太行山北段木吉村斑岩铜(钼)矿床地质特征与成矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木吉村斑岩铜(钼)矿位于华北克拉通中部、太行山的北段,是太行山构造-岩浆岩带一个重要的矿床。本文通过对木吉村斑岩铜(钼)矿床的地质特征、矿化蚀变与流体演化的详细研究,查明了矿床主要的矿化蚀变类型及空间展布特征,厘清了引起各期蚀变事件的热液流体记录。通过同位素年代学及地球化学研究,厘定成岩-成矿时限,并探讨含矿斑岩成因及其地质意义。最后利用流体包裹体显微测温、流体包裹体激光拉曼光谱分析以及H-O、He-Ar、S-Pb同位素示踪成矿流体来源并揭示成矿物质的沉淀机制,进而讨论其矿床成因及其制约因素,初步建立木吉村斑岩铜(钼)矿床的成矿模型。
     本文研究表明,木吉村矿床含矿岩体为闪长玢岩,具有典型的斑岩型矿床蚀变分带模式:矿床由蚀变中心强烈硅化的石英核,向外依次发育钾硅酸盐化,黄铁绢英岩化以及青磐岩化。矿床中主要赋存A脉、B脉、D脉三期热液流体,矿床发育的硅化核以及钾硅酸盐化与早期A脉的关系密切;Cu-Mo的矿化主要与从钾硅酸盐化蚀变向绢英岩化蚀变转换阶段的B脉有关;晚期的D脉造成以长石分解为主的黄铁绢英岩化蚀变。Mo矿化多以石英+辉钼矿±黄铜矿脉发育于钾硅酸盐化带中,Cu矿化主要以石英+黄铜矿±黄铁矿脉产出,分布在钾硅酸盐化带与黄铁绢英岩化带的过渡带中。
     含矿斑岩的锆石U-Pb年龄为144±1Ma,代表斑岩的结晶年龄;矿石中辉钼矿Re-Os等时线年龄为140.3±3.9Ma,代表矿床成矿年龄,相近的成岩和成矿年龄,表明木吉村斑岩铜(钼)矿的成岩-成矿是一个持续的岩浆-热液过程。含矿斑岩具有与埃达克岩类似的地球化学性质,结合Lu-Hf等同位素的研究,推测含矿斑岩的起源可能为拆沉的加厚下地壳部分熔融的环境。
     S-Pb同位素显示:矿床的成矿物质来源以下地壳为主混有少量幔源组分,研究认为金属Cu可能来自壳幔相互作用,金属Mo可能从华北克拉通富Mo古老下地壳的重熔过程中获得;H-O、He-Ar同位素表明:成矿流体早期主要为原生岩浆水,后期有大气降水的参与。早期流体可能来自深部岩浆房的出溶,出溶温度>590℃,随着流体上侵到斑岩体底部,温度降低至392℃左右形成的A脉,造成矿床的早期蚀变,流体属于高温、高盐度的H_2O-CO_2体系;成矿期的B脉在331℃左右发生沸腾作用,气体大量逸出,伴随钼、铜等硫化物的大规模沉淀;成矿晚期D脉形成于264℃左右,黄铁矿大量沉淀,流体属于低温、低盐度的H_2O-NaCl体系。综上所述,深源流体的加入引起水岩反应加剧形成矿床早期蚀变,随着降温和减压过程,流体在浅部发生沸腾作用,导致铜、钼等成矿元素的大规模沉淀,最终形成了木吉村矿床。
Mujicun porphyry copper-molybdenum deposit, located in the northern section of Taihang Mt., is animportant ore district of the Taihang tectonic-magmatic-metallogenic belt. This article describes itsgeological, alteration and mineralization characteristics. Based on detailed study, we recognized the primaryalteration zonation and their spatial distribution characteristics, identified the magmatic and hydrothermalevents which caused the alteration and mineralization. It figures out the dating of diagenesis andmetallogeny by studying the isotope chronology and geochemistry, and probe genesis of ore-formingporphyry and geological significance. By means of the micro-thermometry, Raman component analysis offluid inclusions and H-O, S-Pb, He-Ar isotope tracers, it also discusses the ore-forming fluids and mineralprecipitation mechanism, and further probes into the metallogenic constraints in order to establish thegenetic model of Mujicun porphyry copper-molybdenum deposit.
     Mujicun diorite-porphyry copper-molybdenum deposit displays a typical alteration-mineralizationpattern. From the center to the edge, it respectively develops silification, K-silicate, beresitization as well asprophylitization. The deposit mainly has three phase hydrothermal fluids (A/B/D veins). Silification in thecore of the deposit with the potassium in the periphery is closely related to A veins formed in the early stage.The pyrite phyllic alteration zone is characterized by pyrite-chlorite–sericite which due to superposition ofmulti-stage alteration. The isotopic dating yields a LA-ICP-MS zircon U-Pb age of144.7±1Ma forcrystallization of diorite porphyry that hosts the Cu-Mo mineralization, five Re-Os molybdenite ages give aweighted average of140.3±3.9Ma, which suggests that the magmatism, porphyry-type and skarn-typemineralization should form in the continuous process. The ore-bearing porphyry and adakites have similargeochemical properties, and Isotopic Lu-Hf data all implies that the magma and mineralized elementsshould be mainly resulted in partial melting of lower crust.
     Isotopic S-Pb data implies that the mineralized elements should be mainly from lower crust, the Cuelement may from low crust and exchanged material with the upper mantle, and the Mo element resulted inpartial melting of the lower crust; isotopic He-Ar, H-O results show the ore-forming fluids envolved fromthe primary magmatic water in the early stage, then from the meteoric water in the late stage. The evidenceof the fluid inclusions shows that the early fluid exsolved from ancient depth magma chamber (thetemperature>590℃). As the fluid intruded into the bottom of porphyry, when the temperature decreased toabout392℃, A vein formed, which belongs to the high temperature and high salinity H_2O-CO_2-NaClsystem. There were a lot of boiling inclusions in the fluid of principle metallogenic stage (B vein), whichbelongs to the middle temperature, middle salinity H_2O-NaCl system. The inclusions in the late stage (Dvein), with only broad water peak in the gas phase composition, show the features of H_2O-NaCl systemwith low temperature, low salinity and high density. We conclude that the additional deep source fluidswhich caused a series of mineralization intensify the water-rock interaction, bring heat source and mineralsfor the hydrothermal system, the fluids boiling at a shallow lever induces the precipitation of ore-formingelements, eventually forming the Mujicun porphyry copper-molybdenum deposit.
引文
Amelin Y, Lee DC and Halliday AN. Early-Middle Archean crustal evolution deduced from Lu-Hfisotopic studies of single zircon grains. Geochimica et Cosmochimica Acta,2000,64:4205-4225
    Alireza Karimzadeh Somarin. Garnetization as a ground preparation process for coppermineralization: evidence from the Mazraeh skarn deposit. Iran.Int.J.Earth Sci.(Geol Rundsch),2010,99:343-356
    Blichert Toft J, Albarede F. The Lu-Hf geochemistry of chondrites and the evolution of themantle-crust system.Earth Planet.Sci.Lett,1997,148:243-258
    Burnham C W. Magmas and hydrothermal fluids In: Barnes HL, ed. Geochemistry ofhydrothermal ore deposits [M].Wiley, New York.1979.71-136.
    Burnham C W and Ohmoto H. Late-stage processes of felsic magmatism Mining Geol. Spec. Issue,1980,8:1-11
    Burnham C W. Physicochemical constraints on porphyry mineralization.Arizona Geol. Soc. Digest,1981,14:71-77
    Bodnar R J.Synthetic fluid inclusions. XII. Experimental determination of the halite liquidus andisochores for a40wt%NaCl solution. Cosmochimica Acta,1994,58:1053-1063
    Boynton W V. Geochemistry of the rare earth elements: Meteorite studies. In:Henderson P(Ed)Rare earth element geochemistry.New York:Elsevier,1984,63-114
    Chu NC, Taylor RN, Chavagnac V, et al. Hf isotope ratio analysis using multi-collectorinductively coupled plasma mass spectrometry: An evaluation of isobaric interferencecorrections. J. Anal. Atom Spectrom,2002,17:1567-1574
    Chung S L, Liu D Y, Ji J Q, et al.Adakites from continental collision zones: Melting of thickenedlower crust beneath southern Tibet. The Journal of Geology,2003
    Chung SL, Chu MF, Ji JQ et al.The nature and timing of crustalthickening in Southern Tibet:Geochemical and zircon Hf isotopicconstraints from postcollisional adakites. Tectonophysics,2009
    Clayton, J R O'Neil and T K Mayeda.Oxygen isotope exchange between quartz and water.Geophys Res,1972,77,3057-3067
    Cline J S and Bodnar R J.Can economic porphyry copper mineralization be generated by a typicalcalc-alkaline melt. Journal of Geophysical Research2Solid Earth and Planets,1991,96(B5):8113-8126
    Cooke D R, Hollings P, Walshe J L. Giant Porphyry Deposits: Characteristics,distribution, andtectonic controls. Economic Geology,2005,100:801-818
    Defant MJ and Drummond MS. Derivation of some modern arc magmas by melting of youngsubduction lithosphere.Nature,1990
    Deng J, Liu W, Sun Z, et al. Evidence of mantle-rooted fluids and multi-level circulationore-forming dynamics: A case study from the Xia dian gold deposit, ShandongProvince,China. Science in China, Ser.D,2003a,46(S2):124-134
    Deng J, Yang L Q, Sun Z S, et al. A metallogenic model of gold deposits of the JiaodongGranite-grennstone belt.Acta Geologica Sinica,2003b,77(4):537-546
    Deng J, Yang L Q, Gao B F, et al. Fluid evolution and metallogenic dynamics during tectonicregime trasition: example from Jiapigou gold belt in northeast China.Resourse Geology,2009,59(2):140-152
    DeBievre P, Taylor PDP.Table of the isotopic composition of the elements. Int. J. Mass. Spectrom.Ion Process,1993,123-149
    Doe B R, Zartman R E.Plumbotectonics: the Phanerozoic. Geochemistry of Hydrothermal OreDeposits, New York: John Wiley and Sons,1979:22-70
    Du AD, WU SQ, Sun DZ,et al. Preparation and Certification of Re-Os Dating ReferenceMaterials: Molybdenite HLP and JDC. Geostandard and Feoanalytical Research,2004,28(1):41-52
    Gao Y F, H ou Z Q, Wei R H. Post-collisional adakitic porphyries in Tibet: geochemi cal andSr-Nd-Pb isotopic constraints on partial melting of oceanic lithosphere and crust-mantleinteraction. Act a Geologica Sinica,2003,77,123-135.
    Gao S,,Rudnick R L,Yuan HL,Liu X M,Liu YS,Xu WL,LingWL,Ayers J,Wang X C,Wang QH.Recyclinglowercontinental crust in the North China Craton. Nature,2004
    Griffin WL, Pearson NJ, Belousova E, et al.The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim CosmochimActa,2000,64:133-147
    Griffin WLA, Wang X, Jackson SE, et al. Zircon chemistry and magma mixing, SE China: In-situanalysis of Hf isotopes. Tonglu and Pingtan igneous complexes.Lithos,2002,61:237~269
    Griffin WL, Belousova EA and Shee SR. Crustal evolution in the northern Yilarm Craton: U-Pband Hf-isotope evidence from detrital zircons. Precambrian Research,2004,131(3-4):231-282
    Guochen Dong, Shengrong LI, Junfeng SHEN, et al. Mesozoic magmatism and its metallogenesisrelated to destruction of the North China Craton: Evidence from U-Pb dating and isotopesof the Mujicun porphyry Cu-Mo deposit in Taihang Mt., China. Ore Geology Review.2012
    Gustafson L B and Hunt J P. The porphyry copper deposits at El Salvador, Chile. Econ Geol.1975,70:857-912
    Hagemann SG and Luders V. P-T-X conditions of hydrothermal fluid and precipitation mechanismof stibnite-gold mineralization at the Wiluna lode-gold deposits, Western Australia:Conventional and infrared microthermometric constraints.Mineralium Deposita,2003,38:936-952
    HallD L, Sterner S M, Bordnar R J. Freezing point depression of NaCl-KCl-H2O solutions.EconGeol,1988.83:197-202
    Harris A C, Kamenetsky V S, White N C et al. Volatile phase separation in silicic magmas at Bajode la Alumbrera porphyry Cu-Au deposit, NW Argentina. Resource Geology,2004,54:341-356
    Hedenquist JW and Lowenstern JB.The role of magmas in the formation of hydrothermal ofdeposits, Nature,1994,370:519-527
    Hedenquist J W, Arribas A, Reynolds T J. Evolution of an intrusion-centered hydrothermal system:Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. EconomicGeology,1998,93:373-404
    Heinrich C A. The physical and chemical evolution of low-salinity magmatic fluids at theporphyry to epithermal transition: A thermo-dynamic study. Mineralium Deposita,2005,39:864-889
    HerzarkhaniA, WilliamsJA, GannnonsC. Factors controlling copper solubility and chalcopyritedeposition in the Sungun Porphyry deposit, Iran. Minirelium Deposita.1999,34(8):77-783
    Hoskin PWO, Schaltegger U.The composition of zircon and metamorphic petrogenesis.ZirconReviews of Mineralogy and Geochemistry,2003,53:27-62
    Hou Z Q, Ma H W, Khin Z, et al. The Himalayan Yulong porphyry copper belt: produced bylarge-scale strike-slip faulting at Eastern Tibet. Economic Geology,2003,98:125-145
    Hou Z Q, Gao Y F, Qu X M, et al. Origin of adakitic intrusives generated during mid-Mioceneeast-west extension in southern Tibet. Earth and Planetary Science Letters,2004,220:139-155
    Hou Z Q, Zhong D L, Deng W M, et al. A tectonic model for porphyry copper-molybdenum-golddeposits in the eastern Indo-Asian collision zone.In: Porter T M, ed. Super porphyry copperand gold deposits: A global perspective. Adelaide: PGC Publishing,2005,423-440
    Hou Z Q, Zeng P S, Gao Y F. The Himalayan Cu-Mo-Au mineralization in the eastern Indo-Asiancollision zone: Constraints from Re-Os dating of molybdenite. Minerlium Deposita,2006,41:33-45
    Hou Z Q, Xie Y L, Li Y Q, et al. Yulong deposit, Eastern Tibet: a high-sulfidation Cu-Au porphyrycopper deposit in the Eastern Indo-Asian collision zone. International Geology Review,2007,49:23-58
    Kerrich R, Goldfarb R, Groves D.et al. The geodynamics of world-class gold deposits:Characteristics, space-time distributions, and origins: Reviews in Economic Geology,2000,13:501-551
    Kirkham R V, Sinclair W D. Comb quartz layers in felsic intrusions and their relationship toporphyry deposit. In Taylor R P and Strong D F,ed. Recent advances in the geolgoy ofgranite related mineral deposits.Cana. Inst.Mining Metal. Spec.1988,39:50-71
    Liu YS, Hu ZC, Gao S, et al. In situ analysis of major and trace elements of anhydrous mineralsby LA-ICP-MS without applying an internal standard.Chemical Geology,2008a,257:34-43
    Liu YS,Zong KQ,Kelemen PB,et al. Geochemistry and magmatic history of eclogites andultramafic rocks from the Chinese continental scientific drill hole: Subduction andultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology,2008b,247:133-153
    Liu YS, Hu ZC, Zong KQ, et al. Reappraisement and refinement of zircon U-Pb isotope and traceelement analyses by LA-ICP-MS. Chinese Science Bulletin,2010b,15
    Ludwig KR. ISOPLOT3.00. A Geochronological Toolkit for Microsoft Excel.Berkeley: BerkeleyGeochronology Center, California,2003
    Lowenstern JB, Sinclair WD. Exsolved magmatic fiuid and its role in the formation ofcomb-layered quartz at the Cretaceous Logtung W-Mo deposit, Yukon Territory,Canada.Trans, Royal Soc. Edinburgh: Earth Sci,1996,87:291-303
    Macpherson CG, Dreher ST and Thirlwall MF.Adakites without slab melting: High pressuredifferentiation of island arc magma, Mindanao, the Philippines. Earth and Planet,2006
    Marc J D, Xu J F, Pavel K, Wang Q, et al. Adakites:Some variations on a theme. Acta PetrologicaSinica,2002,18(2):129-142
    Peccerillo R and Taylor SR. Geochemistry of eocene calc-alkaline volcanic rocks from theKastamonu area, Northern Turkey. Contrib. Mineral Petrol,1976,58:63-81
    Rainer J, Newberry, Marco T, et al. Zoning and Genesis of the Darwin Pb-Zn-Ag Skarn Deposit,California: A Reinterpretation Based on New Data. Economic Geology,1991,86:960-982
    Richards JP. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation.Economic Geology,2003,98:1515-1533
    Richards JP. Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposits, inPorter, T.M., ed., Super porphyry copper and gold deposits: A global perspective: Volume1:Linden Park, South Australia, Porter Geoscience Consulting Publishing,2005,7-25
    Richards JP. Porphyry copper system. Economic Geology,2010, v.105:3-41
    R.P Rapp, N Shimizu, M.D Norman, et al.Reaction between slab-derived melts and peridotite inthe mantle wedge: experimental constraints at3.8GPa. Chemical Geology,1999,160(4):335-356
    Seedorff E, Dilles J H, Proffett J M J, et al. Porphyry deposits: characteristics and origin ofhypogene features: In Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., and Richards, J.P.(eds.), Economic Geology100th Anniversary Volume, Society of Economic Geologists, Inc.,Littleton, Colorado, USA.2005,251-298
    Sheng Rong Li, M. Santosh, Hua Feng Zhang et al. Inhomogeneous lithospheric thinning in thecentral North China Craton:Zircon U-Pb and S-He-Ar isotopic record from magmatism andmetallogeny in the Taihang Mountains. Gondwana Research,2012, inPress
    Shirey S B, Walker R J. Carius tube digestion for low-blank rhenium-osmium analysis. AnalyticalChemistry,1995,67:2136-2141
    Shuyin Niu, Guoxi Ma, Zhikuan Chen, et al. Study on the ore-forming and ore-controllingstructure of the Mujicun Cu (Mo) ore deposit, Hebei Province, China. CHINESE JOURNALOF GEOCHEMISTRY,2012,31(1):1-14
    Singer D A, Berger V I, Menzie W D, et al.Porphyry Copper Deposit Density, Economic Geology,2005,100:491-514
    SmoliarM I, Walker R J, Morgan J W. Re-Os ages of group IIA, IIIA, IVA and VIB iron meteorites,Science,1996,71:1099-1102
    Soderlund U, Patchett PJ, Vervoort JD, et al. The176Lu decay constant determined by Lu-Hf andU-Pb isotope systematics of Precambrian mafic intrusions.Earth Planet Sci Lett,2004,219:311-324
    Stuart F M, Burnard P G, Taylor R P, et al. Resolving mantle and crustal contributions to ancienthydrothermal fluids: He-Ar isotopes in fluid inclusions from DaeHwa W-Mo mineralisation,South Korea. Geochim Cosmochim Act a,1995,59:4663-4673
    Sun SS and McDonough WF.Chemical and isotopic systematics of oceanic basalt: implications formantle composition and process. In: Saunders AD and Norry MJ (Eds.), Magmatism in theOcean Basins. Spc. Publ. Geol. Soc. Lond,1989,42:528-548
    Sylvester PJ. Post-collisional alkaline granites,Journal of Geology,1998,97:261-280
    Taylor HP.The application of oxygen and hydrogen isotope studies to problem of hydrothermalalteration and ore deposition. Economic Geology,1974,69:843-883
    Vervoort JD, Pachelt PJ, Gehrels GE, et al.Constraints on early Earth differentiation from hafniumand neodymium isotopes. Nature,1996,379:624–627
    Vervoort JD, Pachelt PJ, Albarede F, et al. Hf-Nd isotopic evolution of the lower crust.Earth andPlanerary Science Letters,2000,181:115-129
    Wang Q, McDermott F, Xu J F.Cenozoic K-rich adakitic volcanic rocks in the Hohxil area,northern Tibet: Lower-crustal melting in an intracontinental setting. The Journal of Geology,2005
    Xiao L, Clemens J D.Origin of potassic(C-type) adakite magmas: experimental and fieldconstraints. Lithos,2007
    Xu JF, Shinjo R, Defant MJ,et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen areaof east China: partial melting of delaminated lower continental crust?. Geology,2002,30:1111-1114
    Yongfeng Gao, M. Santosh, Zengqian Hou et al. High Sr/Y magmas generated through crystalfractionation: Evidence from Mesozoic volcanic rocks in the northern Taihang orogen,North China Craton. Gondwana Research,2012,22(1):152-168
    Yuan HL, Gao S, Dai MN, et al. Simultaneous determinations of U-Pb age, Hf isotopes and traceelement compositions of zircon by excimer laser-ablation quadrupole and multiple-collectorICP-MS. Chemical Geology,2008,247:100-118
    Zartman R E, Doe B R.Plumbotectonics-the model.Tectonophysics,1981,75:135-162
    毕伏科,肖文暹.河北省成矿区带和找矿远景区.地质调查与研究,2006,29(2):107-114
    陈斌,翟明国,邵济安.太行山北段中生代岩基的成因和意义-主要和微量元素地球化学证据.中国科学(D辑),2002,32(11):896-907
    陈斌,田伟,翟明国,等.太行山和华北其它地区中生代岩浆作用的锆石U-Pb年代学和地球化学特征及其岩浆成因和地球动力学意义.岩石学报,2005,21(1):13-24
    陈建平,唐菊兴,丛源,等.藏东玉龙斑岩铜矿地质特征及成矿模型.地质学报,2009,83(12):188-1990
    陈衍景,李诺.大陆内部浆控高温热液矿床成矿流体性质及其与岛弧区同类矿床的差异.岩石学报,2009,(10)
    蔡剑辉,阎国翰,常兆山,等.王安镇岩体岩石地球化学特征及成因探讨.岩石学报,2003,19(1):81-92
    常印佛,刘湘培,吴言昌.长江中下游成矿带.北京:地质出版社,1991,1-379
    常兆山,冯钟燕,陈廷礼.河北涞源岩基中的超镁铁质岩研究.地质与勘探,2000,36(03):36-39
    邓晋福,莫宣学,赵海玲,等.中国东部燕山期岩石圈_软流圈系统大灾变与成矿环境.矿床地质,1999,18(04):309-315
    杜安道,赵敦敏,王淑贤,等. Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄.岩矿测试,2001,20(4):247-252
    冯钟燕等,太行山北段接触交代铜矿的特征、矿液性质与起源.地质学报,1984,(2):143-152
    高山,章军锋,许文良,等.拆沉作用与华北克拉通破坏.科学通报,2009,54(14):1962-1973
    高永丰,魏瑞华,侯增谦,等.木吉村斑岩铜矿成矿作用:华北克拉通中生代岩石圈减薄的响应.矿床地质.2011,30(5):890-902
    郭春影,张文钊,葛良胜,等.氢氧同位素体系成矿流体示踪若干问题.矿物岩石,2011,31(03):41-47
    郭利果,刘玉平,徐伟等. SHRIMP锆石年代学对西藏玉龙斑岩铜矿成矿年龄的制约.岩石学报,2006,22(4):1009-1016
    郭晓东,王治华,陈祥,等.云南马厂箐斑岩型铜钼(金)矿床地质特征与矿床成因.地质学报,2009,82(12):1901-1914
    侯增谦,曲晓明,黄卫等.冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带.中国地质,2001,28(10):27-30
    侯增谦,钟大赉,邓万明.青藏高原东缘斑岩铜钼金成矿带的构造模式.中国地质,2004,31(1):1-14
    侯增谦,潘小菲,杨志明,等.初论大陆环境斑岩铜矿.现代地质,2007,21(2):332-351
    侯增谦,杨志明.中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概念模型.地质学报,2009,83(12):1779-1817
    黄典豪,杜安道,吴澄宇,等.华北地台钼(铜)矿床成矿年代学研究:辉钼矿铼-锇年龄及其地质意义.矿床地质,1996,15(4):365-373
    黄典豪,侯增谦,杨志明,等.东秦岭钼矿带内碳酸岩脉型钼(铅)矿床地质-地球化学特征、成矿机制及成矿构造背景.地质学报,2009,83(12):1958-1984
    胡瑞忠,毕献武, G.Turner,等.哀牢山金矿带金成矿流体He和Ar同位素地球化学.中国科学(D辑:地球科学).1999,(04)
    李进文,裴荣富,张德全,等.铜陵矿集区燕山期中酸性侵入岩地球化学特征及其地质意义.地球学报,2007,28(1):11~22
    路远发. GeoKit:一个用VBA构建的地球化学工具软件包地球化学,2004,33(5):459-464
    吕贻峰,秦松贤,邓兆伦,等.河北涞源木吉村—浮图峪铁铜多金属矿田成矿构造条件分析及成矿模式研究.地球科学,1989a,15(5):563-572
    吕贻峰,秦松贤,邓兆伦,等.河北涞源木吉村矿田隐爆相角砾岩发育特征及其形成机制.地球科学,1989b,(14):122-127
    罗照华,邓晋福,韩秀卿.太行山造山带岩浆岩活动及其造山过程反演.北京:地质出版社,1999
    马国玺.河北省涞源县木吉村铜矿地质特征及成矿模式.华北地质矿产杂志,1997,12(01):52-66
    马国玺,陈志宽,陈立景,等.木吉村铜(钼)矿床地质特征.矿床地质,2010,29(6):1101-1111
    毛景文,张作衡,余金杰,等.华北及邻区中生代大规模成矿的地球动力学—背景:从金属矿床年龄精测得到启示.中国科学(D辑:地球科学),2003,33(04):289-299
    毛景文,谢桂青,张作衡,等.中国北方中生代大规模成矿作用的期次及其地球动力学背景.岩石学报,2005,21(01):169-188
    孟祥金,侯增谦,李振清.西藏冈底斯三处斑岩铜矿床流体包裹体及成矿作用研究.矿床地质,2005,(04)
    孟祥金,侯增谦,董光裕,等.江西冷水坑斑岩型铅锌银矿床地质特征、热液蚀变与成矿时限.地质学报,2009,83(12):1951-1967
    牛树银,陈路,许传诗,等.太行山区地壳演化及成矿规律.北京:地震出版社,1994
    彭玉旋,夏南,张玉进,等.河北省涞源县木吉村斑岩铜矿地质特征初论.内蒙古科技与经济,2011,277(01):58-59
    屈文俊,杜安道.高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄.岩矿测试,2003,22(4):254-257
    曲晓明,侯增谦,黄卫.冈底斯斑岩铜矿(化)带:西藏的第二条玉龙铜矿带?.矿床地质,2001,20(4):355-366
    任纪舜,牛宝贵,刘志刚.软碰撞、叠覆造山和多旋回缝合作用.地学前缘,1999,6(03):85-93
    芮宗瑶,黄崇轲,齐国明,等.中国斑岩铜(钼)矿床.北京:地质出版社,1984,1-350
    沈渭洲.稳定同位素地球化学.北京:原子能出版社:1987,23-70
    王式洸,韩宝福,李瑞,等.太行山北段王安镇岩体地球化学研究及其动力学意义.岩石圈地质科学,北京:地震出版社,1994,29-38
    王强,赵振华,许继峰,等.鄂东南铜山口、殷祖埃达克质(adakitic)侵入岩的地球化学特征对比:(拆沉)下地壳熔融与斑岩铜矿的成因,岩石学报,2004,(02)
    王艳娟,胡援越,申俊锋,等.太行山南段北洺河铁矿S-Pb同位素组成及其对成矿物质来源的示踪.现代地质,2011,25(5):846-852
    吴福元,李献华,郑永飞,等. Lu-Hf同位素体系及其岩石学应用.岩石学报,2007,23(02):185-220
    许洪才,毕伏科,张德生,等.河北省涞源县王安镇杂岩体多金属成矿规律.地质调查与研究,2006,29(1):11-20
    肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法[M].北京:地质出版社,2002,30~50
    杨志明,侯增谦,宋玉财,等.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿.矿床地质,2008,27(03):279-318
    杨志明.西藏驱龙超大型斑岩铜矿床—岩浆作用及矿床成因.中国地质科学院博士论文,2008
    杨志明,侯增谦.西藏驱龙超大型斑岩铜矿的成因:流体包裹体及H-O同位素证据.地质学报.2009,83(12):1838-1859
    喻学惠,任建业,张俊霞.太行山中段铜-金成矿条件及找矿方向.北京:地质出版社,1996
    阎国翰,许保良,牟保磊,等.太行山—大兴安岭东麓碱性侵入岩年代学和锶、钕、铅同位素特征及其意义.地质学报,2000,74(04):378
    叶先仁,吴茂炳,孙明良.岩矿样品中稀有气体同位素组成的质谱分析.岩矿测试,2001,20(03):174-178
    翟裕生,姚书振,林新多,等.长江中下游地区铁铜(金)成矿规律.北京:地质出版社,1992,1-235
    章百明,赵国良,马国玺,等.河北省主要成矿区带矿床成矿系列及成矿模式.北京:石油工业出版社,1996
    张乾,潘家永,邵树勋.中国某些多金属矿床矿石铅来源的铅同位素诠释.地球化学,2000,29(3):231-238
    张旗,王焰,李承东,等.花岗岩的Sr-Yb分类及其地质意义.岩石学报,2006,22(9):2249-2269
    张旗,潘国强,李承东,等.花岗岩的结晶分离作用问题-关于花岗岩研究的思考之二.岩石学报,2007,23(6):1239-1251
    朱炳泉.矿石Pb同位素三维空间拓扑图解用于地球化学省与矿种区划,地球化学,1993,(03)
    朱华平,张德全,张汉诚,等.陕西柞山地区穆家庄铜矿床成矿流体来源的氦氩氢氧同位素示踪.地质与勘探.2005,41(05):22-26
    祝向平,莫宣学, Noel C.WHITE,等.云南哈播斑岩型铜(-钼-金)矿床地质与成矿背景研究.地质学报,2009,83(12):1915-1928
    祝向平.云南哈播斑岩型铜(-钼-金)矿床地质与成矿背景研究.中国地质大学(北京)博士论文,2010
    河北省地质矿产局.河北省区域地质志,1989,1-741

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700