川西新元古代岩浆岩的SHRIMP锆石U-Pb年代学、元素和Nd-Hf同位素地球化学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扬子块体西缘的新元古代岩浆活动非常强烈,其成因研究对于认识Rodinia超大陆的演化具有重大的意义。目前在地学界对这些岩浆岩的成因和形成的构造背景存在很大争议,主要是地幔柱和岛弧成因之争。本文选取川西康滇裂谷中广泛分布的基性岩墙群和与其密切共生的花岗质岩石(瓦斯沟杂岩体和石棉花岗岩体)为研究对象,在野外地质观察的基础上,通过SHRIMP锆石U-Pb年代学、岩石学、地球化学和Nd-Hf同位素等综合研究探讨这些岩浆岩的形成时代、成因及其大地构造意义。
     川西瓦斯沟杂岩体和石棉花岗岩体形成于新元古代,为Ⅰ型花岗岩,岩浆经历了斜长石、角闪石、磷灰石和Fe-Ti氧化物等的分离结晶作用。样品具有明显的Nb-Ta亏损等类似于岛弧岩浆的地球化学特征,但同时也表现出强烈的Sr、P、Eu负异常,并具有较高的微量元素含量,这与典型的形成于岛弧环境岩石不同,而与形成于板内环境的岩石相类似。本文的研究认为这些新元古代花岗质岩石是板内岩浆活动的产物,来源于初生岛弧地壳的部分熔融,并受到古老地壳物质的混染。它们的Nb-Ta亏损是继承了源岩(初生岛弧地壳)的地球化学特征,不代表其形成于岛弧构造环境。
     在川西康定-泸定-石棉地区发育大量的基性岩墙群,与上述新元古代花岗质岩石在时-空上密切共生,尤其在瓦斯沟地区,基性岩墙与瓦斯沟花岗质杂岩呈现明显的岩浆混合现象。野外地质关系和SHRIMP锆石U-Pb年龄测定结果表明,这些岩墙群的侵位结晶发生在780-760 Ma。基性岩墙为拉斑玄武质系列岩石,岩
Neoproterozoic magmatic rocks are widespread in western margin of the Yangtze block, and their origin and genesis have significant implications for understanding the evolution of the Rodinia supercontinent. At the present time, the genesis and tectonic setting of these magmatic rocks have been an issue of hot debate, i.e., mantle plume vs island arc in origin. On the basis of field investigations, mafic dyke swarms and associated granitoid rocks including the Wasigou complex and the Shimian granite from western Sichuan were selected for comprehensive studies on SHRIMP zircon U-Pb geochronology, petrology, geochemistry and Nd-Hf isotope in this paper, with the aim of revealing their petrogenesis and tectonic implications.Granitoid rocks within the Wasigou complex and Shimian granite from the Kangdian Rift of western Sichuan are of metaluminous I-type. They were emplaced in Neoproterozoic, and experienced the fractional crystallization of plagioclase, hornblende, apatite and Ti-Fe oxides. These granitoids display some geochemical similarities to rocks formed in the island-arc environments such as Nb-Ta depletion. However, they are also depleted in Sr, P and Eu, and high in most other trace elements, which differ from those of typical rocks formed in the island-arc environments, but resemble those of intra-plate granitoids. It is suggested that these granitoid were derived from partial melting of pre-existing, young island arc crust, with contamination of old crust materials during magma ascending and emplacement. Their arc-like geochemical features (such as Nb-Ta depletion) should have been inherited from the
    protoliths, rather than inflection of their tectonic setting when the granitoids formed.There are abundant mafic dykes in the Kangding-Luding-Shimian region within the Kangdian Rift, which were spatially and temporally coeval with the Wasigou complex and Shimian granite. In the Wasigou region, mafic dykes show clear phenomena of magma mingling with granitoid wall rocks. Mafic dykes are tholeiite in composition. They expereinced fractional crystallization of olivine, apatite, etc. Field geologic observation and SHRIMP U-Pb zircon data indicate that these mafic dykes were formed at 780 ~ 760 Ma. They are characterized by two-fold geochemical characteristics of intra-plate and island arc basalts. The highest eNd(T) (~8) and eHf(T) (~17) values for the mafic dykes suggest that mafic magmas were derived from depleted asthenosphere mantle source. Modal calculation for the high MgO samples suggests that their melting temperature is about 1450—1470 °C, significantly higher than the potential temperature of 1280—1350 °C for normal asthenosphere mantle. In addition, these high MgO mafic dykes are also high in Fe/Mn ratios, suggesting an anomalously hot mantle plume for origin of these mafic dykes. The mafic magmas were contaminated by young island arc crust to variable degrees while ascending and emplacement, resulting in some "arc-like" geochemical features for some highly contaminated samples.These ca. 780—760 Ma mafic dykes in western Sichuan have a close genetic relationship in time and space to the plume-related ca. 780 Ma mafic magmatic rocks in western North America and ca. 755 Ma mafic dyke swarms in NW Australia. Our results support the reconstruction model of Rodinia in which the South China Block was located between Australia and Laurentia.
引文
1.陈玉禄,杨更.四川石棉复式花岗岩体岩石谱系单位的建立.四川地质学报,2000,20(2):100-105
    2.陈岳龙,罗照华,赵俊香,等.从锆石SHRIMP年龄及岩石地球化学特征论四川冕宁康定杂岩的成因.中国科学,D辑,2004,34(8):687-697
    3.董传万,李武显,陈小明,等.闽东南晚中生代岩浆混合作用:平潭火成杂岩的岩石学证据.自然科学进展,1998,8(5):581-586
    4.葛文春,李献华,李正祥,等.宝坛地区透闪石化镁铁质岩石成因的地质地球化学证据.地球化学,2000,29(3):253-258
    5.葛文春,李献华,梁细荣,等.桂北元宝山宝坛地区约825 Ma镁铁-超镁铁岩的地球化学及其地质意义.地球化学,2001a,30(2):123-130
    6.葛文春,李献华,李正祥,等.龙胜地区镁铁质侵入体:年龄及其地质意义.地质科学,2001b,36(1):112-118
    7.葛文春,李献华,李正祥,等.桂北新元古代两类过铝花岗岩的地球化学研究.地球化学,2001c,30(1):24-34
    8.葛小月,李献华,周汉文.琼南晚白垩世基性岩墙群的年代学、元素地球化学和Sr-Nd同位素研究.地球化学,2003,32(1):11-20
    9.郭建强,游再平,杨军,等.川西石棉地区田弯与扁路岗岩体的锆石U-Pb定年.矿物岩石,1998,18(1):91-94
    10.侯贵廷,李江海,钱祥麟.晋北地区中元古代岩墙群的地球化学特征和大地构造背景.岩石学报,2001,17(3):352-357
    11.贾大成,胡瑞忠,谢桂青.湘东北中生代基性岩脉微量元素地球化学特征及岩石成因.地质地球化学,2002,30(3):33-39
    12.赖绍聪,杨瑞瑛,张国伟.南秦岭西乡群孙家河组火山岩形成构造背景及其大地构造意义的讨论.地质科学,2001,36(3):295-303
    13.赖绍聪,李三忠,张国伟.陕西西乡群火山-沉积岩系形成构造环境:火山岩地球化学约束.岩石学报,2003,19(1):41-52
    14.李江海,何文渊,钱祥麟.元古代基性岩墙群的成因机制、构造背景及其古板块再造意义.高校地质学报,1997,3(3):272-281
    15.李武显,董传万,周新民.平潭和漳州深成杂岩中斜长石捕虏晶与岩浆混合作用.岩石学报,1999,15(2):286-290
    16.李献华.Sm-Nd模式年龄和等时线年龄的适用性与局限性.地质科学,1996,31(1):97-104
    17.李献华,胡瑞忠,饶冰.粤北白垩纪基性岩脉的年代学和地球化学.地球化学,1997,26(2):15-30
    18.李献华,李正祥,周汉文,等.扬子块体西缘新元古代双峰式火山岩的锆石U-Pb年龄和岩石化学特征.地球化学,2001,30(4):315-322
    19.李献华,李正祥,周汉文,等.川西南关刀山岩体的SHRIMP锆石U-Pb年龄、元素和Nd同位素地球化学——岩石成因与构造意义.中国科学,D辑,2002a,32(增刊):60-68
    20.李献华,李正祥,周汉文,等.川西新元古代玄武质岩浆岩的锆石U-Pb年代学、元素和Nd同位素研究:岩石成因与地球动力学意义.地学前缘,2002b,9(4):329-338
    21.李献华,刘颖,涂湘林,等.硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定:酸溶与碱熔分解样品方法的对比.地球化学,2002c,31(3):289-294
    22.李献华,周汉文,李正祥,等.川西新元古代双峰式火山岩成因的微量元素和Sm-Nd同位素制约及其大地构造意义.地质科学,2002d,37(3):264-276
    23.李献华,祁昌实,刘颖,等.岩石样品快速Hf分离与MC-ICPMS同位素分析:一个改进的单柱提取色谱方法.地球化学,2005a,34(2):109-114
    24.李献华,祁昌实,刘颖,等.扬子块体西缘新元古代双峰式火山岩成因:Hf同位素和Fe/Mn新制约.科学通报,2005b,50(19):2155-2160
    25.李献华,苏犁,宋彪,等.2004.金川超镁铁侵入岩SHRIMP锆石U-Pb年龄及地质意义.科学通报,49(4):401-402
    26.梁细荣,韦刚健,李献华,等.利用MC-ICPMS精确测定(143)~Nd/(144)~Nd和Sm/Nd比值.地球化学,2003,32(1):91-96
    27.凌洪飞,徐士进,沈渭洲,等.格宗、东谷岩体Nd、Sr、Pb、O同位素特征及其与扬子板块边缘其它晋宁期花岗岩对比.岩石学报,1998,14(3):269-277
    28.刘昌实,朱金初,沈渭洲.等.华南陆壳改造系列花岗岩类型划分和成岩物质来源.地质学报,1990,64(1):43-52
    29.刘鸿允.中国震旦系.北京:科学出版社,1991,1-388
    30.刘颖,刘海臣,李献华.用ICP-MS精确测定岩石样品中的40余种微量元素.地球化学,1996,25(6):552-558
    31.马昌前.造山岩套中镁铁质和长英质岩浆的相互作用研究进展.地质科技情报,2003,22(3):1-8
    32.马芳,穆治国,李江海.前寒武纪基性岩墙群的地球化学特征与岩石成因讨论.地质地球化学,2000,28(4):58-64
    33.马国干,张自超,李华芹,等.扬子地台震旦系同位素年代地层学的研究.宜昌地质矿产研究所所刊,1989,14:83-124
    34.彭澎,翟明国,张华峰,等.华北克拉通1.8 Ga镁铁质岩墙群的地球化学特征及其地质意义:以晋冀蒙交界地区为例.岩石学报,2004,20(3):439-456
    35.邱检生,周金城,张光辉,等.桂北前寒武纪花岗岩类岩石的地球化学与成因.石矿物学杂志,2002,21(3):197-208
    36.任胜利,李继亮,周新华,等.闽北熊山岩墙群年代学、岩石地球化学研究及其大地构造意义.中国科学,D辑,1997,27(2):115-120
    37.邵济安,李献华,张履桥,等.南口-古崖居中生代双峰式岩墙群形成机制的地球化学制约.地球化学,2001,30(6):517-524
    38.邵济安,张履桥,魏春景,等.北京南口中生代双峰式岩墙群的组成及其特征.地质学报,2001,75(2):205-212
    39.沈渭洲,徐士进,王汝成,等.川西丹巴地区变质岩的Rb-Sr年代学研究.高校地质学报,1997,3(4):379-383
    40.沈渭洲,凌洪飞,徐士进,等.扬子板块西缘北段新元古代花岗岩类的地球化学特征和成因.地质论评,2000a,46(5):512-519
    41.沈渭洲,李惠民,徐士进,等.扬子板块西缘黄草山和下索子花岗岩体锆石U-Pb年代学研究.高校地质学报,2000b,6(3):412-416
    42.沈渭洲,高剑峰,徐士进,等.扬子板块西缘泸定桥头基性杂岩体的地球化学特征和成因.高校地质学报,2002a,8(4):380-389
    43.沈渭洲,徐士进,高剑峰,等.四川石棉蛇绿岩套的Sm-Nd年龄及Nd-Sr同位素特征.科学通报,2002b,47(20):1592-1595
    44.沈渭洲,高剑峰,徐士进,等.四川石棉蛇绿岩的地球化学特征及其构造意义.地质论评,2003a,49(1):17-27
    45.沈渭洲,高剑峰,徐士进,等.四川盐边冷水箐岩体的形成时代和地球化学特征.岩石学报,2003b,19(1):27-37
    46.四川省地质局.中华人民共和国区域地质调查报告——石棉幅.1974,1-114
    47.四川省地质矿产局.四川省区域地质志.北京:地质出版社,1991,1-730
    48.宋彪,张玉海,万渝生,等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,2002,48(增刊):26-30
    49.唐红峰,周新民,支利庚.皖南许村晚元古代复合岩墙群的发现及其意义.科学通报,1997,42(1):64-66
    50.王孝磊,周金城,邱检生,等.湖南中-新元古代火山-侵入岩地球化学及成因意义.岩石学报,2003,19(1):49-60
    51.王孝磊,周金城,邱检生,等.湘东北新元古代强过铝花岗岩的成因:年代学和地球化学证据.地质论评,2004,50(1):65-76
    52.吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报,2004,49(16):1589-1604
    53.肖庆辉,卢欣祥.花岗岩构造环境判别方法.见:肖庆辉等(编)花岗岩研究思维与方法.北京:地质出版社,2002,12-52
    54.谢桂青,胡瑞忠,贾大成.赣西北基性岩脉的地质地球化学特征及其意义.地球化学,2002,31(4):329-337
    55.徐义刚.拉张环境中的大陆玄武岩浆作用:性质及动力学过程.见:郑永飞(编)化学地球动力学.北京:科学出版社,1999,119-167
    56.徐义刚,钟孙霖.峨眉山大火成岩省地幔柱活动的证据及其熔融条件.地球化学,2001,30(1):1-9
    57.徐义刚.地幔柱构造、大火成岩省及其地质效应.地学前缘,2002,9(4):341-353
    58.徐义刚,梅厚钧,许继峰,等.峨眉山大火成岩省中两类岩浆分异趋势及其成因.科学通报,2003,48(4):383—387
    59.徐士进,聂桂平.大水沟碲矿含矿斜长角闪岩的锆石U-Pb定年.科学通报,1998,43(8):883-885
    60.徐克勤,胡受奚,孙明志,等.论花岗岩的成因系列——以华南中生代花岗岩为例.地质学报,1983,57(2):107-118
    61.徐克勤,朱金初,刘昌实,等.华南花岗岩类的成因系列和物质来源.南京大学学报,1989,3:1-18
    62.许志琴,侯立玮,王宗秀,等.中国松潘—甘孜造山带的造山过程.北京:地质出版社,1992,1-190
    63.颜丹平,周美夫,宋鸿林,等.华南在Rodinia古陆中位置的讨论——扬子地块西缘变质-岩浆杂岩证据及其与Seychelles地块的对比.地学前缘,2002,9(4):249-256
    64.赵振华.微量元素地球化学原理.北京:科学出版社,1997,1-169
    65.曾广策,肖玉永,杨铸生,等.四川石棉田垮地区的辉绿岩及其与金矿关系.华南地质与矿产,2001a,1-8
    66.曾广策,肖玉永,杨铸生,等.石棉田湾地区的石英角斑岩及其地质意义.四川地质学报,2001b,21(2):74-79
    67.曾文,钟增球,周汉文,等.黄陵地区基性岩墙群的地球化学特征及其地质意义.地球科学——中国地质大学学报,2004,29(1):31-38
    68.张成立,周鼎武,刘颖宇.武当山地块基性岩墙群地球化学研究及其大地构造意义.地球化学,1999,28(2):126-135
    69.张成立,高山,张国伟,等.南秦岭早古生代碱性岩墙群的地球化学及其地质意义.中国科学,D辑,2002,32(10):819-829
    70.张贵山,温汉捷,胡瑞忠,等.闽西基性脉岩成岩方式的判别.矿物岩石地球化学通报,2004a,23(1):62-67
    71.张贵山,温汉捷,裘愉卓.闽西晚中生代基性岩脉的地球化学研究.地球化学,2004b,33(3):243-253
    72.张招崇,王福生.峨眉山大陆溢流玄武岩省苦橄质岩石的高镁橄榄石和高铬尖晶石及其意义.自然科学进展,2004,14(1):70-74
    73.郑永飞.新元古代岩浆活动与全球变化.科学通报,2003,48(16):1705-1720
    74.郑永飞.新元古代超大陆构型中华南的位置.科学通报,2004a,49(8):715-717
    75.郑永飞,吴元保,赵子福,等.大别山北麓发现新元古代低(18)~O岩浆岩.科学通报,2004b,49(14):1468-1470
    76.周金城,王孝磊,邱检生,等.南桥高度亏损N-MORB的发现及其地质意义.岩石矿物学杂志,2003a,22(3):211-216
    77.周金城,王孝磊,邱检生,等.桂北中-新元古代镁铁质.超镁铁质岩的岩石地球化学.岩石学报,2003b,19(1):9-18
    78.周金城,王孝磊,邱检生.江南造山带西段岩浆作用特性.高校地质学报,2005,11(4):527-533
    79.朱维光,邓海琳,刘秉光,等.四川盐边高家村镁铁-超镁铁质杂岩体的形成时代:单颗粒锆石U-Pb和角闪石(40)~Ar/(39)~Ar年代学制约.科学通报,2004a,49(10):985-992
    80.朱维光,刘秉光,邓海琳,等.扬子地块西缘新元古代镁铁.超镁铁质岩研究进展.矿物岩石地球化学通报,2004b,23(3):255—263
    81. Albarede F. How deep do common basaltic magmas form and differentiate? J Geophys Res, 1992, 97: 10997-11009
    82. Barbarin B. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos, 2005, 80: 155-177
    83. Best, M. G., Christiansen, E. H. Igneous Petrology. Blackwell, Malden, 2001, 1-458
    84. Black L P, Kamo S L, Allen C M, et al. TEMORA 1: a new standard for Phanerozoic U-Pb geochronology. Chem Geol, 2003, 200: 155-170
    85. Borg S G., DePaolo D J. Crustal structure and tectonics of the Antarctic margin of Gondwana and implications for the tectonic development of southeastern Australia. Tectonophysics, 1991, 196: 339-358
    86. Borg S G, DePaolo D J. Laurentia, Australia, and Antarctic as a Late Proterozoic supercontinent: constraints from isotopic mapping. Geology, 1994, 22: 307-310
    87. Brookfield M E. Neoproterozoic Laurentia-Australia fit. Geology, 1993, 21: 683-686
    88. Burrett C, Berry R. Proterozoic Australia-western Unites States (AUSWUS) fit between Laurentia and Australia. Geology, 2000, 28: 103-106
    89. Cabanis B, Lecolle M L. diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des series volcaniques et la mise en evidence des procesus de melange et/ou de contamination crutale. C R Acad Sci Ser II, 1989, 309: 2023-2029
    90. Campbell I H, Griffiths R W. Implications of mantle plume structure for the evolution of flood basalts. Earth Planet Sci Lett, 1990,99,79-93
    91. Chen J, Foland K A, Xing F, et al. Magmatism along the southeastern margin of the Yangtze Block: Precambrian collision of the Yangtze and Cathysia Blocks of China. Geology, 1991,19, 815-818
    92. Compston W, Williams I S, Kirschvink J L, et al. Zircon U-Pb Ages for the Early Cambrian Time-Scale. Journal of the Geological Society, 1992,149:171-184
    93. Condie K C. Incompatible element ratios in oceanic basalts and komatiites: Tracking deep mantle sources and continental growth rates with time. Geochemistry Geophysics Geosystems, 2003, 4(1): 1005,1029/2002GC0003336
    94. Coulliette D L, Loper D E. Experimental, numerical and analytical models of mantle starting plumes, Phys Earth Planet Inter, 1995, 92,143-167
    95. Cserepes L, Christensen U R, Ribe N M. Geoid height versus topography for a plume model of the Hawaiian swell. Earth Planet Sci Lett, 2000,178, 29-38
    96. D'Agrella-Filho M S, Trindade R T F, Siqueira R et al, Paleomagnetic constraints on the Rodinia supercontinent: implications for its Neoproterozoic break-up and the formation of Gondwana. International Geology Review, 1998,40:171-188
    97. Daziel I W D. Pacific margins of Laurentia and east Antarctica-Australia as conjugate rift pair: evidence and implications for an Eocambrian supercontinent. Geology, 1991, 19: 598-601
    98. Daziel I W D. Antarctica: a late of two supercontinents? Annual Review of Earth and Planetary Sciences, 1992,20: 501-526
    99. Daziel I W D. Neoproterozoic-Paleozoic geography and tectonics: review, hypothesis, environmental speculation. Geol Society Amer Bull, 1997,109:14-42
    100. DePaolo D J, Daley E E. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chem Geol, 2000,169: 157-185
    101. Dostal J, Chatterjee A K. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chemical Geology, 2000, 163, 207-218
    102. Dyson I A. The breakup unconformity, salt tectonics and development of mini-basins in the Neoproterozoic succession of the Adelaide geosynclin. Abstracts-Geological Society of Australia, 1998,50: 29-33
    103. Evans D A. True polar wander, a supercontinental legacy. Earth Planet Sci Lett, 1998, 157: 1-8
    104. Evans D E. True polar wander and supercontinents. Tectonophysics, 2003,362: 303-320
    105. Evans D E, Kirschvink J L. Multiple episodes of rapid true polar wander in Neoproterozoic-Cambrian time. Abstracts with Programs-Geological Society of America, 1999, 31: 318
    106. Farnetani C G, Richards M A, Ghiorso M S. Petrological models of magma evolution and deep crustal structure beneath hotspots and flood basalts, Earth Planet Sci Lett, 1996, 143, 81-94
    107. Frimmel H E, Zartman R E, Spath A. The Richtersveld Igneous Complex, South Africa: U-Pb zircon and geochemical evidence for the beginning of Neoproterozoic continental breakup. J Geol, 2001,109, 493-508
    108. Frost B R, Barnes C, Collins W J, et al. A geochemical classification for granitic rocks. J Petrol, 2001, 42: 2033-2048
    109.Gose W A, Helper M A, Connelly J N, et al. Paleo-magnetic data and U-Pb isotopic age determinations from Coats Land, Antarctica: implications for late Proterozoic reconstructions. J Geophys Res, 1997,102: 7887-7902
    110. Goto A, Tatsumi Y. Quantitative analysis of rock samples by an X-ray fluorescence spectrometer (I). The Rigaku Journal, 1994,11: 40-59
    111.Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta, 2000, 64: 133-147
    112. Harlan S S, Heaman L, LeCheminant A N, et al. Gunbarrel mafic magmatic event: A key 780 Ma time marker for Rodinia plate reconstructions. Geology, 2003, 31: 1053-1056
    113. Hill R I. Starting plumes and continental breakup. Earth Planet Sci Lett, 1991, 104, 398-416
    114. Hill R I, Campbell I H, Davies G F, et al. Mantle plumes and continental tectonics. Science, 1992,256,186-193
    115.Hirschmann M M, Kogisom T, Baker M B, et al. 2003. Alkalic magmas generated by partial melting of garnet pyroxenite. Geology, 31: 481-484
    116.Hofmann A W. Mantle geochemistry: the message from oceanic volcanism. Nature, 1997, 385: 219-229
    117.Hofmann A W, Jochum K P. Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific Drilling Project. J Geophy Res, 1996,101,11831-11839
    118. Hofmann A W, White W M. Mantle plumes from ancient crust. Earth Planet Sci Lett, 1982, 57: 421-436
    119. Hoffman P F. Did the breakout of Laurentia turn Gondwanaland inside-out? Science, 1991, 252:1409-1412
    120. Hoffman P F, Kaufman A J, Halverson G P et al. A Neoproterozoic snowball Earth. Science, 1998,281: 1342-1346
    121. Hoffman P F. The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. African Earth Sci, 1999,28,17-33
    122. Humayun M, Qin L P, Norman M D. Geochemical evidence for excess iron in the Hawaiian mantle: implications for mantle dynamics. Science, 2004,306: 91-94
    123. Hyde W T, Growley T J, Baum S K, et al. Neoproterozoic snowball Earth simulations with a coupled climate/ice-sheet model. Nature, 2000,405: 425-429
    124. Karlstrom K E, Williams M L, McLelland J, et al. Refining Rodinia: Geologic evidence for the Australia-Western U. S. connection in the Proterozoic. GSA Today, 1999, 9(10): 1-7
    125.Kerr R A. An appealing snowball Earth that's still hard to swallow. Science, 2000, 287: 1734-1736
    126. Keshav S, Gudfinnsson G H, Sen G, et al. High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean-island basalts. Earth Planet Sci Lett, 2004, 223: 365-379
    127. Lee C T. Are earth's core and mantle on speaking terms? Science, 2004, 306: 64-65
    128. Lesher C E. Decoupling of chemical and isotopic exchange during magma mixing. Nature, 1999, 340: 235-237
    129. Li W X, Li X H. Adakitic granites within the NE Jiangxi Ophiolites, South China: geochemical and Nd isotopic evidence. Precambrian Res, 2003,122,29-44
    130. Li X H, Li Z X, Ge, W C, et al. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? Precambrian Res, 2003a, 122: 45-83
    131. Li X H, Li Z X, Wingate M T D, et al. Geochemistry of the 755 Ma Mundine Well dyke swarm, northwestern Australia: part of a Neoproterozoic mantle superplume beneath Rodinia? Precambrian Res, 2006,1-15
    132. Li X H, Li Z X, Zhou H, et al. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: implications for the initial rifting of Rodinia, Precambrian Res, 2002a, 113: 135-155
    133. Li X H, Liu D Y, Sun M, et al. Precise Sm-Nd and U-Pb isotopic dating of the super-giant Shizhuyuan polymetallic deposit and its host granite, Southeast China. Geol Mag, 2004, 141: 225-231
    134. Li X H, Su L, Chung S L, et al. Formation of the Jinchuan ultramafic intrusion and the world's third largest Ni-Cu sulfide deposit: Associated with the -825 Ma south China mantle plume? Geochem Geophys Geosyst, 2005, 6: Q11004,1029/2005GC001006
    135. Li X H. U-Pb Zircon ages of granites from the southern margin of the Yangtze Block: timing of the Neoproterozoic Jinning Orogeny in SE China and implications for Rodinia assembly. Precambrian Res, 1999a, 97: 43-57
    136. Li X H. Geochemistry of the Longsheng Ophiolite from the southern margin of Yangtze Craton, SE China. Geochem J, 1997, 31: 323-337
    137. Li Z X, Evans D A D, Zhang S. A 90° spin on Rodinia: possible causal links between the Neoproterozoic supercontinent, superplume, true polar wander and low-latitude glaciation, Earth and Planetary Science Letters, 2004, 220: 409-421
    138. Li Z X, Li X H, Kinny P D, et al. The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth Planet Sci Lett, 1999b, 173:171-181
    139. Li Z X, Li X H, Kinny P D, et al. Does it take a superplume to breakup a supercontinent? a case for Rodinia. Geol Soc Aust Abst, 2001, 65: 74-77
    140. Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precamrian Res, 2003b, 122: 85-109
    141. Li Z X, Li X H, Kinny P D, et al. The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth Planet Sci Lett, 1999b, 173:171-181
    142. Li Z X, Li X H, Zhou H, et al. Grenvillian continental collision in South China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology 2002b, 30,163-166
    143. Li Z X, Zhang L, Powell C M. South China in Rodinia: part of the missing link between Australia-East Antarctica and Laurentia? Geology, 1995, 23: 407-410
    144. Li Z X, Zhang L, Powell C M. Position of the east Asian cratons in the Neoproteroozic supercontinent Rodinia. Aust J Earth Sci, 1996,43: 593-604
    145. Li Z X, Zhang L, Powell C. South China in Rodinia: part of the missing link between Australia-East Antarctica and Laurentia? Geology, 1995,23: 407-410
    146. Li Z X. Collision between the North and South China blocks: a crustal-detachment model for suturing in the region east of the Tanlu fault. Geology, 1994,22, 739-742
    147. Li Z X, Zhang L, Powell C M. Position of the East Asian cratons in the Neoproterozoic supercontinent Rodinia. Australian Journal of Earth Sciences, 1996,43: 593-604
    148. Li Z X. Tectonic history of the major east Asian lithospheric blocks since the Mid-Proterozoic------a synthesis. AUG Geodynam Ser Mantle dynamics and plate interactions in East Asia, 1997(Eds Flower M F T, et al.)
    149. Li Z X, Powell C M. Discussion, Palaemagnetic study of Neoproterozoic glacial rocks of the Yangtze Block: Palaeolatitude and configuration of South China in late Proterozoic supercontinent. Precambrian Res. 1999c, 94:1-5
    150. Lin G C, Li X H, Li W X. SHRIMP U-Pb zircon age, geochemistry and Nd-Hf isotopic study of Neoproterozoic basic dyke swarms in western Sichuan: Petrogenesis and tectonic significance. Sci China Ser D-Earth Sci, 2006, in press
    151. Ling W L, Gao S, Zhang B R, et al. From subduction zone to in-tracontinental rifting: Neoproterozoic tectonic setting conversion along the northwestern margin of Yangtze craton, South China. Precambrian Res, 2002,122: 111-140
    152. Linnen, R.L., Keppler, H., Melt composition control of Zr/Hf fractionation in magmatic processes. Geochimica et Cosmochimica Acta, 2002, 66(18): 3293-3301
    153.Ludwig K R. Isoplot/Ex, Rev 2. 49: A Geochronological Toolkit for Microsoft Excel Berkeley Geochronology Center Special Publications. 2001, No. 1a, Berkeley, CA, pp 55
    154.McDonough W F, Sun S S. The composition of the earth. Chem Geol, 1995,120: 223-253
    155. McKenzie D P, Bickle M J. The volume and composition of melt generated by extension of whole lithosphere. J Petrol, 1988, 29: 625-679
    156. Mcmenamin M A S, Mcmenamin D L S. The Emergence of Animals: the Cambrian Break-Through. New York, Columbia University Press, 1990,1-217
    157. Miyashiro A. Volcanic rock series in island arc and active continental margins. Am J Sci, 1974, 274: 321-355
    158. Moore J G, Clague D A. Volcano growth and evolution of the island of Hawaii. Geol Soc Am Bull, 1992,104,1471-1484
    159.Moores E M. Southwest U.S.-East Antarctic (SWEAT) connection: a hypothesis. Geology, 1991,19: 425-428
    160. Nelson D R. Compilation of SHRIMP U-Pb zircon geochronology data, Geological Survey of Western Australia Record 1997/2. Geological Survey of Western Australia, Perth, 1997, 1-189
    161. Park J K, Buchan K L, Harlan S S. A proposed giant radiating dyke swarm fragmented by the separation of Laurentia and Australia based on paleomagnetism of ca.780 Ma mafic intrusions in western North America. Earth Planet Sci Lett, 1995,132:129-139
    162. Patino Douce A E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 1997,25: 743-746
    163. Pearce J A. A User's Guide to Basalt Discriminution Diagrams. in Wyman D A, ed, Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration: Geological Association of Canada, Short Course Notes, 1996,12: 79-113
    164. Pertermann M, Hirschmann M M. Anhydrous partial melting experiment on MORB-like eclogites phase relations, phase composition and mineral-melt partitioning of major elements at 2-3GPa. J Petrol, 2003, 44: 2173-2202
    165. Piper J D A. Palaeomagentic evidence for a Proterozoic supercontinent. Phil. Trans. R. Soc. Lond. 1976, A280, 469-490
    166. Piper J D A. The Neoproterozoic supercontinent: Rodinia or Palaeopangaea? Earth Planet Sci Lett, 2000,176:131-146
    167. Powell C M, Dalziel I W D, Li Z X. Did Pannotia, the latest Neoproterozoic southernsupercontinent, really exist? Eos (Transactions, American Geophysical Union), Fall Meeting, 1995, 76(46): p172
    168. Powell C M, Li Z X, McElhinny M W. Paleomagnetic constraints on timing of theNeoproterozoic breakup of Rodinia and the Cambrian formation of Gondwana. Geology, 1993, 21: 889-892
    169. Richards M A, Duncan R A, Courtillot V E. Flood basalts and hot-spot tracks: plume heads and tails, Science, 1989, 246,103-107
    170.Roeder P L, Emslie R F. Olivine-liquid equilibrium. Contrib Mineral Petrol, 1970, 29: 275-289
    171. Ross G M, Parrish R R, Winston D. Provenance and U-Pb geochronology of the Middle Proterozoic Belt Supergroup (northwestern Unite States): implications for the age of deposition and pre-Panthalassa plate reconstructions. Earth Planet Sci Lett, 1992, 113: 57-76
    172. Rudnick R L, Fountain D M. Nature and composition of the continental crust: a lower curstal perspective. Rev Geophys, 1995, 33(3): 267-309
    173. Runnegar B, Loophole for snowball Earth. Nature, 2000, 405: 403-404
    174. Shervais J W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett, 1982, 31, 457-484
    175. Sheth H C. Flood basalts and large igneous provinces from deep mantle plumes: fact, action, and fallacy, Tectonophysics, 1999, 311: 1-29
    176. Sleep N H. Hotspots and mantle plumes: some phenomenology. J Geophys Res, 1990, 95, 6715-6736
    177. Smith J R, Wessel P. Isostatic consequence of giant landslides on the Hawaiian ridge. Pure Appl Geophys, 2000,159,1097-1114
    178. Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by two-stage model. Earth and Planetary Science Letters, 1975, 26: 207-221.
    179. Stolz A J, Jochum K P, Hofmann A W, et al. HFSE constraints in the nature of island arc and ocean island magma sources. Terra Nova, 1995, 7: 269-280
    180. Stolz A J, Jochum K P, Spettel R, et al. Fluid- and melt-related enrichment in the sub-arc mantle: Evidence from Nb/Ta variations in island-arc basalts. Geology, 1996, 24, 587-590
    181. Stolz A J, Varne R, Davies G R, et al. Magma source components in an arc-continent collision zone: the Flore-Lembata setor, Aunda arc, Indonesia. Contributions to Mineralogy and petrology, 1990, 105: 585-601
    182. Sun S -S, McDonough W F. Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes. In: Saunders A D, Norry M J (Eds), Magmatism in the Ocean Basins. Geol Soc Spec Publ, 1989,42: 528-548
    183. Sylvester P J. Post-collision strongly peraluminous granites. Lithos, 1998, 45, 29-44
    184.Tanaka T, Togashi S, Kamioka H, et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem Geol, 2000,168: 279-281
    185.Tatsumi Y, Eggins S M. Subduction Zone Magmatism. Cambridge, Boston: Black well Science, 1995,1-211
    186. Taylor S R, McCulloch M T. The Geochemical evolution of the continental crust. Earth Planet Sci Lett, 1989, 94: 257-273
    187. Van der V R, Van der P B A. The evolution of the Iapetus Ocean as deduced from paleomagnetism. Abstracts with Programs-Geological Society of America, 1997,29: p280
    188. Vernon R H, Etheridge M A, Wall V J. Sharp and microstrusture of microgranitoid enclaces: indicators of magma mingling and flow. Lithos, 1988,22: 1-11
    189. Vervoort J, Patchett P J, Blichert-Toft J, et al. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth Planet Sci Lett, 1999,168: 79-99
    190. Wang J, Li Z X. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia breakup. Precambrian Res, 122,141-158
    191. Wang X L, Zhou J C, Qiu J S, et al. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: Implications for tectonic evolution. Precambrian Res, 2006,145,111-130
    192. Wang X L, Zhou J C, Qiu J S, et al. Petrogenesis of the Neoproterozoic strongly peraluminous granitoids from Northern Guangxi: constraints from zircon geochronology and Hf isotopes. Acta Petrologica Sinica, 2006, 22, 326-342
    193. Walter M J. Melting of garnet peRidotite and the origin of komatiite and depleted lithosphere. J Petrol, 1998,39: 29-60
    194. Weil A B, Vander voo R, MacNiocaill C et al. The Proterozoic supercontinent Ronidia: paleomagnetically derived reconstructions for 1100 to 800 Ma. Earth Planet Sci Lett, 1998, 154:13-24
    195. White R S. McKenzie D P. Mantle plumes and flood basalts, J Geophys Res, 1995, 100: 17543-17585
    196. Wignall P B. Large igneous provinces and mass extinctions, Earth Sci Rev, 2001,53,1-33.
    197. Wilson M. Igneous Petrogenesis. London: Unwin Hyman Ltd, 1989,1-466
    198. Winchester J A, Floyd P A. Geochemical magma type discrimination: application to altered and metamorphosed igneous rocks. Earth Planet Sci Lett, 1976,28: 459-469
    199. Wingate M T D, Campell I H, Compston W, et al. Ion microprobe U-Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia. Precambrian Res, 1998, 87: 135-159
    200. Wingate M T D, Giddings J W. Age and paleomagmatism of the Mundine Well dyke swarm, Western Australia: implications for an Australia-Laurentia connection at 755 Ma. Precambrian Res, 2000,100: 335-357
    201. Wingate M T D, Pisarevsky S A, Evans D A D. Rodinia connections between Australia and Laurentia: no SWEAT, no AUSWUS? Terra Nova, 2002,14: 121-128
    202. Wolfe C, Bjarnason I J, Decar V S, et al. Seismic structure of the Iceland mantle plume, Nature, 1997, 385, 245-247
    203. Worthing M A. Petrology and geochronology of a Neoproterozoic dyke swarm from Marbat, South Oman. Journal of African Earth Sciences, 2005, 41:248-265
    204. Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crust contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sci Lett, 1980, 50: 11-30
    205. Xu X, Dong C, Li W, et al. Late Mesozoic intrusive complexes in the coastal area of Fujian, SE China: the significances of the gabbro-diorite-granite association. Lithos, 1999, 46: 299-315
    206. Xu Y G, Chung S L, Jahn B M, et al. Petrologic and geochemical constrains on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos, 2001, 58,145-168
    207. Xu Y G, Chung S L. The Emeishan large igneous province: evidence for mantle plume activity and melting conditions. Geochimica, 2001, 30,1-9
    208. Yang Z Y, Sun Z M, Yang T S, et al. A long connection (750-380 Ma) between South China and Australia: Paleomagnetic constraints. Earth and Planetary Science Letters, 2004, 220: 423-434
    209. Zhao J X, McCulloch M T. Sm-Nd mineral isochron ages of Late Proterozoic dyke swarms in Australia: Evidence for two distinctive events of mafic magmatism and crustal extensive. Chem Geol, 1993, 109: 341-354
    210. Zhao J X, McCulloch M T, Korsch R J. Characterisation of a plume-related ~800 Ma magmatic event and its implications for basin formation in central-southern Australia. Earth Planet Sci Let, 1994,121: 349-367
    211. Zhou J C, Wang X L, Qiu J S, et al. Geochemistry of Meso- and neoproterozoic mafic-ultramafic rocks from northern Guangxi, China: Arc or plume magmatism? Geochemical Journal, 2004, 38,139-152
    212. Zhou J C, Wang X L, Qiu J S, et al. Lithogeochemistry of Meso- and Neoproterozoic mafic-ultramafic rocks from northern Guangxi. Acta Petrologica Sinica, 2003,19: 9-18
    213. Zhou M F, Kennedy A K, Sun M, et al. Neoproterozoic arc-related mafic intrusions along the northern margin of South China: implications for the accretion of Rodinia. J Geol, 2002b, 110: 611-618
    214. Zhou M F, Ma Y, Yan D P, et al. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block. Precambrian Res, 2006,144:19-38
    215. Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth Planet Sci Lett, 2002a, 196: 51-67
    216. Zindler A, Jagoutz E, Goldstein S. Nd, Sr and Pb isotopic systematics in a three component mantle: a new perspective. Nature, 1982, 298: 519-523

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700