焊接变形预测与控制的数值方法研究及工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁路车辆生产制造中不论是薄壁结构,还是箱型梁结构都具有结构复杂、尺寸大、焊接部位多等特点,它们的焊接残余变形直接影响了焊接产品的制造质量和服役使用,如何预测和控制焊接变形是铁路车辆工厂中迫切需要解决的研究课题。虽然焊接变形的预测与控制的数值模拟研究在国内外已经开展了许多年,但是对铁路车辆焊接结构残余变形数值模拟方面的研究工作还比较少,特别是在数值模型验证的基础上,研究多种因素对焊接变形的影响就更少。在对企业实际需求深入研究的基础上,针对铁路车辆三种典型的焊接结构——薄板结构、多道焊箱型结构、大尺寸箱型结构,提出了不同数值研究方法。在焊接变形模型得到验证的基础上,研究了焊接工艺参数、结构参数、多道焊及焊接顺序对焊接变形的影响,以掌握焊接变形预测与控制规律,从而为铁路车辆在焊接工艺设计、制定和工艺方法优化上提供技术支持。
     本文的主要研究内容包括:
     首先,对国内外关于焊接变形预测与控制方法和焊接数值模拟技术现状进行研究,了解焊接数值仿真算法的基本理论,包括焊接传热学、焊接热弹塑性理论知识,并对焊接过程中涉及的热源模型概念、分类和各自的优缺点进行了详细分析。
     其次,针对铁路车辆薄板类焊接结构特点,提出了基于固有应变等效热载荷的预测变形的方法。以货车侧墙薄板结构为研究对象,将固有应变等效为焊缝及热影响区的热载荷对其结构屈曲变形进行计算,结果表明仿真数值与实测数值基本一致。同时在此仿真模型的基础上,通过正交设计方法调整焊接工艺参数与结构参数,研究不同因素对焊接变形的影响程度,最后得出最优方案,为控制薄板侧墙的焊接变形提供理论根据。
     再次,针对铁路车辆多道焊箱型类焊接结构特点,提出了基于焊接过程热弹塑性的多道焊处理方法。以转向架构架侧梁为研究对象,使用SYSWELD焊接变形仿真软件,采用双椭球热源模型,利用热循环曲线,对构架侧梁多道焊焊接变形进行了研究,并给出了实验测量方法。仿真模拟计算结果与实测结果进行了比较,其一致性证明仿真模型的正确性。同时,研究了多道焊焊接顺序对变形的影响,实现了多道焊技术在铁道车辆产品设计中的应用。
     最后,针对铁路车辆大尺寸箱型类焊接结构特点,提出了基于“局部—整体”映射的预测焊接变形的方法和宏单元技术。以集装箱底架中梁为研究对象,使用Pam-Assembly焊接变形仿真软件,利用宏单元技术,计算了中梁在现有焊接工艺参数下的变形,研究了焊接顺序和结构参数对变形的影响,从而为结构大、焊缝长、有限元规模庞大、计算求解时间长这一类问题,寻求了一种快速有效解决大型复杂结构焊接变形的方法。
     本课题得到国家“863”高技术研究发展计划项目:《复杂产品协同设计、仿真、优化一体化平台研究开发及其应用》(项目编号:2006AA04Z160)的资助。
The thin-plate structure and the box-beam structure are two typical welded structures in railway vehicles. Because of their structure complexity, bigger size and multi-seams, welding residual distortion which occur in welding process bring unfavorable effect on the quality of welding products manufacturing and service. As a result, welding distortion forecasting and control become an important and urgent research topic in railway vehicles. Although the numerical simulation studies on welding distortion have been conducted for many years at home and abroad, less research work for welding structures in railway vehicles is done, especially in considering multifactor influences for welding distortion based on numerical model validation. According to thorough investigation of enterprise requirements, three different numerical methods are presented corresponding to three typical types of welded structures of railway vehicles-thin-plate structure, multi-pass welded box structure and large size box structure. After the analysis of welding distortion and the validation of welding simulation model, influences of welding parameters, structure parameters, multi-pass welding and welding sequences on welding distortion are studied. It is helpful for mastering the regularity of welding distortion, so as to provide technical support for the design, making, and optimization of railway vehicle welding process.
     Research work of this dissertation mainly includes:
     Firstly, prediction and control methods and numerical simulation technologies of welding distortion are reviewed. Basic theories of welding numerical simulation including heat transfer theory and thermo-elastic-plastic theory are developed. At the same time, relative concepts, classifications, advantages and disadvantages of heat source models involving in welding processes are discussed in detail.
     Secondly, according to the characteristic of thin-plate welded structure in railway vehicles, an equivalent thermal load method based on inherent strain is put forward. Taking truck side-wall as research object, thin-plate buckling distortion is simulated by transforming inherent strain into equivalent thermal loads on the welded seams and heat affected zones. Compartments between numerical simulation results and experiments data show that both have great consistence. Based on the simulation model, influences of different factors include welding and structural parameters on welding distortion are investigated by using orthogonal design method to regulate the parameters, and the optimal design is concluded which provide reliable theoretical references for controlling thin-plate welding distortion of the truck side-walls.
     Thirdly, according to the characteristic of multi-pass box welded structure in railway vehicles, a heat treatment method of multi-pass welding based on thermo-elastic-plastic theory is put forward. Taking bogie side beams as research object, multi-pass welding distortion is studied by the use of thermal cycling curves as heat source with SYSWELD simulation software. Meanwhile, the experimental measurements are given and the consistence of simulation results with the measured results proves the correctness of the simulation model. The influence of welding sequences to welding distortion in multi-pass welding process is studied which promotes the application of multi-pass welding technology in railway vehicle product design.
     Finally, according to the characteristic of large size box welded structure in railway vehicles, a "local-global" project FEM method and mcroelements technology are put forward. Taking the middle beam of container underframe as research object, welding distortion using present welding process is simulated based on macro-elements technology with Pam-Assembly simulation software. Influences of welding sequences and structural parameters to the welding distortion are also studied, which provide a kind of fast and effective method to solve welding distortion of large-scale complex structure for solution problems such as large size, long seams, large scale finite element calculation and much solution time etc.
     This research is sponsored by the National "863" high-tech research and development project:"Coordinated design of complex product, simulation and optimization----integrated platform research, development and application" (Project Number:2006 AA04Z160).
引文
[1]D.拉达伊著.熊第京等译.焊接热效应[M].北京:机械工业出版社,1997:1-2.
    [2]汪建华,魏良武.焊接变形和残余应力预测理论的发展及应用前景(1)[J].焊接,2001(9):5-7;2001(10):4-6.
    [3]马继等.预测焊接变形几种方法的比较.第十次全国焊接会议论文集[C].哈尔滨,2001:512-515.
    [4]徐琳,余昌莲,周旭春等.焊接变形预测的研究进展[J].机械工程师,2006(2):27-29.
    [5]侯志刚.薄板结构焊接变形的预测与控制[D].武汉:华中科技大学,2005.
    [6]汪建华.焊接数值模拟技术及其应用[M].上海:上海交通大学出版社,2003.
    [7]奥凯尔勃洛姆.HO.雷原译.焊接应力与变形[M].北京:中国工业出版社,1958.
    [8]库兹米诺夫C A.王承权译.船体结构的焊接变形[M].北京:国防工业出版社,1978.
    [9]李鸿,任慧龙,曾骥.预测船体分段焊接变形方法概述[J].船舶工程,2005(5):56-58.
    [10]Y.Ueda, H.Murakawa, S.Gu,Y. Okumoto. Simulation of Welding Deformation for Accurate Ship Assembling(1st Repost) In-plane Deformation of Butt Welded Plate. Journal of The Society of Naval Architects of Japan.1992,171:395-404.
    [11]Y.Ueda, H.Murakawa, Y. Okumoto. Simulation of Welding Deformation for Accurate Ship Assembling(2st Repost) Influence of Initial Imperfection to Butt Welded Plate. Journal of The Society of Naval Architects of Japan.1992,172:559-566.
    [12]Y.Ueda, H.Murakawa, S.Gu. Simulation of Welding Deformation for Accurate Ship Assembling(3st Repost) Out-of-plate Deformation of Butt Welded Plate. Journal of The Society of Naval Architects of Japan.1994,176:341-350.
    [13]Y.Okumoto, I.Kanazawa, H.Yanai. Study on Plate Deformation due to Fillet Welding at Sub-assembly Stage[J]. Journal of The Society of Naval Architects of Japan.1995,177:339-346.
    [14]C H Lee. Prediction of Welding Deformation of Ship Hull Panel Blocks using Equivalent Loading Method based on Inherent Strain[D].2002.
    [15]C D Jang, C H Lee and D E Ko. Prediction of welding deformations of stiffened panels[J]. Engineering for the Maritime Environment, Vol.216 (Part M):133-134.
    [16]Chang Doo Jang, Seung Ⅱ Seo, Dae Eun Ko. A Study on Prediction of Deformation of Plates Due to Line Heating Using a Simplified Thermal Elasto-Plastic Analysis. Journal of Ship Production[J]. 1997,13(1):22-27.
    [17]Seung Ⅱ Seo and Chang Doo Jang. A Study on Prediction of Deformation of Welded Ship Structures[J]. Journal of Ship Production.1999,15(2):73-81.
    [18]Y.Takeda Prediction of Butt Welding Deformation of Curved Shell Plates by Inherent Strain Method[J]. Journal of Ship Production,2002,18(2):99-104.
    [19]Michael R. Hill, Drew V. Nelson. Mechanical Engineering Department Stanford University. Stanford, CA. The Inherent Strain Method For Residual Stress Deformation and Its Application to A long Welded Joint.
    [20]H. C. Kuo and L. J. Wu Prediction of Deformation to Thin Ship Panels for Different Heat Sources[J]. Journal of Ship Production,2001,17(2):52-61.
    [21]汪建华.焊接变形和残余应力预测理论与计算—发展及应用前景[C].第三届计算机在焊接中的应用技术交流会论文集.上海,2000:13-19.
    [22]罗宇,朱积锋,鲁华益.船用大型焊接结构的焊接变形预测实例[J],造船技术,2005(3):34-37.
    [23]陈俊梅,陆皓,汪建华等.网络尺寸对别克轿车副车架总成焊接变形预测精度的影响[J].焊接学报,2002(2):33-39.
    [24]李鸿.基于固有应变的船体分段焊接变形预测[D].哈尔滨:哈尔滨工程大学,2005.
    [25]罗宇,鲁华益,朱枳锋.固有应变的概念及其在船舶建造中的应用[J].造船技术,2005,264(2):35-39.
    [26]汪建华,陆皓,魏良武.固有应变有限元法预测焊接变形理论及其应用[J].焊接学报,2002,23(6):36-37.
    [27]Ueda Y. Analysis of thermal elastic-plastic stress and strain during welding[J]. Trans. Japan Welding Soc.,1971,2(2):90-100.
    [28]K.Masubuchi. Prediction and control of residual stresses and distortion in welded structures[J]. Proc. Theoretical Prediction in Joining and Welding,1996:71-88.
    [29]Goldak J, et al. Thermal Stress Analysis of Welds:From Melting Point to Room Temperature[J]. Proc. Theoretical Prediction in Joining and Welding, Osaka, Japan, Nov.1996:225-230.
    [30]Karlsson L,et al. Thermal Stresses in Welding, in R. Hetnarski(ed.). Thermal Stresses Ⅰ, North-Holland, Amsterdam, Chapter 5,1986:299-386.
    [31]薛忠明,曲文卿,柴鹏等.焊接变形预测技术研究进展[J].焊接学报,2003,24(3):87-90.
    [32]唐慕尧,楼志文,芮树祥等.单面焊时终端裂纹的研究[J].焊接学报,1987,7(3):123-132.
    [33]陈楚.数值分析在焊接中的应用.上海:上海交通大学出版社,1985.
    [34]陈楚,汪建华,罗宇.轴对称热弹塑性应力有限元分析在焊接中的应用[J].焊接学报,1987,8(4):196-203.
    [35]汪建华.管板接头三维焊接变形的数值模拟[J].焊接学报,1995,16(3):140-145.
    [36]汪建华,戚新海,钟小敏.压缩机焊接变形的三维数值模拟[J].机械工程学报,1996,32(1):85-91.
    [37]Wang Jianhua et. An FEM model of buckling Deformation during welding of Thin plate[J]. J. of Shanghai Jiaotong University,1999, E-4(2):69-72.
    [38]Wang J, Ueda Y, Murakawa H etal. Improvement in Numerical Accuracy and Stability of 3-D FEM Analysis in Welding[J]. Welding Journal,1996,75(4):129s-134s.
    [39]关桥,傅显华.板氩弧点状加热应力应变过程的数值分析[J].机械工程学报,1983,3(1):10-24.
    [40]关桥,郭德伦,李从卿.低应力无变形焊接新技术—薄板构件的LSND焊接法[J].焊接学报,1990,11(4):231-37.
    [41]关桥,张崇显,郭德伦.动态控制的低应力无变形焊接新技术[J].焊接学报,1994,15(1):8-15.
    [42]Guan Qiao, Zhang C.X., et al. Dynamic Control of welding Deformation by Moving Spot Heat Sink[J]. Welding in the World,1994,33(4):308-312
    [43]关桥.飞行器薄壳结构焊接变形控制与焊接力学的发展[C].北京:航空连接技术重点实验室论文选编,1998:31-38.
    [44]汪建华,戚新海,钟小敏.焊接结构三维热变形的有限元模拟[J].上海交通大学学报,1994,28(6):59-65.
    [45]鹿安理,史清宇,赵海燕等.厚板焊接过程温度场、应力场的三维有限元数值模拟[J].中国机械工程,2001,2(12):27-29.
    [46]A. S. Oddy, J. M. J. McDill, J. A. Goldak. Consistent strain fields in 3D finite element analysis of welds[J]. Journal of Pressure Vessel Technology,1990,112(August):309-311.
    [47]A. S. Oddy, J. A. Goldak, J. M. J. McDill. Numerical analysis of transformation plasticity in 3D finite element analysis of welds[J]. Eur. J. Mech., A/Solids,1990,9(3):253-263.
    [48]Leblond J B.A Theoretical and Numerical Approach to the Plastic Behaviour of Steels During Phase Transformations[J]. J.Mech.Phys.Solid,1986,34(4):395-409.
    [49]J. B. Leblond, G. Mottet, J. C. Devaux. A theoretical and numerical approach to the plastic behavior of steels during phase transformations-Ⅰ. Derivation of general relation[J]. J. Mech. Phys. Solids, 1986,34(4):395-409.
    [50]曹彪,姜以宏,王建一.点焊过程热膨胀变形分析[J].焊接学报,1995,16(2):94-99.
    [51]J. A. Khan, L. Xu, Y.J. Chao, et al. Numerical simulation of resistance spot welding process[J]. Numerical Heat Transfer, Part A,2000,37:425-446.
    [52]O.P. Gupta, A. De. An improved numerical modeling for resistance spot welding process and its experimental verification[J]. Journal of Manufacturing Science and Engineering,1998,120(May): 246-251.
    [53]H. A. Nied. Finite element simulation of the upset welding process[J]. Journal of Engineering for Gas Turbines and Power, Transactions of the ASME,1993,115(January):184-192.
    [54]S. E. Chidiac, F. A. Mirza. Thermal stress analysis due to welding processes by the finite element method[J]. Computers and Structures,1993,46(3):407-412.
    [55]B. L. Josefson. Stress redistribution during local annealing of a multi-pass butt-welded pipe[J]. Journal of Pressure Vessel Technology,1986,108(May):125-130.
    [56]J. Wang, H. Lu, H. Murakawa. Mechanical behavior in local post weld heat treatment (Report Ⅰ)-C visco-elastic-plastic FEM anaysis of local PWHT. Trans. JWRI,1998,27(1):83-88.
    [57]Y. Ueda, Y. C. Kim, M. G. Yuan. A predicting method of welding residual stress using source of residual stress (Report Ⅰ) C characteristics of inherent strain (source of residual stress). Transactions of JWRI,1989,18(1):135-141.
    [58]A. Bachorski, M. J. Painter, A. J. Smailes, M. A. Wahab. Finite-element prediction of distortion during gas metal arc welding using the shrinkage volume approach [J]. Journal of Materials Processing Technology,1999, (92-93):405-409.
    [59]G Casalino, S J Hu, W Hou. Deformation prediction and quality evaluation of the gas metal arc welding butt weld. [C]. Proc. Instn Mech. Engrs Part B:J. Engineering Manufacture,2003,217: 1615-1622.
    [60]刘黎明,梁国俐,刘玉君.基于人工神经网络的船舶高强钢焊接变形分析预测[J].焊接学报,2002,23(1):27-29.
    [61]蔡志鹏,陆安理,史清宇.相似理论在焊接温度场和应力及应变场中的应用[J].焊接学报,2000,21(3):79-82.
    [62]蔡志鹏,赵海燕等.利用相似理论预测焊接变形的研究[J].机械工程学报,2002,38(5):141-144.
    [63]徐军,吴苏,赵海燕等.基于简化模型采用有限元方法计算特大型梁结构的焊接变形[J].焊接技术,2001,30(4):47-48.
    [64]崔晓芳,马君,兆文忠.高速动力车转向架构架焊接变形的数值分析研究[J].铁道学报,2004,26(3):10-11.
    [65]崔晓芳,马君,夏月明等.焊接变形的数值仿真及其在SS7E机车焊接构架中的应用[J].机床与液压,2004(8):60-62.
    [66]王世斌.浅谈大型钢结构的焊接变形控制[J].中国水运,2008,8(11):178-179.
    [67]姜澜.高速列车用铝合金的焊接接头性能与矫形温度研究[D].沈阳:东北大学,2003.
    [68]张志伟.论焊接件变形的结构和工艺分析[J].机械研究与应用,2007,20(3):18-19.
    [69]王国凡,初福民,陈鹭滨.多节框架的焊接工艺及变形控制[J].焊接技术,2001,30(4):45-47.
    [70]曾平,朱本芳.宜昌大桥钢箱梁隔板焊接变形的控制技术[J].焊接技术,2001,30(4):51-52.
    [71]李辉,陈卫.集装箱平车中梁焊接变形的工艺分析[J].焊接,2002(4):41-42.
    [72]朱宏光,李家鲁,韩军.薄壁筒身插入式内坡口全焊透法兰焊接变形控制[J].焊接,2001(3):30-32.
    [73]徐文立,刘雪松,方洪渊等.薄板高强铝合金LY12CZ焊接工艺参数的优化[J].焊接学报,2004,25(2):39-42.
    [74]Sang-Chul Park,B-S.,M.S. Distrotion mechanisms and control methodology for welding thin-plate panel structures [D]. USA:The Ohio State University,1998:60-74.
    [75]I. Voutchkov, A.J. Keane, A. Bhaskar, Tor M. Olsen.Weld sequence optimization:The use of surrogate models for solving sequential combinatorial problems [J]. Comput. Methods Appl. Mech. Engrg.2005,194:3535-3551.
    [76]Dean Deng, Hidekazu Murakawa(D. Deng, H. Murakawa). FEM prediction of buckling distortion induced by welding in thin plate panel structures[J]. Computational Materials Science,2008(43): 591-607.
    [77]刘玉君,李艳君.焊接反变形规律的实验验证[J].造船技术,2006(2):35-37
    [78]宗培,文建成,罗字.李朝林.焊接结构反变形的有限元法计算[J].船海工程,2001(5):5-7.
    [79]温鹏,张旭东,陈武柱等.薄板激光焊时失稳变形及其控制[J].焊接学报,2006,27(9):99-102.
    [80]Q. Guan, D. L. Guo, C. Q. Li, et al. Low stress non-distortion (LSND) welding—a new technique for thin materials[J]. Welding in the World,1994,33(3):160-167.
    [81]Q. Guan, C. X. Zhang, D. L. Guo. Dynamic control of welding distortion by moving spot heat sink[J]. Welding in the World,1994,33(4):308-312.
    [82]李铸国,吴毅雄,林涛.复杂汽车零部件精度焊接成形质量保证系统[J].焊接学报,2001,22(5):65-68.
    [83]焦立新.焊接仿真技术应用与未来发展[J].航空制造技术,2008(8):48-50.
    [84]陈丙森.计算机辅助焊接技术[M].北京:机械工业出版社,1999.
    [85]吴言高,李午申,邹宏军等.焊接数值模拟技术发展现状[J].焊接学报,2002,23(3):89-92.
    [86]Sudnik V A, Erofeev V A, Ivanov A V. Development and Application of Computer. Technologies for Predicting Weld Formation in Arc Welding[J], Welding; International,1998,12(5):404-409.
    [87]华鹏,孙俊生.有限元软件sysweld在焊接数值模拟中的作用[J].山东机械,2005(1):10-12.
    [88]焦立新.先进的焊接及热处理工艺仿真方案[J].航空制造技术,2007(12):103-104.
    [89]蔡志鹏.大型结构焊接变形数值模拟的研究与应用[D].北京:清华大学,2001.
    [90]马继.预测焊接变形数值方法的研究及其应用[D].上海,上海交通大学,2002.
    [91]潘际銮.展望21世纪焊接科研[J].中国机械工程,2000,11(122):21-25.
    [92]莫春立,钱百年,国旭明等.焊接热源计算模式的研究进展[J].焊接学报,2001,2(3):93-96.
    [93]陈家权,肖顺湖,杨新彦等.焊接过程数值模拟热源模型的研究进展[J].装备制造技术,2005(3):10-14.
    [94]程久欢,陈俐,于有生.焊接热源模型的研究进展[J].焊接技术,2004,33(1):13-15.
    [95]Yang, Xinhua; Wang, Chunsheng; Chang, Li; Li, Yana; Zhao, Wenzhong.Numerical simulation of the welding deformation for the side sill of the bogie frame based on local-global method[J]. China Welding,2007,16(4):11-16.
    [96]张文钺.焊接传热学[M].北京:机械工业出版社,1989:11-31.
    [97]Pavelic V, Tanbakuchi R, Auyehara O. Experimental and computed temperature historips in gas tungsten arc welding of thin plates[J]. Welding Journal Reseach Supplement,1969,48(7): 295s-305s.
    [98]Chong L M. Predicting welding hardness [D]. M,Eng, Thesis. Ottawa, Canada:Carleton University, 1982:56-57.
    [99]John Goldak. A new finite model for welding heat source [J]. Metallurgual Transactions,1984, 15B(2):299-305.
    [100]蔡志鹏,赵海燕,鹿安理等.焊接数值模拟中分段移动热源模型的建立及应用[J].中国机械工程,2002,13(3):208-210.
    [101]蔡志鹏,赵海燕,吴盨等.串热源模型及其在焊接数值模拟中的应用[J].机械工程学报,2001,37(4):25-29
    [102]蔡志鹏,鹿安理,赵海燕等.串热源模型1200 t桥式起重机主梁腹板装焊过程的数值模拟[J].中国机械工程,2002,13(9):802-805.
    [103]王煜等.电子束焊接数值模拟中分段移动双椭球热源模型的建立[J].中国机械工程学报,2004,40(2):165-169.
    [104]Michaleris P, zhang L, Bhide S.R, et al. Evaluation of 2D,3D and applied plastic strain methods for predicting buckling welding distortion and residual stress[J]. Science and Technology of Welding and Joining,2006(11):707-716.
    [105]WANG Jian-hua, LU Hao, Murakaw a Hidekazu. An fem model of buckling distortion during welding of thin plate[J]. Journal of Shanghai Jiaotong University,1999(2):69-72.
    [106]M.V.Deo,P.Michaleris and J.Sun Prediciton of buckling distortion of welded structures[J]. Science and Technology of Welding and Joining,2003,8(1):55-61.
    [107]Yang Xinqi, Huo Lixing. Prediction analysis of buckling distortion of thin-plate Structure[J]. China Welding,2002(11):138-142.
    [108]闫俊霞,霍立兴,张玉凤等.焊接薄板失稳变形预测方法[J].焊接学报,2005(6):50-53.
    [109]Michaleris P, Debiccari A. Prediction of welding distortion[J]. Welding Research Supplement, 1997(4):172-181.
    [110]P. MICHALERIS and A. DEBICCARI:Weld. J.,1997,76(4):172-180.
    [111]P. MICHALERIS and A. DEBICCARI:J. Ship production,1996,12(4):269-275.
    [112]陆皓,陈俊梅,陈家本.薄板结构焊接变形数值模拟及其应用[J].电焊机,2007,37(6):71-74.
    [113]Ueda Y, Kim Y C, Yuan M G. A predition method of welding residual stress using source of residual stress(Preport Ⅰ)-Characteristics of inherent strain (source of residual stress). Trans.JWRI,1989, 18(1):135-141.
    [114]汪建华,陈楚.不同接头形状下的焊接传热计算机系统[J].焊接学报,1990,11(1):57-64.
    [115]陈家权,肖顺湖,尹秉升.薄板焊接特征屈曲的数值分析[J].焊接技术,2006,35(3):13-15.
    [116]陈魁.试验设计与分析[M].清华大学出版社,2005.
    [117]方开泰.正交与均匀试验设计[M].北京:科学出版社,2001.
    [118]王晓煦,罗金华等.大型构件焊接过程计算机仿真综述[J].新技术新工艺,2001(8):5-8.
    [119]陈立功,建华,纯珍.基于固有应变法简体对接多道焊焊接变形的预测焊[J].焊接学报,2007,28(1):77-80.
    [120]柏林,陆皓.基于固有应变法的大型圆筒焊接变形预测[J].造船技术,2005(5):35-37.
    [121]赵海燕.焊接结构CAE中数值模拟技术的实现[J].中国机械工程,2000,11(7):732-734.
    [122]孟庆国,方洪渊,杨建国等.多道焊温度场数值模拟及其分布规律的研究[J].机械工程学报,2005,41(1):124-128.
    [123]薛小龙,桑芝富,朱加贵.多道焊T型接头的数值模拟——连续焊与间断焊的比较[J].南京工业大学学报,2004,26(3):31-35.
    [124]薛小龙,王志亮,桑芝富等.T形焊接接头的三维有限元模拟[J].中国机械工程,2005,16(9):811-815.
    [125]王传标,李萌盛.钢管多道焊焊接热过程的数值模拟与接头组织分析[J].金属铸锻焊技术,2009,38(7):100-102.
    [126]郑振太.大型厚壁结构焊接过程的数值模拟研究与应用[D].天津,天津大学,2007.
    [127]A. Hu bner, J.G. Tengb, H. Saal. Buckling behaviour of large steel cylinders with patterned welds[J]. International Journal of Pressure Vessels and Piping,83 (2006):13-26.
    [128]李晓玲.大型焊接结构残余变形分析[J].洛阳大学学报,1995,10(4):43-48.
    [129]徐军,吴苏,赵海燕等.基于简化模型采用有限元方法计算特大型梁结构的焊接变形[J].焊接技术,2001,30(4):47-48.
    [130]蔡志鹏,赵海燕,鹿安理等.结合模型试验的数值模拟方法在大型结构焊接变形控制中的应用[J].机械工程学报,2002,38(10):100-104
    [131]蔡志鹏,鹿安理,赵海燕等.串热源模型及1200t桥式起重机主梁腹板装焊过程的数值模拟[J].中国机械工程,2002,13(9):802-806.
    [132]罗宇,朱积锋,鲁华益.船用大型焊接结构的焊接变形预测实例[J].造船技术,2005(3):34-37.
    [133]S. A. Tsirkas, P. Papanikos, K. Pericleous, N. Strusevich, F. Boitout and J. M. Bergheau. Evaluation of distortions in laser welded shipbuilding parts using local-global finite element approach[J]. Science and Technology of Welding and Joining,2003,8(2):79-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700