshore and Polar Engineering Conference, Brest, France:ISOPE,1999,3:712-717.
    [8]Tabet-Aoul E H and Lambert E. Tentative New Formula for Maximum Horizontal Wave Forces Acting on Perforated Caisson[J]. Journal of Waterway, Port, Coastal and Ocean Engineering,2003,129(1):34-40.
    [9]戴冠英.波浪作用下开孔直立结构的反射与透射性能[J].水利水运科学研究.1993,3:292-300.
    [10]张芹,戴冠英.波浪对开孔直立结构作用力的试验研究[J].水利水运科学研究.1994,4:367-373.
    [11]陈雪峰,李玉成,孙大鹏.波浪与开孔沉箱作用的实验研究[J].中国海洋平台.2001,16(5):1-6.
    [12]陈雪峰.波浪与开孔沉箱的相互作用[D].2003,3.大连理工大学博士论文.
    [13]孙精石,张福然,郑保友.无顶盖开孔沉箱波浪力研究[P].九五攻关项目——深水防波堤新型结构形式研究专题.交通部天津水运工程科学研究所.2000年.
    [14]LI Yucheng, LIU Hongjie, TENG Bin and SUN Dapeng. Reflection of Oblique Incident Waves Breakwaters with Partially-Perforated Wall[J]. China Ocean Engineering,2002,16 (3): 329-342.
    [15]Yucheng Li, Guohai Dong, Hongjie Liu and Dapeng Sun. The reflection of oblique incident waves by breakwaters with double-layered perforated wall[J]. Coastal Engineering,50 (2003) 47-60.
    [16]刘洪杰.斜向波与带开孔板沉箱结构的相互作用[D].2003,7.大连理工大学博士论文.
    [17]姜俊杰.波浪作用下开孔沉箱垂直方向受力的试验研究[D]:(硕士学位论文).大连:大连理工大学,2004.
    [18]Isaacson M. Wave Interactions with Vertical Slotted Barrier[J]. J. of Waterway, Port, Coastal and Ocean Eng.,1998, ASCE,124(3):118-126.
    [19]Sollitt C K, and Cross R H. Wave Transmission through Porous Breakwaters[C]. Proceedings of 13th Conference on Coastal Engineering, ASCE,1972,3:1827-1846.
    [20]Madsen 0 S. Wave Transmission through Porous Structures [J]. Journal of Waterway, Port, Coastal and Ocean Engineering,1974,102(1):169-188.
    [21]Lee M M and Chwang A T. Scattering and Radiation of Water Waves by Permeable Barriers [J].Physics of Fluids,2000,12(1):54-65.
    [22]孙大鹏.波浪变形计算的三维数值模式[J].大连理工大学土木工程系,1998
    [23]孙大鹏,李玉成.数值水槽内的阻尼消波和波浪变形计算[J].海洋工程,2000,18(2):46-50
    [24]Williams A N, Mansour A M and Lee H S. Simplified Analytical Solutions for Wave Interaction with Absorbing-type Caisson Breakwaters[J]. Ocean Engineering,2000,27: 1231-1248.
    [25]Darwiche, M. K.M., Williams, A.N. and Wang, K. H., Wave Interaction with Semi-porous Cylindrical Breakwater[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1994, Vol.120 No.4:382-403.
    [26]Williams, A. N. and Li, W., Wave Interaction with a Semi-porous Cylindrical Breakwater Mounted on A Storage Tank[J]. Ocean Engineering,1998, Vol.25 No.2-3:195-219.
    [27]Teng, B., Han, L. and Li, Y. C., Wave Diffraction with a Vertical Cylinder with Two Uniform Columns and Porous Outer Wall[j]. China Ocean Engineering,2000, Vol.14 No.3: 297-306.
    [28]Harlow F and Welth J E. Numerical Calculation of Time-dependent Viscous Incompressible Flow of Fluid with Free Surface[J]. Physics of Fluids,1965,8:2182-2189.
    [29]Miyata H. Finite-Difference Simulation of Breaking Waves[J]. J. Compt. Phys.,1986, 65:179:214.
    [30]Kriebel, D. L., Vertical Wave Barrier:Wave Transmission and Wave Forces[C]. Proceedings of International Conference on Coastal Engineering, Venice, Italy,1992, pp.1313-1326.
    [31]王永学,任冰.波浪冲击过程的湍流数值模拟[J].水动力学研究与进展,1999,A辑,14(4).
    [32]任冰.非线性波浪对结构物的冲击作用[J].大连理工大学学报,1999,39(4).\
    [33]Qi P, Wang Y X and Zou Z L.2-D Composite Model for Numerical Simulations of Nonlinear Waves.2000,14(1):113-120.
    [34]李玉成,孙大鹏等.大连港大窑湾港区11#-16#泊位结构断面物理模型试验报告[R].大连理工大学海岸和近海工程国家重点实验室,2002年.
    [35]俞聿修,随机波浪及其工程应用,大连理工大学出版社,2000
    [36]张德丰等编著,MATLAB神经网络应用设计[M].北京:机械工业出版社,2009.1
    [37]陈祥光,裴旭东.人工神经网络技术及应用[M].北京:中国电力出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700