吉林省东南部晚中生代火山作用及其深部过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文通过对吉林省东南部晚中生代火山岩进行详细而系统的Ar-Ar年代学、岩石学、主-微量元素和Sr-Nd-Pb同位素地球化学特征的研究,探讨了不同火山岩组的岩石成因和可能的深部过程,论文主要取得以下研究成果和认识:
     1 吉林省东南部中生代火山作用的喷发时期为早白垩世,与华北板块内部及邻区的晚中生代火山作用的主体时期一致(126-106 Ma)。
     2 根据新的年代学资料,结合已有区域其它资料,重建了延吉地区中生代火山-沉积地层格架如下:三仙岭组/屯田营组(118-115 Ma)、马鹿沟组/天桥岭组(K_1)、金沟岭组(108-106 Ma)、长财组(K_2)、泉水村组(~55 Ma)、大拉子组。
     3 通化地区早白垩世两组(果松组和三棵榆树组)中酸性火山岩具有岛弧型的微量元素特征,如轻稀土(LREE)、大离子亲石元素(LILE)富集而高场强元素(HFSE)亏损,并具有中等程度的放射成因Sr和低放射成因Nd-Pb同位素组成。相对于三棵榆树组火山岩,果松组火山岩具有更高的K_2O、A/CNK、HFSE含量(如果松组:Nb=36.2~44.4;三棵榆树组:Nb=12.2~22.1)和Sr-Nd-Pb同位素组成(果松组:~(87)Sr/~(86)Sr(i)=0.70584~0.70656;ε_(Nd)(t)=-11.9~-8.2;~(206)Pb/~(204)Pb(i)=16.41~16.97;三棵榆树组:~(87)Sr/~(86)Sr(i)=0.70539~0.70564,ε_(Nd)(t)=-22.1~-18.0 and ~(206)Pb/~(204)Pb(i)=15.59~16.32)。通化地区晚中生代火山岩的元素-同位素特征暗示这些火山岩为地幔源岩浆与不同类型的华北陆块下地壳混合熔融的产物。其中果松组火山岩为在含水条件下熔融形成的富Nb岩浆分异的产物,其熔融残留相中富Nb矿物很少;而三棵榆树组火山岩的熔融环境则是一种相对干(外来水很少)的体系,在其熔融残留相中有富Nb矿物的存在,形成的岩浆具低Nb特征。华北陆块东部晚中生代下地壳广泛重熔作用与当时岩石圈强烈减薄作用具有非常好的时空耦合关系。
     4 辽源-延吉地区晚中生代中基性火山岩具有LREE和LILE富集而HFSE亏损的特征,并具有中等程度的放射成因Sr,类似于全硅质地球的Nd和放射成因的Pb同位素组成(辽源地区晚中生代基性火山岩:~(87)Sr/~(86)Sr(i)=0.70490~0.70550,
Ar-Ar dating results, petrography, major and trace element and Sr-Nd-Pb isotopic data of the late Mesozoic volcanic rocks in the southeastern Jilin Province are presented in this paper with aims to understand the origin of the extensive volcanism and the possible geological implications. Major conclusions are summarized below.
    1 The Mesozoic volcanic rocks in the southeastern Jilin Province mainly erupted in early Cretaceous (106-125Ma), temporarily consistent with the late Mesozoic extensive magmatism in eastern China. There did no exist so-called "late Triassic" and "early Jurassic" volcanic rocks in previous work, and the adakitic rocks from the Quanshuicun Formation (Fm.) erupted in Palaeocene (55-58 Ma).
    2 On the basis of new Ar-Ar ages, the Mesozoic-early Cenozoic volcano-sedimentary sequence in the Yanji area is rebuilt as: Sanxianling Fm./Tuntianying Fm. (118-115 Ma), Malugou Fm./Tianqiaoling Fm. (K_1), Jingouling Fm. (108-106 Ma), Changcai Fm. (K_2), Quanshuicun Fm. (~55 Ma), and Dalazi Fm.
    3 Both groups (Guosong Fm. and Sankeyushu Fm.) of intermediate-felsic
    volcanic rocks from the Tonghua area exhibit high-K calc-alkaline to shoshonitic
    affinities, characterized by light rare earth element (LREE) and large ion lithophile
    element (LILE) enrichment and variable high field strength element (HFSE, e.g., Nb,
    Ta and Ti) depletion, and moderately radiogenic Sr and unradiogenic Nd and Pb
    isotopic compositions. Compared with the younger group (Sankeyushu Fm.), the
    earlier group (Guosong Fm.) of rocks have relatively higher K_2O, A/CNK, HFSE
    concentrations (e.g., Nb = 36.2-44.4 ppm in Group 1 compare with Nb = 12.2- 22.1
    ppm in Group 2), and Sr-Nd-Pb isotope ratios (~(87)Sr/~(86)Sr(i) = 0.70584 ~ 0.70656, ε_(Nd) (t)
    = -11.9 ~ -8.2,~(206)Pb/~(204)Pb(i) = 16.41 ~ 16.97 in Guosong Fm.; ~(87)Sr/~(86)Sr(i) = 0.70539
引文
1 毕守业,王德荣,贾大成,等.1995.吉林省地体构造的基本特征.吉林地质,14(1):1~14
    2 蔡剑辉,阎国翰,肖成东,王关玉,牟保磊,张任祜.2004.太行山-大兴安岭构造岩浆带中生代侵入岩Nd、Sr、Pb同位素特征及物质来源探讨.岩石学报,20(5):1225~1242
    3 葛文春,林强,孙德有,元钟宽,李文远,陈明植,尹成孝.1999.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据.岩石学报,15(3):396~407
    4 范蔚茗,王岳军,郭锋,等.湘赣地区中生代镁铁质岩浆作用与岩石圈伸展.地学前缘,2003,10(3):159~169
    5 高晓峰,郭锋,范蔚茗,李超文,李晓勇.2005.南兴安岭晚中生代中酸性火山岩的岩石成因.岩石学报,21:737~748
    6 郭锋,范蔚茗,王岳军,林舸.2001.大兴安岭南段晚中生代双峰式火山作用.岩石学报,17(1):161~168
    7 胡大千.1996.吉林省通化地区早元古代变质杂岩变质变形作用与构造环境.长春地质学院学报,26(2):159~165
    8 吉林省地质矿产局.1988.吉林省区域地质志.北京:地质出版社,1~698
    9 李超文,郭锋,李晓勇.2004.溧水盆地晚中生代基性火山岩成因与深部动力学过程探讨.地球化学,33(4):361~371
    10 李俊建,沈保丰,李双保等.1996.辽北-吉南地区太古宙花岗岩-绿岩带地质地球化学.地球化学,25(5):458~467
    11 李思田,路凤香,林畅松等.1997.中国东部及邻区中,新生代盆地演化及地球动力学背景.北京:中国地质大学出版社.4~19
    12 李曙光,聂永红,Jagoutz E,肖益林,郑永飞.1997.大别山俯冲陆壳的再循环——地球化学证据.中国科学(D辑),27(5):412~418
    13 李伍平,李献华,路凤香.2001.辽西中侏罗世高Sr低Y型火山岩的成因及其地质意义.岩石学报,17(4):523~532
    14 李晓勇.范蔚茗.郭锋,王岳军,李超文.2004a.古亚洲洋对华北陆缘岩石圈??的改造作用:来自西山南大岭组中基性火山岩的地球化学证据.岩石学报,20(3):557~566
    15 李晓勇,范蔚茗,郭锋,王岳军,李超文.2004b.北京西山东岭台组粗面质火山岩地球化学:下地壳熔融成因.大地构造与成矿学,28:155~164
    16 李晓勇,范蔚茗,郭锋,王岳军,李超文,彭头平.2004c.北京西山东狼沟组钾质火山岩成因及其动力学机制.地球化学,33:353~360
    17 林强,葛文春,孙德有,吴福元,元钟宽,闵庚德,陈明植,李文远,权致纯,尹成孝.1998.东北地区中生代火山岩的大地构造意义.地质科学,33(2):129~139
    18 刘丛强,谢广轰,增田彰正.1995.中国东部新生代玄武岩的地球化学(Ⅱ):Sr.Nd,Ce同位素组成.地球化学,24(3):203~214
    19 刘红涛,孙世华,刘建明,翟明国.2002a.华北克拉通北缘中生代高锶花岗岩类:地球化学与源区性质.岩石学报,18(3):257~274
    20 刘红涛,翟明国,刘建明,孙世华.2002b.华北克拉通北缘中生代花岗岩:从碰撞后到非造山.岩石学报,18(4):433~448
    21 刘颖,李献华.1998.等离子体质谱测定岩石标准物质中痕量元素:对某些元素定值的探讨.岩矿测试,17(2):112~122
    22 路孝平,吴福元,赵成弼,张艳斌.2003.通化地区印支期花岗岩锆石U-Pb年龄及其与大别-苏鲁超高压带碰撞造山作用之间的关系.科学通报,48:843~849
    23 路孝平,吴福元,张艳斌,赵成弼,郭春丽.2004.吉林南部通化地区古元古代辽吉花岗岩的侵位年代与形成构造背景.岩石学报,20(3):381~392
    24 路孝平,吴福元,郭敬辉,殷长建.2005.通化地区古元古代晚期花岗质岩浆作用与地壳演化.岩石学报,21(3):721~736
    25 马醒华,杨振宇.1993.中国三大地块的碰撞拼合与古欧亚大陆的重建.地球物理学报,36:476~488
    26 苗来成,范蔚茗,张福勤,刘敦一,简平,陶华,石玉若.2004.小兴安岭西北部新开岭-科勒变质杂岩的锆石SHRIMP年龄及其地质意义.科学通报,49:201~209
    27 孟庆丽,周永旭.1996.吉林延边东部J2-K1火山-侵入杂岩岩浆的生成和演化.??岩石矿物学杂志,15(1):30~39
    28 彭玉鲸,苏养正.1997.吉林中部地区区域地质特征.中国地质科学院沈阳地质矿产研究所集刊,(5-6):358~369
    29 乔国华,王福山,路孝平,苑凤华.2004.通化地区老岭群花山组与珍珠门组平行不整合的发现及意义.吉林地质,123(13):6~8
    30 邱华宁.2006.新一代Ar-Ar实验室建设与发展趋势——以中国科学院广州地球化学研究所Ar-Ar实验室为例.地球化学,35(2):133~140
    31 邱检生,徐夕生,罗清华,2001.鲁西富钾火山岩和煌斑岩的~(40)Ar/~(39)Ar定年及源区示踪.科学通报,16(18):1500~1508
    32 邵济安,1991.中朝板块北缘中段地壳演化.北京:北京大学出版社,pp.1~136
    33 邵济安,唐克东,王成源等,1991.那丹哈达地体的构造特征和演化.中国科学(B辑),21:744~751
    34 邵济安,藏绍先,牟保磊.1994.造山带的伸展构造与软流圈隆起——以兴蒙造山带为例.科学通报,39(6):533~537
    35 邵济安,张履桥,牟保磊.1998.大兴安岭中南段中生代的构造热演化.中国科学(D辑),28(3):193~200
    36 孙德有,吴福元,李惠明等.2000.小兴安岭西北部造山后A型花岗岩的时代与索伦山-贺根山-扎赉特碰撞拼合带东延的关系.科学通报,45(20):2217~2222
    37 唐克东,邵济安,李景春,等.2004.吉林延边缝合带的性质与东北亚构造.地质通报,23(9-10):885~891
    38 唐克东,王莹,何国琦,1995.中国东北及邻区大陆边缘构造.地质学报,69:16~31
    39 王非,朱日祥,李齐,贺怀宇,罗清华,卢欣祥,桑海清,王英兰.2004.秦岭造山带的差异隆升特征——花岗岩~(40)Ar/~(39)Ar年代学研究的证据.地学前缘,11(4):445~459
    40 王友勤,苏养正,刘尔义主编.1997.东北区区域地层.武汉:中国地质大学出版社.1~119
    41 吴福元,江博明,林强.1997.中国北方造山带造山后花岗岩的同位素特点与??地壳生长意义.科学通报,42(20):2188~2192
    42 吴福元,孙德有,林强.1999.东北地区显生宙花岗岩的成因与地壳增生.岩石学报,15:181~189
    43 徐嘉炜,朱光.1995.中国东部部庐断裂带构造模式讨论.华北地质矿产杂志,10(2):121~184
    44 许敏,薛林福,王东坡,韩永吉.1997.通化中生代盆地火山——沉积序列及盆地演化.吉林地质,16(3):31~35
    45 薛天武.1997.吉林省通化市东南部七道沟-老岭一带中生代地层及其岩浆活动特征.吉林地质,16(4):49~60
    46 殷长建,彭玉琼,靳克.2000.中国东北部中生代火山活动与泛太平洋板块.中国区域地质,19(3):303~311
    47 翟明国,卞爱国.华北克拉通新太古代末超大陆拼合及元古代末-中元古代裂解.中国科学(增刊),2000:129~137
    48 张兴洲,穆石敏,杨宝俊等.1999.拼合的大陆板块.张贻侠,孙运生,张兴洲等主编.中国满洲里-绥芬河地学断面1:1000000说明书.北京:地质出版社.6~19
    49 张艳斌,吴福元,翟明国,路孝平.2004.和龙地块的构造属性与华北地台北缘东段边界.中国科学(D辑),34(9):795~806
    50 赵国龙,杨桂林,傅嘉有.1989.大兴安岭中南部中生代火山岩.北京:北京科学技术出版社,1~75
    51 赵越,杨振宇,马醒华.1994.中国东部构造转折的重要历史时期.地质科学,29:105~119
    52 郑亚东,Davis G A,王琮等.2000.燕山带中生代主要构造事件与板块构造背景问题.地质学报,74:289~302
    53 郑永飞.2004.深俯冲大陆板块折返过程中的流体活动.科学通报,49(10):917~929
    54 周新华,张国辉,杨进辉等.2001.华北克拉通北缘晚中生代火山岩Sr-Nd-Pb同位素填图及其构造意义.地球化学,30(1):129~140
    55 Altherr R, Hol A, Henger E, Langer C, Kreuzer H. 2000. High-potassium, calc-alkaline plutonism in the European Variscides: northern Vosges (France) and??northern schwarzwald (Germany). Lithos, 50: 51~73
    
    56 Atherton M and Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362: 144~146
    
    57 Arculus R J. 1994. Aspects of magma genesis in arcs. Lithos, 33: 189~208
    
    58 Balz S Kamber, Anthony Ewart, Kenneth D Collerson, Michael C Bruce and Graeme D. McDonald. 2002. Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contributions to Mineralogy and Petrology, 144: 38~56
    
    59 Bedini R M., Bodinier J L, Dautria J M. and Morten L. 1997. Evolution of LILE-enriched melt fraction in the lithospheric mantle: A case study from the East African Rift. Earth and Planetary Science Letters, 153: 67~83
    
    60 Bindeman I N, Eiler J M, Yogodzinski G M, Tatsumi Y, Stern C R, Grove T L, Portnyagin M, Hoernle K and Danyushevsky L V. 2005. Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth and Planetary Science Letters, 235, 480~496
    
    61 Blundv J D and Wood B J. 1991. Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts and hydrothermal solutions. Geochimica et Cosmochimica Acta, 55: 193-209
    
    62 Borg L E and Clynne M A. 1998. The petrogenesis of felsic calc-alkaline magmas from. the southernmost Cascades, California. Journal of Petrology, 39: 1197~1222
    
    63 Castro A, Pation Douce A E, Corretge L G, de la Rosa J D, El-Baid M, El-Hmidi H. 1999. Origin of peraluminous granites and granodiorites, Iberian massif, Spain: an experimental test of granite petrogenesis. Contributions to Mineralogy and Petrology, 135:255~276
    
    64 Chen, B, Jahn, B.M, Wilde, S. and Xu, B. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications. Tectonophysics, 328: 157~182
    
    65 Chen F K, Satir M, Ji J and Zhang D. 2002. Nd-Sr-Pb isotopes of Tengchong Cenozoic volcanic rocks from western Yunnan, China: evidence for an enriched mantle source. Journal of Asian Earth Sciences, 21: 39~45
    
    66 Condie K C. 1999. Mafic crustal xenoliths and the origin of the lower continental crust. Lithos, 46: 95~101
    
    67 Davis G A, Zheng Y D, Wang C, Darby B J, Zhang C H and Gehrels G. 2001.Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning Provinces, northern China. In: Hendrix, M. S. and Davis, G. A, eds, Paleozoic and Mesozoic tectonic evolution of central Asia: From continental assembly to intracontinental deformation: Boulder, Colorado, Geological Society of America Memoir, 194: 171~197
    
    68 Davies H J Stevenson D J. 1992. Physical model of source region of subduction zone volcanics: Journal of Geophysical Research, 97: 2037~2070
    
    69 Dewey J F. 1989. Tectonic evolution of the India/Eurasia collision zone. Eclogue Geological Helvetia, 82: 717~734
    
    70 Dupuy C, Liotard J M and Distal J. 1992. Zr/Hf fractionation in intraplate basaltic rocks: carbonate metasomatism in the mantle source. Geochimica et Cosmochimica Acta, 56: 2417~2423
    
    71 Ellis D J, Thompson A B. 1986. Subsolidus and partial melting reaction in the quartz excess CaO + MgO + Al_2O_3+ Si_O_2+ H_2O system under water excess and water deficient conditions to 10 kb: some implications for the origin of peraluminus melts from mafic rocks. Journal of Petrology, 27: 91~121
    
    72 Eiler J M, McInnes B, Valley J W, Graham C M and Stolper E M. 1998. Oxygen isotope evidence for slab-derived fluids in the sub-arc mantle. Nature, 293: 777~781
    
    73 Engebretson, D. C, Cox, A. and Gordon, R. G. 1985. Relative motions between oceanic and continental plates in the Pacific basins. Geological Society of America Special Paper, 206: 1~59
    
    74 Fan Q C, Liu R X, Li H M, Li N, Sui J L, Lin Z R. 1998. Zircon geochronology and rare earth element geochemistry of granulite xenoliths from Hannuoba. Chinese Sciences Bulletin. 43, 1510~1515
    
    75 Fan W M, Guo F, Wang Y J, Lin G and Zhang M. 2001. Post-orogenic bimodal volcanism along the Sulu Orogenic Belt in eastern China. Physics and Chemistry of the Earth (A), 26: 733~746
    
    76 Fan W M, Guo F, Wang Y J, Lin G. 2003. Late Mesozoic calc-alkaline volcanism of Post-orogenic extension in the northern Da Hinggan Mountains, northeastern China. Journal of Volcanology and Geothermal Research, 121: 115~135
    
    77 Fan W M, Guo F, Wang Y J, Zhang Ming. 2004. Late Mesozoic volcanism in the northern Huaiyang tectono-magmatic belt, central China: partial melts from a lithospheric mantle with subducted continental crust relicts beneath the Dabieorogen? Chenmical Geology, 209: 27~48
    
    78 Fan W M, Zhang H F, Baker J, Jarvis K E, Mason P R D and Menzies M A. 2000. On and off the North China Craton: where is the Archean keel? Journal of Petrology, 41: 933~50
    
    79 Faure M, and Natal'in B. 1992. The geodynamic evolution of the eastern Eurasian margin in Mesozoic times. Tectonophysics, 208: 397~411
    
    80 Foley S. 1992. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin potassic alkaline magmas. Lithos, 28: 435~453
    
    81 Fraser K J, Hawkesworth C J, Erlank A J, Mitchell R H and Scott-Smith B H. 1985. Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth and Planetary Science Letters, 57~70
    
    82 Gaelle Prouteau, Bruno S, Michel P and Rene M. 2001. Evidence for mantle metasomatism by Hydrous silicic melts derived from subducted oceanic crust. Nature, 410: 197~220
    
    83 Gao S, Luo T C, Zhang B R, Han Y W, Zhao Z D and Hu Y K. 1998. Chemical comosition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta. 62(11): 1959~1975
    
    84 Gao S, Roberta L. Rudnick, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, John Ayers, Wang X C and Wang Q H. 2004. Recycling lower continental crust in the North China craton. Nature, 432(16): 892~897
    
    85 Gill J B. 1981. Orogenic Andesites and Plate Tectonics. Springer Verlag, New York, pp385
    
    86 Gregoire M, Moine B N, O'Reilly S Y, Cottin J Y and Giret A. 2001. Trace element residence and partitioning in mantle xenoliths metasomatized by highly alkaline, silicate- and carbonate-rich melts (Kerguelen Island, Indian Ocean). Journal of Petrology, 41: 477~509
    
    87 Griffin W L, Zhang A D, O'Reilly S Y, and Ryan C G. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In Mantle Dynamics and Plate Interactions in East Asia (eds. M. F. J. Flower, S. L. Chung, C. H. Lo, and T. Y. Lee). American Geophysical Union, Geodynamics Series 27: 107-126.
    
    88 Guo F, Fan W M, Li C W. 2006. Geochemistry of late Mesozoic adakites from the Sulu belt, eastern China: magma genesis and implications for crustal recycling beneath continental collisional orogens. Geological Magazine, 146: 1~13
    
    89 Guo F, Fan W M, Wang Y J, Lin G. 2002. Geochemistry of late Mesozoic maficrocks in west Shanddong Province: characterizing the lost lithospheric mantle beneath North China Block. Geochemical Journal, 37: 63~77
    
    90 Guo F, Fan W M, Wang Y J, Zhang M. 2004. Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China: implications for enrichment processes beneath continental collisional belt. Lithos, 78(3): 291~305
    
    91 Grove T L and Kinzler R J. 1986. Petrogenesis of andesites. Annual Review of Earth and Planetary Science Letters, 14: 417~454
    
    92 Hawkesworth C J, Turner S, Gallagher K, Hunter A, Bradshaw T and Rogers N. 1995. Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range. Journal of Geophysical Research, 100: 10271~10286
    
    93 Hawkesworth C J, Turner S, McDermott F, Peate D and van Calsteren P. 1997. U-Th isotopes in arc magmas: implications for element transfer from the subducted crust. Science, 276: 551~555
    
    94 Hong D W, Zhang J S, Wang T, Wang S G and Xie X L. 2004. Continental crustal growth and the supercontinental cycle: evidence from the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 23: 799~813
    
    95 Huang X L, Xu Y G, Liu D Y. 2004. Geochronology, petrology and geochemistry of the granulite xenoliths from Nushan, east China: Implication for a heterogeneous lower crust beneath the Sino-Korean Craton. Geochimica et Cosmochimica Acta, 68(1): 127~149
    
    96 Hunter A G and Blake S. 1995. Petrogenetic evolution of a transitional tholeiitic-calc-alkaline series: Towada volcano, Japan. Journal of Petrology, 36: 1579~1605
    
    97 Jakes P and White A J R. 1972. Major and trace element abundance in volcanic rocks of orogenic areas. Geological Society America Bulletin, 83: 29~39
    
    98 Jahn B M and Zhang Z Q. 1984. Archean granulite gneisses from eastern Hebei Province, China: rare earth geochemistry and tectonic implications. Contributions to Mineralogy and Petrology, 85: 224~243
    
    99 Jahn B M, Wu F Y, Capdevila R, Martineau F, Wang Y X and Zhao Z H. 2001. Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing'an Mountain in NE China. Lithos, 59: 171~198
    
    100 Jahn B M, Wu F Y, Lo C H, Tsai C H. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopicevidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 157(1-2): 119~146
    
    101 Jia D C, Hu R Z, Lu Y and Qiu X L. 2004. Collision belt between the Khanka block and the North China block in the Yanbian Region, Northeast China. Journal of Asian Earth Sciences, 23: 211~219
    
    102 Kepezhinskas P K, Defant M J and Drummond M S. 1996. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geochimica et Cosmochimica Acta, 60: 1217~1229
    
    103 Kepezhinskas P K, McDermott F, Defant M J, Hochstaedter A, Drummond MS, Hawkesworth C J, Koloskov A, Maury R C and Bellon H. 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochimica et Cosmochimica Acta, 61: 577~600
    
    104 Kinoshita O. 1995. Migration of igneous activities related to ridge subduction in Southwest Japan and the East Asian continental margin from the Mesozoic to the Paleogene. Tectonophysics, 245: 25~35
    
    105 Koppers A A P. 2002. ArArCALC-software for ~(40)Ar/~(39)Ar age calculations. Computers and Geosciences, 28(5): 605~619
    
    106 Lapierre H, Jahn B M, Charvet J, et al. 1997. Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang Province and their relationship with the tectonic activity in southeastern China. Tectonophysics, 274: 321~338
    
    107 Li J Y. 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, xx: 1~18
    
    108 Li X H. 2000. Cretaceous magmatism and lithospheric extension in Southeast China. Journal of Asian Earth Sciences, 18: 293~305
    
    109 Li X H, Chung S L, Zhou H W, et al. 2004. Jurassic intraplate magmatism in southern Hunan-eastern Guangxi: ~(40)Ar/~(39)Ar dating, geochemistry, Sr-Nd isotopes and implications for the tectonic evolution of SE China. In: Malpas J, et al. (eds.), Aspects of tectonic evolution of China. Geological Society, London, Special Publications, 226: 193~215
    
    110 Liegeois J P, Navez J, Hertogen J and Black R. 1998. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos, 45: 1~28
    
    111 Liu D Y, Nutman A P, Compston W, Wu J S, Shen Q H. 1991. Remnants of3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20: 339~342
    
    112 Liu J Q, Han J T and Fyfe William S. 2001. Cenozoic episodic volcanism and continental rifting in northeast China and possible link to Japan Sea development as revealed from K-Ar geochronology. Tectonophysics, 339: 385~401
    
    113 Liu J L, Gregory A. Davis, Lin Z Y, Wu F Y. 2005a. The Liaonan metamorphic core complex, Southeastern Liaoning Province, North China: A likely contributor to Cretaceous rotation of Eastern Liaoning, Korea and contiguous areas. Tectonophysics, 407: 65~ 80
    
    114 Liu W, Siebel W, Li X J and Pan X F. 2005b. Petrogenesis of the Linxi granitoids, northern Inner Mongolia of China: constraints on basaltic underplating. Chemical Geology, 219: 5~35
    
    115 Liu Y S, Gao S, Jin S Y, Hu S H, Sun M, Zhao Z B and Feng J L. 2001. Geochemistry of lower crustal xenoliths from Neogene Hannuoba Basalt, North China Craton: Implications for petrogenesis and lower crustal composition. Geochimica et Cosmochimica Acta, 65(15): 2589~2604
    
    116 Liu Y S, Gao S, Yuan H L, Zhou L, Liu X M, Wang X C, Hu Z C and Wang L S. 2004. U-Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: insights on evolution of lower continental crust. Chemical Geology, 211: 87~109
    
    117 Lopeza S, Castroa A and Garcia-Cascob A. 2005. Production of granodiorite melt by interaction between hydrous mafic magma and tonalitic crust. Experimental constraints and implications for the generation of Archaean TTG complexes. Lithos, 79: 229~250
    
    118 Ludwig K R. 2001. ISOPLOT: a plotting and regression program for radiogenic isotope data, version 2.49. Berkeley, Geochron. Cent. Spec. Publ. la
    
    119 McKenzie D P and Bickle M J. 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 32: 625~679
    
    120 Menzies M A, Fan W M. and Zhang M. 1993. Paleozoic and Cenozoic lithoprobes and the loss of >120 km of Archean lithosphere, Sino-Korean Craton, China. In Magmatic Processes and Plate Tectonics (eds H. M. Pichard, T. Alabaster, N. B. W. Harris and C. R. Neary), Geological Society of London, Special Publication, 71~78
    121 Menzies M A, Rogers N, Tindle A and Hawkesworth C J. 1987. Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere -lithosphere interaction. In: Menzies M A and Hawkesworth C J (eds), Mantle Metasomatism, Academic Press, London, 313~361
    
    122 Miao L C, Fan W M, Liu D Y, Zhang F Q, Jian P, Guo F, Tao H. and Shi Y R. 2006. Geochronology and geochemistry of the Hegenshan ophiolitic complex: implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling orogenic belt, China. Journal of Asian Earth Sciences, in press.
    
    123 Middlemost E A G. 1994. Naming materials in the magma/igneous rock system. Earth Sciences Review, 37: 215~224
    
    124 Miller C, Schuster R, Kloetzli U, Frank W and Purtscheller F. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-0 isotopic constraints for mantle source characteristics and magma genesis. Journal of Petrology, 40: 1399~1424
    
    125 Morra V, Secchi F A G., Melluso L and Franciosi L. 1997. High-Mg subduction-related Tertiary basalts in Sardinia, Italy. Lithos, 40: 69~91
    
    126 Morrison G W. 1980. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 13: 97~108
    
    127 Mysen B O, Virgo D and Seifert F A. 1982. The structure of silicate melts: Implications for chemical and physical properties of natural magma. Reviews of Geophysics and Space Physics, 20, 353-383
    
    128 Nakamura E, McCulloch M T, Campbell I H. 1990. Chemical geodynamics in the back-arc region of Japan based on the trace element and Sr-Nd isotopic compositions. Tectonophysics, 174: 207~233
    
    129 Nguyen Hoang, Kozo Uto. 2003. Geochemistry of Cenozoic basalts in the Fukuoka district (northern Kyushu, Japan): implications for asthenosphere and lithospheric mantle interaction. Chemical Geology, 198: 249~268
    
    130 Nicholls I and Ringwood A E. 1973. Effect of water on olivine stability in tholeiites and the production of silica-saturated magmas in the island-arc environment. Journal of Geology, 81, 285-300
    
    131 Northrup C J, Royden L H. and Burchfiel B C. 1995. Motion of the Pacific plate relative to Euroasia and its potential relation to Cenozoic extrusion along the eastern margin of Eurasia. Geology, 23: 719~722
    132 Patino Douce A E and Beard J S. 1995. Dehydration melting of biotite gneiss and quartz amphobolite from 3 to 15 kba. Journal of Petrology, 36: 707-738
    
    133 Patino Douce A E and Beard J S. 1996. Effects of P, f (O_2) and Mg/Fe ratio on dehydration melting of model metagreywackes. Journal of Petrology, 37: 999-1024
    
    134 Peacock S M. 1990. Fluid processes in subduction zones. Science, 248, 329-337
    
    135 Peacock S M. 1996. Thermal and petrologic structure of subduction zones, in Bebout, G.E., et al.,eds., Subduction: Top to Bottom: American Geophysical Union Geophysical Monograph 96, p. 119-133
    
    136 Petford N, Atherton M P. 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. Journal of Petrology, 37: 1491~1521
    
    137 Plank T. 2005. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents. Journal of Petrology, 46(5): 921~944
    
    138 Prouteau G, Scaillet B, Pichavant M. and Maury R C. 2001. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 410: 197~200
    
    139 Qi L, Hu J and Gregoire D C. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51: 507~513
    
    140 Rapp R P, Shimizu N, Norman M D and Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology, 160: 335~356
    
    141 Rapp R P and Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology, 36:891~931
    
    142 Ratajeski K, Sisson T W, Glazner A F.2005.Experimental and geochemical evidence for derivation of the El Capitan Granite, California, by partial melting of hydrous gabbroic lower crust.gabbroic lower crust. Contributions to Mineralogy and Petrology, 149: 713~734
    
    143 Reagan M K, Volpe A M and Cashman K V. 1992. ~(238)U and ~(232)Th series chronology of phonolite fractionation at Mount Erebus, Antarctica. Geochimica et Cosmochimica Acta, 56: 1401-1407
    
    144 Renne P R, Swisher C C, Deino A L, Owens T L, DePaolo D J and Karner D B.1998. Intercalibration of standards, absolute ages and uncertainties in ~(40)Ar/~(39)Ar dating. Chemical Geology, 145: 117~152
    
    145 Ringwood A E. 1990. Slab-mantle interactions. Chemical Geology, 82:187~207
    
    146 Rogers N W, Hawkesworth C J and Ormerod D S. 1995. Late Cenozoic basaltic magmatism in the Western Great Basin, California and Nevada. Journal of Geophysical Research, 100: 10287~10301
    
    147 Rotturaa A, Bargossia G M, Caggianellib A, Del Moroc A, Visonad D and Trannea C A. 1998. Origin and significance of the Permian high-K calc-alkaline magmatism in the central-eastern Southern Alps, Italy. Lithos, 45: 329~348
    
    148 Rudnick R L. 1992. Xenoliths—samples of the lower continental crust. In: Fountain, D M, Arculus R, Kay R W. (Eds.). Continental Lower Crust. Elsevier, New York, pp. 269~316
    
    149 Rudnick R L and Fountain D M. 1995. Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33: 267~309
    
    150 Rudnick R L and Gao S. 2003. Composition of the Continental Crust, pp. 1- 64. In The Crust (ed. Rudnick, R.L.) Vol. 3 Treatise on Geochemistry (eds. Holland, H. D. and Turekian, K.K.). Elsevier-Pergamon, Oxford.
    
    151 Rudnick R L, Gao S, Ling W L, Liu Y S and McDonough W F. 2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos, 77(1-4): 609~637
    
    152 Sen C and Dunn T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 Gpa: implications for the origin of adakite. Contributions to Mineralogy and Petrology, 117: 394~409
    
    153 Shao J, Mou B, He G, Zhang L. 1997. Geological effects in tectonic superposition of Paleo-Pacific domain and Paleo-Asian domain, Sciences in China (series D), 40: 634~640
    
    154 Shimoda G, Tatsumi Y, Nohda S, Ishizaka K and Jahn B M. 1998. Setouchi high-Mg andesites revisited: geochemical evidence for melting of subducting sediments. Earth and Planetary Science Letters, 160: 479~492
    
    155 Sisson T W, Ratajeski K, Hankins W B, Glazner A F. 2005. Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology, 148: 635-661
    
    156 Skjerlie Kjell P and Johnston A Dana. 1996. Vapor-absent melting fron 10 to 20kbar of crustal rocks that contain multiple hydrous phases: Implications for anatexis in the deep to very deep continental crust and active continental margins. Journal of Petrology, 37: 661~691
    
    157 Sovelev A V, Hofmann A W, Nikogosian K. 2000. Recycled oceanic crust observed in ghost plagioclase within the source of Mauna Loa 1 avas. Nature, 404: 986-990
    
    158 Steiger R H and Jager E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmo-chronology. Earth and Planetary Science Letters, 36: 359~362
    
    159 Stern R A and Hanson G N. 1991. Archean high-Mg granodiorite: a derivative of light rare earth elementenriched monzodiorite of mantle origin. Journal of Petrology, 32: 201~238
    
    160 Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes. In: Saunder A D and Norry M J (eds), Magmatism in the ocean basins, Geol. Soc. Spec. Pub. 42:313~345
    
    161 Susana Lopez and Antonio Castro. 2001. Determination of the fluid-absent solidus and supersolidus phase relationships of MORB-derived amphibolites in the range 4-14 kbar. American Mineralogist, 86: 1396~1403
    
    162 Taira A. 2001. Tectonic evolution of the Japanese Island Arc system. Annual Review of Earth and Planetary Science Letters, 29: 109~134
    
    163 Takahiro Hosono, Takanori Nakano and Hiroyasu Murakami. 2003. Sr-Nd-Pb isotopic compocitions of volcanic rocks around the Hishikari gold deposit, southwest Japan: implications for the contribution of a felsic lower crust. Chemical Geology, 201: 19-36
    
    164 Tang K D. 1990. Tectonic development of Paleozoic fold belts at the north margin of the Sino-Korean Craton. Tectonics, 9(2): 249~260
    
    165 Tatsumi Y. 2001. Geochemical modeling of partial melting of subducting sediments and subseguent melt-mantle interaction: Generation of high-Mg andesites in the Setouchi volcanic belt, southwest Japan. Geology, 29: 323~326
    
    166 Tatsumi Y. 2006. High-Mg andesites in the Setouchi volcanic belt, southwestern Japan: analogy to Archean magmatism and continental crust formation? Annual Review to Earth and Planetary Science, 34: 467~499
    
    167 Tatsumi Y, Eggins S. 1995. Subduction zone magmatism: Cambridge, U.K.,Blackwell Science, 211p
    
    168 Tatsumi Y and Isoyama H. 1988. Transportation of beryllium with H_2O at high pressures: implication for magma genesis in subduction zones. Geophysical Research Letters, 15:180~183
    
    169 Taylor S R and McLemann S M. 1985. The continental crust: Its composition and evolution. Blackwell, Oxford Press, p312
    
    170 Testu K, Tatsumi Y and Nakano S. 1997. Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth and Planetary Science Letters, 148: 193~205
    
    171 Thompson A B and Connolly J A D. 1995. Melting of the continental crust: Some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings. Journal of Geophysical Research, 100(B8): 15565-15579
    
    172 Tracy Rushmer. 1993. Experimental high-presssure granulites: Some applications to natural mafic xenolith suites and Archean granulite terranes. Geology, 21:411~414
    
    173 Tsuchiya N, Suzuki S, Kimura J I and Kagami H. 2005. Evidence for slab melt/mantle reaction: petrogenesis of Early Cretaceous and Eocene high-Mg andesites from the Kitakami Mountains, Japan. Lithos, 79: 179-206
    
    174 Turner S, Arnaud N, Liu J, Hawkesworth C J, Harris N, Kelley S, van Calsteren P and Peng W. 1996. Post-collision, shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning of the lithosphere and the source of oceanic basalts. Journal of Petrology, 37: 45~71
    
    175 van der Voo R, Spakman W. and Bijwaard H. 1999. Mesozoic subducted slabs under Siberia. Nature, 397: 246~249
    
    176 Wang P J, Liu W Z, Wang S X, Song W H. 2002. ~(40)Ar/~(39)Ar and K/Ar dating on the volcanic rocks in the Songliao basin, NE China: constraints on stratigraphy and basin dynamics. International Journal of Earth Sciences (Geol Rundsch), 91: 331~340
    
    177 Wang T, Zheng YD, Li T B, Gao Y J. 2004. Mesozoic granitic magmatism in extensional tectonics near the Mongolian border in China and its implications for crustal growth. Journal of Asian Earth Sciences, 23: 715~729
    
    178 Wang Y J, Fan W M, Guo F, et al. 2003. Geochemistry of Mesozoic MaficRocks Adjacent to the Chenzhou-Linwu Fault, South China: Implication for the Lithospheric Boundary between the Yangtze and Cathaysia Blocks. International Geology Review, 45:263~286
    
    179 Wang Y J, Fan W M, Peng T P, et al. 2005. Elemental and Sr-Nd isotopic systematics of the early Mesozoic volcanic sequence in southern Jiangxi Province, South China: petrogenesis and tectonic implications. International Journal of Earth Sciences, 94: 52~65
    
    180 Wang Y J, Fan W M, Zhang H F and Peng T P. 2006. Early Cretaceous gabbroic rocks from the Taihang Mountains: Implications for a paleosubduction-related lithospheric mantle beneath the central North China Craton. Lithos, 86(3-4): 281~302
    
    181 Wilde S, Zhou X H, Wu F Y. 2000. Extension of a newly identified 500 Ma metamorphic terrane in North East China: further U±Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China. Tectonophysics, 328: 115~130
    
    182 Wilde S A, Zhou X H, Nemchin A A, Sun M. 2003. Mesozoic crust-mantle interaction beneath the North China craton: a consequence of the dispersal of Gondwanaland and accretion of Asia. Geology, 31: 817~820
    
    183 Wilhelm Springer and Hans Adolf Seck. 1997. Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas. Contributions to Mineralogy and Petrology, 127: 30~45
    
    184 Wolf M B, and Wyllie P J. 1994. Dehydration-melting of amphibolite at 10 kbar: effects of temperature and time. Contributions to Mineralogy and Petrology, 115: 369~383
    
    185 Wu F Y, Jahn B M, Wilde S, Sun D Y. 2000. Phanerozoic crustal growth: U-Pb and Sm-Nd isotopic evidence from the granite in northeastern China. Tectonophysics, 328: 89~113
    
    186 Wu F Y, Jahn B M, Wilde S M, et al. 2003a. Highly fractionated I-typed granites in ME China (I): Geochronology and petrogenesis. Lithos, 66: 241~273
    
    187 Wu F Y, Jahn B M, Wilde S M, et al. 2003b. Highly fractionated I-typed granites in ME China (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos, 67: 191~204
    
    188 Wu F Y, Sun D Y, Li H M, et al. 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology, 187: 143~173
    189 Wu F Y, Wilde S A, Zhang, G L and Sun D Y. 2004a. Geochronology and petrogenesis of the post-orogenic Cu-Ni sulfide-bearing mafic-ultramafic complexes in Jilin Province, NE China. Journal of Asian Earth Sciences, 23: 781~797
    
    190 Wu F Y, Sun D Y, Jahn B M, Wilde S. 2004b. A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns. Journal of Asian Earth Sciences, 23: 731~744
    
    191 Wu F Y, Lin J Q, Wilde Simon A, Zhang X O, Yang J H. 2005a. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 233: 103~119
    
    192 Wu F Y, Zhao G C, Simon A. Wilde, Sun D Y. 2005b. Nd isotopic constraints on crustal formation in the North China Craton. Journal of Asian Earth Sciences, 24(5): 523-545
    
    193 Xiong X L, Adam J and Green T H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chemical Geology, 218: 339~359
    
    194 Xu Y G. 2001. Thermo-tectonic destruction of the Archean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, Timing and Mechanism. Physics and Chemistry of the Earth (A), 26: 747~57
    
    195 Xu Y G, Chung S L, Jahn B M, Wu G Y. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southern China. Lithos, 58: 145-168
    
    196 Xu Y G. 2002. Evidence for crustal components in the mantle and constraints on crustal recycling mechanisms: pyroxenite xenoliths from Hannuoba, North China. Chemical Geology, 182: 301~322
    
    197 XuY G, Menzies M A, Thirlwall M F, Huang X L, Liu Y and Chen X M.. 2003. "Reactive" harzburgites from Huinan, NE China: Products of the lithosphere-asthenosphere interaction during lithospheric thinning? Geochimica et Cosmochimica Acta, 67(3): 487~505
    
    198 XuYG, Huang X L, Ma J L, Wang Y B, Iizuka Y, Xu J F, Wang Q and Wu X Y. 2004. Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton: constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contributions to Mineralogy and Petrology, 147: 750-767
    199 XuX S, Dong C W, Li W X, et al. 1999. Late Mesozoic intrusive complexes in the coastal area of Fujian, SE China: the significance of the gabbro - diorite - granite association. Lithos, 46: 299~315
    
    200 Yang J H, Chung S L, Zhai M G and Zhou X H. 2004. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 73(3-4): 145~160
    
    201 Yang J H, Wu F Y, Chung S L, Wilde S A, Chu M F. 2006. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence. Lithos, 89(1-2): 89~106
    
    202 Yu J H, Xu X S, O'Reilly Suzanne Y, Griffin W L and Zhang M. 2003. Granulite xenoliths from Cenozoic Basalts in SE China provide geochemical fingerprints to distinguish lower crust terranes from the North and South China tectonic blocks. Lithos, 6 (1-2): 77-102
    
    203 Zhang H F, Sun M, Zhou X H, Fan W M and Yin J F. 2002. Mesozoic lithosphere destruction beneath the North China Craton: evidence from major, trace element, and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy and Petrology, 144: 241~53
    
    204 Zhang H F, Sun M, Zhou X H, Fan W M and Zheng J P. 2003. Secular evolution of the lithosphere beneath the eastern North China Craton: evidence from Mesozoic basalts and high-Mg andesites. Geochimica et Cosmochimica Acta. 67: 4373~4387
    
    205 Zhang H F, Sun M, Zhou M F, Fan W M, Zhou X H and Zhai M G. 2004. Highly heterogeneous Late Mesozoic lithospheric mantle beneath the North China Craton: evidence from Sr-Nd-Pb isotopic systematics of mafic igneous rocks. Geological Magazine, 141 (1): 55~62
    
    206 Zhang H F, Sun M, Zhou X H and Yin J F. 2005. Geochemical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications. Lithos, 81: 297~317
    
    207 Zhang M, Suddaby P, Thompson R N, Thirlwall M F and Menzies M A. 1995. Potassic volcanic rocks in NE China: geochemical constraints on mantle source and magma genesis. Journal of Petrology, 36: 1275~1303
    
    208 Zhang Y B, Wu F Y, Wilde S A, Zhai M G, Lu X P and Sun D Y. 2004. Zircon U-Pb ages and tectonic implications of 'Early Paleozoic' granitoids at Yanbian,Jilin Province, northeast China. The Island Arc, 13: 484~505
    
    209 Zhao X X and Coe Rs. 1996. Paleomagnetic constraints on the paleogoraphy of China: Implications for Gondwanaland. Abstracts of 30th IGC, Vol. 1, pp231
    
    210 Zhou X H, Sun M, Zhang G H, Chen S H. 2002. Continental crust and lithospheric mantle interaction beneath North China: isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean craton. Lithos, 62: 111~124
    
    211 Zhou X M and Li W X. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326: 269~287
    
    212 Zonenshain L P, Kuzmin M I and Kononov M V. 1985. Absolute reconstructions of the Paleozoic oceans. Earth and Planetary Science Letters, 74: 103~116
    
    213 Zonenshain L P. KuzminMI, NatapovLM. 1990. Geology of the USSR: a plate-tectonic synthesis. In: Page B M, ed. AGU Geodynamics Series21, 242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700