酿酒酵母高尔基体糖基化及生物学功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酿酒酵母(Saccharomyces cerevisiae)具有无毒、容易培养、遗传背景清晰和对外源蛋白有糖基化修饰等优点,是理想的外源蛋白表达宿主。酿酒酵母是第一个完成基因组测序的真核生物,酵母基因组数据库关于酵母基因组的详细注释(annotation)是研究糖基化酶的结构与功能之间的关系,寻找关键的结构域及阐明这些与膜相连的糖基化酶的拓扑学(topography)结构的重要工具。由于定位于酿酒酵母内质网和高尔基体的糖基化酶基因基本已被分离,有目的性的敲除这些酶将促进阐明糖基化与细胞功能的机制。在真核细胞中,分泌蛋白和定位蛋白经常被复杂的寡糖链修饰,糖蛋白中的寡糖在许多细胞识别过程中起着重要作用,如肿瘤转移、细胞粘附、病原体入侵和免疫反应等。另外,糖基化影响蛋白质的生物合成、折叠、抗原性、免疫原性及其在血浆中的半衰期。酿酒酵母蛋白N-糖基化和其他真核生物一样,首先发生在内质网中,N-连接的寡糖转移至新生肽的天冬酰胺上。转运到定位之前,N-糖链还经过高尔基体中进一步修饰加工至成熟的糖链结构。本课题主要研究了酵母高尔基体糖基化过程及N-糖链outer chain在细胞生命过程中的生物学功能。
     Mnn1p和Och1p是酿酒酵母高尔基体糖基化过程中的起始阶段的两个甘露糖基转移酶,Mnn1p参与N-糖链outer chain形成α1,3-甘露糖,Och1p则在核心糖链Man_8GlcNAc_2上加上一个α1,6-甘露糖,从而引发outer chain的α1,6-backbone的形成和N-糖链的过度甘露糖基化。利用Overlap extension PCR的方法,我们在体外构建了等位基因敲除DNA片段。通过敲除DNA片段上的同源序列与酵母基因组发生重组置换,敲除酵母N-糖基化过程中的甘露糖基转移酶基因MNN1和OCH1,构建了两株蛋白糖基化突变菌株:mnn1突变菌株和mnn1 och1突变菌株。为分析mnn1 och1突变菌株蛋白的糖基化形式,我们采用热柠檬酸抽提的方法,提取了酵母细胞壁的甘露糖蛋白;利用高甘露糖亲和柱concanavalin A-sepharose 4B亲和层析纯化抽提液中的甘露糖蛋白。利用糖酰胺酶PNGase F水解释放糖蛋白中的糖链;采用Shim-pack clc-NH2氨基柱Size-fractionation HPLC分析了2-氨基吡啶衍生后的糖链组份,结果表明,mnn1 och1突变菌株蛋白的糖链为单一组成,该组分的MALDI TOF/MS分子量鉴定为1794.66Da,与Man_8GlcNAc_2-PA的分子量相同。结果说明了MNN1和OCH1基因的敲除阻断了内质网核心糖链(ER core type glycan)在高尔基体中形成高聚合度甘露糖的outer chain,在mnn1 och1突变菌株中蛋白糖基化是单一的核心糖链结构,Man_8GlcNAc_2。
     糖蛋白不仅是细胞结构的重要组成部分,也是细胞生命活动的主要承担者之一。在mnn1 och1突变菌株中,蛋白糖基化在高尔基体阶段修饰受阻,通过突变菌株细胞形态及生化特征观察,发现高尔基体糖基化缺陷影响了细胞一些正常的活动;比较野生型和mnn1 och1突变菌株的生长曲线,发现突变菌株细胞生长速度明显减慢,菌体密度也不高;通过温度敏感性实验和台盼蓝染色(trypan blue dye staining)考察了高尔基体糖基化突变对细胞活力的影响。结果表明单个敲除基因MNN1并不影响细胞的生长表型,如果同时敲除MNN1和OCH1基因后,突变菌株的生长对温度变得敏感,这种温度敏感性的生长依赖于渗透压稳定剂。在mnn1 och1突变菌株中,细胞还表现一些细胞分裂的缺陷,而且渗透压稳定剂也不能抑制突变菌株细胞分裂缺陷。高尔基体糖基化突变影响了新生细胞壁的形成,导致子细胞不能正常地从母体细胞分离出来,细胞的不完全分裂造成了mnn1 och1突变菌株生长高度聚集,细胞堆积。另外,高尔基体糖基化缺陷也影响到分裂过程中细胞核的迁移,对mnn1 och1突变菌株细胞的细胞核DAPI染色发现一些芽孢没有细胞核。mnn1 och1突变使得N-糖链的完全丧失outer chain,因此减少了N-糖链的甘露糖磷酸化位点,这减弱细胞与细胞之间相同电荷的排斥作用,也破坏细胞表面的水化层,从而影响细胞的粘度,导致mnn1 och1细胞易堆积沉降。
     细胞凋亡(apoptosis)的生物学意义主要在于清除多余的、有害及衰老细胞,这一机制仍然保留在单细胞生物中。在哺乳动物和酵母中,蛋白整个糖基化过程缺陷,如ER糖基化起始阶段的基因突变或糖基化抑制剂,都诱导细胞的凋亡。本研究结果表明,N-连接糖链的不完整(高尔基体糖基化缺陷)足够引发酵母糖基化诱导的细胞凋亡。在trypan blue staining分析mnn1 och1突变菌细胞活力时发现,37℃培养时细胞大量死亡,显微观察发现部分死亡的细胞呈现与衰老细胞(ageing cell)相似的表征,如细胞表面疏松,皱褶。对mnn1 och1突变菌的凋亡形态学和生物化学特征进一步考察,结果显示,死亡的细胞中呈现细胞染色质浓缩(chromatin condensation),胞核碎化(nuclear fragmentation),磷脂酰丝氨酸外露(phosphatidylserine exposure)在细胞膜的外层,而细胞膜保持完整,这些细胞凋亡表型及生化的特征表明,mnn1 och1突变菌株细胞经历了程序性死亡过程(programme cell death)。活性氧自由基(reactive oxygen species,ROS)是酵母细胞凋亡关键的调控子,利用荧光探针二氢罗丹明123(dihydrorhodamine 123)检测mnn1 och1突变菌株细胞内的ROS水平,结果显示,在28℃和37℃培养的细胞中,ROS都出现不同程度的积累,说明高尔基体糖基化缺陷诱导的细胞凋亡是通过ROS途径进行调控。高尔基体糖基化缺陷可破坏酵母细胞壁的结构完整性,导致大量细胞坏死(necrosis),这一点通过mnn1 och1突变菌株增加了对50μg/ml的刚果红(Congo red)和细胞壁水解酶glucuronidase-lyticase敏感性以及1.0M的山梨醇(sorbitol)提高了细胞存活率中得到证实。
     人干扰素-β(HuIFN-β)是成纤维细胞受病毒感染或诱生剂诱导产生的细胞因子,广泛应用抗病毒,多发性硬化和肿瘤化疗。HuIFN-β是糖蛋白,在Asn~(80)上有一个N-糖基化位点。将HuIFN-β基因导入酿酒酵母分泌型表达载体pYFD18,构建重组载体pYFD18-HuIFN,通过电击转化法,将重组载体分别导入w3031A(wild type)菌株。mnn1突变菌株及mnn1 och1突变菌株,筛选转化子并表达外源蛋白,利用Western blot检测酵母细胞内和发酵液中的HuIFN-β的表达,结果显示,HuIFN-β蛋白在胞内积累,都没有在α-factor信号肽的引导下分泌到发酵液中。而且野生型和mnn1 och1突变菌株的Western blot杂交条带大小相同,由此证明,β-干扰素在酿酒酵母中表达时,由于对酵母细胞的毒性,没有经过分泌途径进入高尔基体进行糖基化修饰而分泌到胞外,从而造成HuIFN-β以α-factor信号肽融合蛋白的形式在细胞内积累。
Since Saccharomyces cerevisiae has several advantages, such as safe, easy to cultivate, having glycosylation and a clear biochemical and genetic background, it has been one of the commonly used organisms for heterogenous protein expression. S. cerevisiae is the first sequenced genome eukaryotes, and the gene annotations in yeast genome database provide powerful information for structure-function studies, for identification of essential domains, and for elucidation of topography of membrane-bound glycosylation enzymes. This single-celled organism is also important in understanding cellular and molecular processes in eukaryotes. As some stages of glycosylation are highly conserved among eukaryotes, yeast glycosylation mutants can be used to isolate cDNAs encoding enzymes of these pathways from other species. The availability of genes encoding glycosylation enzymes in the ER and Golgi will be useful to identify their targeting mechanisms to these subcellular compartments. Depending on the proteins, glycans may contribute to their conformation, stability, and appropriate targeting. Furthermore, in multicellular eukaryotes, specific carbohydrate structures are known to participate in biological recognition processes. In eukaryotic cells, secreted and membrane proteins are frequently modified with complex glycan structures. The syntheses of these N-glycans, initiating in the endopiasmic reticulum (ER), are catalyzed by the enzyme oligosaccharyltransferase complex (OST), transfering the glycans from the lipid carrier (dolichol) to asparagine residues in the polypeptide chains. After the export of predominantly Man_8GlcNAc_2-containing glycoproteins to the Golgi, the core oligosaccharide may be hypermannosylated with up to 200 mannose residues. This work focused on the Golgi glycosylation pathway and the biofunction of the outer chains.
     The OCH1 gene encodes al, 6-mannosyltransferase functional in the initiating stage of mannose outer chain addition to the to the ER-form core oligosaccharide. Golgiα1, 3-mannosyltransferase (Mnn1p) is known to be responsible for the addition of the fourth mannose residue on N-linked chains, and it has been postulated to terminally mannosylate the core and outer chains on N-linked glycans as well. To get a mutant deficient in Golgi glycosylation, we deleted the two mannosyltransferase, Mnn1p and Och1p. The null disruptions of MNN1. 0CH1 were carried out basing on an overlap extension PCR strategy. MNNI, OCHI was replaced by the S. cerevisiae URA3, HIS3, respectively. Transformants were confirmed by amplifying and sequencing the recombinant genomic region. Therefore, we generated two glycosylation mutants, mnn1 mutant and mnn1 och1 mutant. To characterize the N-glycosylation in the mnn1 och1 mutant, mannoproteins were obtained by hot citrate buffer extraction after the mnn1 och1 cells were crumbled. The extracted mannoprotein was precipitated by ethanol, and further purified by concanavalin A-sepharose 4B. The N-oligomannose saccharides were released from mannoprotein by PNGase F digestion, and then peptides and detergents were removed by passage through ion exchange columns. For desalting, glycans were applied to porous graphitic-carbon cartridge. 2-aminopyridine pyridylaminated sugars were profiled and purified by size fractionation HPLC with Shim-pack clc-NH2 column, and result showed dominantly a single peak. MALDI TOF/MS analysis of this peak revealed that its molecular weight was 1796.5 Da, which corresponds to the calculated mass of Man_8GlcNAc_2-PA. These results indicated that disruptions of MNN1 and OCH1 eliminated the hypermannosylation of the N-linked glycans, and glycoproteins were glycosylated with a single core type glycan, Man_8GlcNAc_2, in the mnn1 och1 mutant.
     N-glycosylation pathway involves the synthesis of lipid-linked oligosaccharide precursor and the subsequent processing events in the ER and the Golgi. It functions by modifying proteins with appropriate oligosaccharide structures, thus influencing their properties and bioactivities. N-glycan matures in Golgi apparatus and perturbations in Golgi N-glycosylation correlate with, and may result from, other malfunctions of the Golgi pathway. The mnn1 mutant yeast cells exhibit no observable change compared to the wild type strain at all temperature. The mnn1 och1 double mutant showed a slower growth rate and a thinner cell density. The Golgi glycosylation mutation also affected the cell viability; the mnn1 och1 mutant became temperature-sensitive and trypan blue dye staining showed more than 35% of cells died at nonpermissive temperature for 20h. However, these defects could be rescued in the presence of osmotic stabilizers. Additionally, the mnn1 och1 mutations impaired cell cytokinesis—most of the mother cells sporulated with two or three daughter cells. The double null mutant cells grew extremely clumped together. Even sonication could not disrupt cell clumps efficiently, indicating strong cell-cell interactions. DAPI staining revealed a nuclear migration defect in mnn1 och1 mutant cells; some of the buds were anucleate. The loss of mannosyl-phosphate accepting sites in mnn1 och1 also resulted in a loss of charge repulsion between cell surfaces and impairment of the surface hydration layer, causing cells to aggregate.
     Apoptosis functions to clear unused or potentially harmful cells remained in the unicellular organism. Here, for the first time, we showed that the accidental cell death and programmed cell death induced with defect in the outer sugar chain by blocking the Golgi N-glycosylation elongation in S. cerevisiae. Microscopic visualization of trypan blue stained mnn1 och1 cells at 37℃showed that the surface of some dead cells displayed a loose and wrinkled appearance, one of the characteristics of ageing cells. To test whether the mnn1 och1 mutation induces apoptosis at nonpermissive temperature, we examined the morphological and biochemical features of apoptosis. Results showed that the mnn1 och1 cells displayed chromatin condensation and nuclear fragmentation. PS was also exposed on the outer surface of the plasma membrane when cells were still metabolically active and able to exclude the vital dye PI. These evidences indicated that the mnn1 och1 mutant underwent a program cell death. The production of reactive oxygen species in the mnn1 och1 mutant was also detected by Dihydrorhodamine 123. As the ROS have been shown to be a regulator of inducing apoptosis in yeast, the program cell death of mnn1 och1 mutant was probably due to the accumulation of ROS. The mnn1 och1 mutant also underwent a necrotic cell death caused by the cell wall defects. The phenomenon was verified by the increase of cell survival in the presence of an osmotic stabilizer, increase of susceptibility to glucuronidase digestion and sensitivity to the Congo red. Therefore, our study provides a new insight into the correlation between glycosylation with the cell death in yeast.
     Beta Human interferon (HuIFN-β) is a glycoprotein, secreted by fibroblasts in response to viral infection or exposure to double-stranded RNA. It has an antiviral activity, and has also been used in chemotherapy of certain types of tumors and therapy of multiple sclerosis. To study the HuIFN-βexpression in different strains, the human interferon-βgene was inserted in the Hind III clone site of the secretion-expression plasmid YFD18, and the recombinant plasmid, pYFD18-HuIFN was constructed. The recombinant plasmid was then transformed into strain W303-1A, mnn1 mutant and mnn1 och1 respectively by electroporation. Western blot was applied to analyse the HuIFN-βexpression. However, results showed the HuIFN-βremained intracellular, and the alpha-factor secretion signal had not led the HuIFN-βto secrete into fermentation liquid. Probably, the expression of the HuIFN-βwas very toxic for S. cerevisiae, which affected the HuIFN-βexport to Golgi modification and secretion pathway. Therefore, the HuIFN-βaccumulated intracellularly as a fusion protein with alpha-factor signal peptide.
引文
[1] 张树政 (1999) 糖生物学.生命的科学,3:103-106.
    [2] Merry, A. H. and Merry, C. L. (2005) Glycoscience finally comes of age. EMBO Rep, 6: 900-903.
    [3] Haltiwanger, R. S. and Lowe, J. B. (2004) Role of glycosylation in development. Annu Rev Biochem, 73: 491-537.
    [4] Martin, M. J., Muotri, A., Gage, F., et al. (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med, 11: 228-232.
    [5] Muramatsu, T. and Muramatsu, H. (2004) Carbohydrate antigens expressed on stem cells and early embryonic cells. Glycoconj J, 21: 41-45.
    [6] Sjogren-Jansson, E., Zetterstrom, M., Moya, K., et al. (2005) Large-scale propagation of four undifferentiated human embryonic stem cell lines in a feeder-free culture system. Dev Dyn, 233: 1304-1314.
    [7] Wacker, M., Linton, D., Hitchen, P. G., et al. (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science, 298: 1790-1793.
    [8] Feldman, M. E, Wacker, M., Hernandez, M., et al. (2005) Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc Natl Acad Sci U S A, 102: 3016-3021.
    [9] Wacker, M., Feldman, M. F., Callewaert, N., et al. (2006) Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems. Proc Natl Acad Sci U S A, 103: 7088-7093.
    [10] Alaimo, C., Catrein, I., Morf, L., et al. (2006) Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides. Embo J, 25: 967-976.
    [11] Matzuk, M. M., Keene, J. L. and Boime, I. (1989) Site specificity of the chorionic gonadotropin N-linked oligosaccharides in signal transduction. J Biol Chem, 264:2409-2414.
    [12] Baenziger, J.U. and Green, E.D. (1991) In Biology of Carbohydrates,. vol. 3: 1-46.
    [13] Gallagher, J.T. (2001) Heparan sulfate: growth control with a restricted sequence menu. J Clin Invest, 108: 357-361.
    [14] Hauptmann, P., Riel, C., Kunz-Schughart, L.A., et al. (2006) Defects in N-glycosylation induce apoptosis in yeast. Mol Microbiol, 59: 765-778.
    [15] Jungmann, J., Rayner, J.C. and Munro, S. (1999) The Saccharomyces cerevisiae Protein Mnn10p/Bedlp Is a Subunit of a Golgi Mannosyltransferase Complex. J. Biol. Chem., 274: 6579-6585.
    [16] Rudd, P.M., Elliott, T., Cresswell, P., et al. (2001) Glycosylation and the immune system. Science, 291: 2370-2376.
    [17] Kukuruzinska, M.A. and Lennon, K. (1998) Protein N-glycosylation: molecular genetics and functional significance. Crit Rev Oral Biol Med, 9: 415-448.
    [18] Schubert, U., Anton, L.C., Gibbs, J., et al. (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature, 404: 770-774.
    [19] Imperiali, B. and O'Connor, S.E. (1999) Effect of N-linked glycosylation on glycopeptide and glycoprotein structure. Currr Opin Chem Biol, 3: 643-649.
    [20] Hamilton, S.R., Davidson, R.C., Sethuraman, N., et al. (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science, 313: 1441-1443.
    [21] Choi, B.K., Bobrowicz, P., Davidson, R.C., et al. (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastods. Proc Natl Acad Sci U S A, 100: 5022-5027.
    [22] Strasser, R., Stadlmann, J., Svoboda, B., et al. (2005) Molecular basis of N-acetylglucosaminyltransferase I deficiency in Arabidopsis thaliana plants lacking complex N-glycans. Bioehem J, 387: 385-391.
    [23] Wyss, D.F., Choi, J.S., Li, J., et al. (1995) Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science, 269: 1273-1278.
    [24] Moody, A.M., Chui. D., Reche, P.A., et al. (2001) Developmentally regulated glycosylation of the CD8alphabeta coreceptor stalk modulates ligand binding. Cell, 107: 501-512.
    [25] Pagny, S., Cabanes-Macheteau, M., Gillikin, J.W., et al. (2000) Protein recycling from the Golgi apparatus to the endoplasmic reticulum in plants and its minor contribution to calreticulin retention. Plant Cell, 12: 739-756.
    [26] von Itzstein, M., Wu, W.Y., Kok, G.B., et al. (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature, 363: 418-423.
    [27] 王克夷(1994)糖类研究的进展和前沿。.生命的化学,14:4-8.
    [28] Patel, T., Bruce, J., Merry, A., et al. (1993) Use of hydrazine to release in intact and unreduced form both N- and O-linked oligosaccharides from glycoproteins. Biochemistry, 32: 679-693.
    [29] Stahl, B., Steup, M., Karas, M., et al. (1991) Analysis of neutral oligosaccharides by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem, 63: 1463-1466.
    [30] Lain, J.S., Mansour, M.K., Specht, C.A., et al. (2005) A model vaccine exploiting fungal mannosylation to increase antigen immunogenicity. J Immunol, 175: 7496-7503.
    [31] Yip, C.L., Welch, S.K., Klebl, F., et al. (1994) Cloning and analysis of the Saccharomyces cerevisiae MNN9 and MNN1 genes required for complex glycosylation of secreted proteins. Proc Natl Acad Sci U S A, 91: 2723-2727.
    [32] Stolz, J. and Munro, S. (2002) The Components of the Saccharomyces cerevisiae Mannosyltransferase Complex M-Pol I Have Distinct Functions in Mannan Synthesis. J. Biol. Chem., 277: 44801-44808.
    [33] Ballou, C.E. (1990) Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Methods Enzymol, 185: 440-470.
    [34] Lehrman, M. A. (1991) Biosynthesis of N-acetylglucosamine-P-P-dolichol, the committed step of asparagine-linked oligosaccharide assembly. Glycobiology, 1: 553-562.
    [35] Chien, C., Bartel, P. L., Sternglanz, R., et al. (1991) The Two-Hybrid System: A Method to Identify and Clone Genes for Proteins that Interact with a Protein of Interest. PNAS, 88: 9578-9582.
    [36] Faye, L. and Chrispeels, M. J. (1989) Apparent Inhibition of beta-Fructosidase Secretion by Tunicamycin May Be Explained by Breakdown of the Unglycosylated Protein during Secretion. Plant Physiol, 89: 845-851.
    [37] Lerouge, P., Cabanes-Macheteau, M., Rayon, C., et al. (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol, 38: 31-48.
    [38] Komfeld, R. and Komfeld, S. (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem, 54: 631-664.
    [39] Kukuruzinska, M. A., Bergh, M. L. and Jackson, B. J. (1987) Protein glycosylation in yeast. Annu Rev Biochem, 56: 915-944.
    [40] Knauer, R. and Lehle, L. (1999) The oligosaccharyltransferase complex from yeast. Biochim Biophys Acta, 1426: 259-273.
    [41] Byrd, J. C., Tarentino, A. L., Maley, F., et al. (1982) Glycoprotein synthesis in yeast. Identification of Man8GlcNAc2 as an essential intermediate in oligosaccharide processing. J Biol Chem, 257: 14657-14666.
    [42] Trimble, R. B. and Atkinson, P. H. (1986) Structure of yeast external invertase Man8-14GlcNAc processing intermediates by 500-megahertz 1H NMR spectroscopy [published erratum appears in J Biol Chem 1987 Jul 5; 262(19): 9428]. J. Biol. Chem., 261: 9815-9824.
    [43] Herscovics, A. and Orlean, P. (1993) Glycoprotein biosynthesis in yeast. FASEB J., 7: 540-550.
    [44] Nakayama, K., Nagasu, T., Shimma, Y., et al. (1992) OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation of asparaginc-linkcd oligosaccharides. Embo J, 11: 2511-2519.
    [45] Lewis, M. S. and Ballou, C. E. (1991) Separation and characterization of two alpha 1,2-mannosyltransferase activities from Saccharomyces cerevisiae. J Biol Chem, 266: 8255-8261.
    [46] Rayner, J. C. and Munro, S. (1998) Identification of the MNN2 and MNN5 mannosyltransferases required for forming and extending the mannose branches of the outer chain mannans of Saccharomyces cerevisiae. J Biol Chem, 273: 26836-26843.
    [47] Jungmann, J. and Munro, S. (1998) Multi-protein complexes in the cis Golgi of Saccharomyces cerevisiae with alpha-1,6-mannosyltransferase activity. Embo J, 17: 423-434.
    [48] Kozulic, B., Barbaric, S., Ries, B., et al. (1984) Study of the carbohydrate part of yeast acid phosphatase. Biochem Biophys Res Commun, 122: 1083-1090.
    [49] Ballou, L., Hitzeman, R. A., Lewis, M. S., et al. (1991) Vanadate-resistant yeast mutants are defective in protein glycosylation. Proc Natl Acad Sci U S A, 88: 3209-3212.
    [50] Odani, T., Shimma, Y., Tanaka, A., et al. (1996) Cloning and analysis of the MNN4 gene required for phosphorylation of N-linked oligosaccharides in Saccharomyces cerevisiae. Glycobiology, 6: 805-810.
    [51] Graham, T. R., Seeger, M., Payne, G. S., et al. (1994) Clathrin-dependent localization of alpha 1,3 mannosyltransferase to the Golgi complex of Saccharomyces cerevisiae. J Cell Biol, 127: 667-678.
    [52] Raschke, W. C., Kern, K. A., Antalis, C., et al. (1973) Genetic Control of Yeast Mannan Structure. ISOLATION AND CHARACTERIZATION OF MANNAN MUTANTS. J. Biol. Chem., 248: 4660-4666.
    [53] Ballou, C. E., Kern, K. A. and Raschke, W. C. (1973) Genetic Control of Yeast Mannan Structure. COMPLEMENTATION STUDIES AND PROPERTIES OF MANNAN MUTANTS. J. Biol. Chem., 248: 4667-4671.
    [54] Jigami, Y. and Odani, T. (1999) Mannosylphosphate transfer to yeast mannan. Biochim Biophys Acta, 1426: 335-345.
    [55] Poster, J. B. and Dean, N. (1996) The Yeast VRG4 Gene Is Required for Normal Golgi Functions and Defines a New Family of Related Genes. J. Biol. Chem., 271: 3837-3845.
    [56] Lewis, M. S. and Ballou, C. E. (1991) Separation and characterization of two alpha 1,2-mannosyltransferase activities from Saccharomyces cerevisiae. J. Biol. Chem., 266: 8255-8261.
    [57] Cohen, R. E., Zhang, W. and Ballou, C. E. (1982) Effects of mannoprotein mutations on Saccharomyces cerevisiae core oligosaccharide structure. J Biol Chem, 257: 5730-5737.
    [58] Mondesert, C., Clarke, D. J. and Reed, S. I. (1997) Identification of Genes Controlling Growth Polarity in the Budding Yeast Saccharomyces cerevisiae: A Possible Role of N-Glycosylation and Involvement of the Exocyst Complex. Genetics, 147: 421-434.
    [59] Schmidt, M., Strenk, M. E., Boyer, M. P., et al. (2005) Importance of cell wall mannoproteins for septum formation in Saccharomyces cerevisiae. Yeast, 22: 715-723.
    [60] Chavan, M., Suzuki, T., Rekowicz, M., et al. (2003) Genetic, biochemical, and morphological evidence for the involvement of N-glycosylation in biosynthesis of the cell wall betal, 6-glucan of Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 100: 15381-15386.
    [61] Smith, T. J. and Foster, S. J. (1995) Characterization of the involvement of two compensatory autolysins in mother cell lysis during sporulation of Bacillus subtilis 168. J Bacteriol, 177: 3855-3862.
    [62] Novak, R., Braun, J. S., Charpentier, E., et al. (1998) Penicillin tolerance genes of Streptococcus pneumoniae: the ABC-type manganese permease complex Psa. Mol Microbiol, 29: 1285-1296.
    [63] Falla, T. J. and Chopra, I. (1998) Joint tolerance to beta-lactam and fluoroquinolone antibiotics in Eseherichia coli results from overexpression of hipA. Antimicrob Agents Chemother, 42: 3282-3284.
    [64] Comillon, S., Foa, C., Davoust, J., et al. (1994) Programmed cell death in Dietyostelium. J Cell Sci, 107 (Pt 10): 2691-2704.
    [65] Madeo, F., Frohlich, E. and Frohlich, K. -U. (1997) A Yeast Mutant Showing Diagnostic Markers of Early and Late Apoptosis. J. Cell Biol., 139: 729-734.
    [66] Madeo, F., Frohlich, E., Ligr, M., et al. (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol, 145: 757-767.
    [67] Madeo, F., Herker, E., Maldener, C., et al. (2002) A Caspase-Related Protease Regulates Apoptosis in Yeast. Molecular Cell, 9: 911-917.
    [68] Fahrenkrog, B., Sauder, U. and Aebi, U. (2004) The S. cerevisiae HtrA-like protein Nmal 11p is a nuclear serine protease that mediates yeast apoptosis. J Cell Sci, 117: 115-126.
    [69] Chae, H. J., Ke, N., Kim, H. R., et al. (2003) Evolutionarily conserved cytoprotection provided by Bax Inhibitor-1 homologs from animals, plants, and yeast. Gene, 323: 101-113.
    [70] Blanchard, F., Rusiniak, M. E., Sharma, K., et al. (2002) Targeted Destruction of DNA Replication Protein Cdc6 by Cell Death Pathways in Mammals and Yeast. Mol. Biol. Cell, 13: 1536-1549.
    [71] Laun, P., Pichova, A., Madeo, F., et al. (2001) Aged mother cells of Saecharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Mierobiol, 39: 1166-1173.
    [72] Herker, E., Jungwirth, H., Lehmann, K. A., et al. (2004) Chronological aging leads to apoptosis in yeast. J. Cell Biol., 164: 501-507.
    [73] Madeo, F., Herker, E., Wissing, S., et al. (2004) Apoptosis in yeast. Current Opinion in Microbiology, 7: 655-660.
    [74] Ludovico, P., Madeo, F. and Silva, M. (2005) Yeast programmed cell death: an intricate puzzle. IUBMB Life, 57: 129-135.
    [75] Manon, S., Chaudhuri, B. and Guerin, M. (1997) Release ofcytochrome c and decrease of cytochrome c oxidase in Bax-expressing yeast cells, and prevention of these effects by coexpression of Bcl-xL. FEBS Letters, 415: 29-32.
    [76] Lndovico, P., Rodrigues, F., Almeida, A., et al. (2002) Cytochrome c Release and Mitochondria Involvement in Programmed Cell Death Induced by Acetic Acid in Saccharomyces cerevisiae. Mol. Biol. Cell, 13: 2598-2606.
    [77] Yamaki, M., Umehara, T., Chimura, T., et al. (2001) Cell death with predominant apoptotic features in Saccharomyces cerevisiae mediated by deletion of the histone chaperone ASF 1/CIA1. Genes to Cells, 6: 1043-1054.
    [78] Ludovico, P., Sousa, M. J., Silva, M. T., et al. (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology, 147: 2409-2415.
    [79] Balzan, R., Sapienza, K., Galea, D. R., et al. (2004) Aspirin commits yeast cells to apoptosis depending on carbon source. Microbiology, 150: 109-115.
    [80] Narasimhan, M. L., Damsz, B., Coca, M. A., et al. (2001) A plant defense response effector induces microbial apoptosis. Mol Cell, 8: 921-930.
    [81] Wadskog, I., Maldener, C., Proksch, A., et al. (2004) Yeast lacking the SRO7/SOP1-encoded tumor suppressor homologue show increased susceptibility to apoptosis-like cell death on exposure to NaCl stress. Mol Biol Cell, 15: 1436-1444.
    [82] Greenhalf, W., Stephan, C. and Chaudhuri, B. (1996) Role of mitochondria and C-terminal membrane anchor of Bcl-2 in Bax induced growth arrest and mortality in Saccharomyces cerevisiae. FEBS Lett, 380: 169-175.
    [83] Pavlov, E. V., Priault, M., Pietkiewicz, D., et al. (2001) A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J Cell Biol, 155: 725-731.
    [84] Priault, M., Chaudhuri, B., Clow, A., et al. (1999) Investigation of bax-induced release of cytochrome c from yeast mitochondria permeability of mitochondrial membranes, role of VDAC and ATP requirement. Eur J Biochem, 260: 684-691.
    [85] Uren, A. G., O'Rourke, K., Aravind, L.A., et al. (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell, 6: 961-967.
    [86] Verhagen, A. M., Silke, J., Ekert, P. G., et al. (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem, 277: 445-454.
    [87] Orlandi, l., Bettiga, M., Alberghina, L., et al. (2004) Transcriptional profiling of ubp10 null mutant reveals altered subtelomeric gene expression and insurgence of oxidative stress response. J Biol Chem, 279: 6414-6425.
    [88] Qi, H., Li, T. K., Kuo, D., et al. (2003) Inactivation of Cdc13p triggers MEC1-dependent apoptotic signals in yeast. J Biol Chem, 278: 15136-15141.
    [89] Mazzoni, C., Mancini, E, Verdone, L., et al. (2003) A truncated form of KlLsm4p and the absence of factors involved in mRNA decapping trigger apoptosis in yeast. Mol Biol Cell, 14: 721-729.
    [90] Ballou, C. (1976) Structure and biosynthesis of the mannan component of the yeast cell envelope. Adv Microb Physiol, 14: 93-158.
    [91] Uccelletti, D., Farina, F., Rufini, S., et al. (2006) The Kluyveromyces lactis alpha1,6-mannosyltransferase KlOch1p is required for cell-wall organization and proper functioning of the secretory pathway. FEMS Yeast Res, 6: 449-457.
    [92] Bates, S., Hughes, H. B., Munro, C. A., et al. (2006) Outer chain N-glycans are required for cell wall integrity and virulence of Candida albicans. J Biol Chem, 281: 90-98.
    [93] Verostek, M. F., Atkinson, P. H. and Trimble, R.B. (1991) Structure of Saccharomyces cerevisiae alg3, sec18 mutant oligosaccharides. J Biol Chem, 266: 5547-5551.
    [94] Tillett, D. and" Neilan, B. A. (1999) Enzyme-free cloning: a rapid method to clone PCR products independent of vector restriction enzyme sites. Nucleic Acids Res, 27: e26.
    [95] Sambrook, J., E, Fritsch, E. and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory 2nd ed.
    [96] Davidson, R. C., Blankenship, J.R., Kraus, P. R., et al. (2002) A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology, 148: 2607-2615.
    [97] Peat, S. and Whelan, W. J. (1961) Polysaccharides of baker's yeast. Ⅳ. Mannan. J Chem Soc, 29-34.
    [98] Grubenmann, C. E., Frank, C. G., Hulsmeier, A. J., et al. (2004) Deficiency of the first mannosylation step in the N-glycosylation pathway causes congenital disorder of glycosylation type Ik. Hum Mol Genet, 13: 535-542.
    [99] Fan, J. Q., Huynh, L. H. and Lee, Y. C. (1995) Purification of 2-aminopyridine derivatives of oligosaccharides and related compounds by cation-exchange chromatography. Anal Biochem, 232: 65-68.
    [100] Kuraya, N. and Hase, S. (1992) Release of O-linked sugar chains from glycoproteins with anhydrous hydrazine and pyridylamination of the sugar chains with improved reaction conditions. J Biochem (Tokyo), 112: 122-126.
    [101] Sekiya, S., Yamaguchi, Y., Kato, K., et al. (2005) Mechanistic elucidation of the formation of reduced 2-aminopyridine-derivatized oligosaccharides and their application in matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom, 19: 3607-3611.
    [102] Karson, E. M. and Ballou, C. E. (1978) Biosynthesis of yeast mannan. Properties of a mannosylphosphate transferase in Saccharomyces cerevisiae. J. Biol. Chem., 253: 6484-6492.
    [103] Lennon, K., Bird, A. and Kukuruzinska, M. A. (1997) Deregulation of the First N-Glycosylation Gene, ALG7, Perturbs the Expression of Gl Cyclins and Cell Cycle Arrest inSaccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 237: 562-565.
    [104] Kanik-Ennulat, C., Montaivo, E. and Neff, N. (1995) Sodium orthovanadate-resistant mutants of Saccharomyces cerevisiae show defects in Golgi-mediated protein glycosylation, sporulation and detergent resistance. Genetics, 140: 933-943.
    [105] Dean, N. (1995) Yeast glycosylation mutants are sensitive to aminoglycosidcs. Proc Natl Acad Sci U S A, 92: 1287-1291.
    [106] Mondesert, G. and Reed, S. I. (1996) BEDi, a gene encoding a galactosyltransferase homologue, is required for polarized growth and efficient bud emergence in Saccharomyces cerevisiae. J Cell Biol, 132: 137-151.
    [107] Conde, R., Pablo, G., Cueva, R., et al. (2003) Screening for new yeast mutants affected in mannosylphosphorylation of cell wall mannoproteins. Yeast, 20: 1189-1211.
    [108] Sugiura, M. and Takagi, H. (2006) Yeast cell death caused by mutation of the OST2 gene encoding the epsilon-subunit of Saccharomyces cerevisiae oligosaccharyltransferase. Biosci Biotechnol Biochem, 70: 1234-1241.
    [109] Wang, X. -H., Nakayama, K. -i., Shimma, Y. -i., et al. (1997) MNN6, a Member of the KRE2/MNT1 Family, Is the Gene for Mannosylphosphate Transfer in Saccharomyces cerevisiae. J. Biol. Chem., 272: 18117-18124.
    [110] Lechner, J. and Wieland, F. (1989) Structure and biosynthesis of prokaryotic glycoproteins. Annu Rev Biochem, 58: 173-194.
    [111] Paulson, J. C. (1989) Glycoproteins: what are the sugar chains for? Trends in Biochemical Sciences, 14: 272-276.
    [112] Helenius, A. (1994) How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell, 5: 253-265.
    [113] Wormald, M. R. and Dwek, R. A. (1999) Glycoproteins: glycan presentation and protein-fold stability. Structure, 7: R 155-160.
    [114] Zhong, Q., Gvozdenovic-Jeremic, J., Webster, P., et al. (2005) Loss of function of KRE5 suppresses temperature sensitivity of mutants lacking mitochondrial anionic lipids. Mol Biol Cell, 16: 665-675.
    [115] Popolo, L., Gualtieri, T. and Ragni, E. (2001) The yeast cell-wall salvage pathway. Med Mycol, 39 Suppl 1: 111-121.
    [116] Cid, V. J., Duran, A., del Rey, F., et al. (1995) Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rex,, 59: 345-386.
    [117] Meaden, P., Hill, K., Wagner, J., et al. (1990) The yeast KRE5 gene encodes a probable endoplasmic reticulum protein required for (1——6)-beta-D-glucan synthesis and normal cell growth. Mol Cell Biol, 10: 3013-3019.
    [118] Teparic, R., Stuparevic, I. and Mrsa, V. (2004) Increased mortality of Saccharomyces cerevisiae cell wall protein mutants. Microbiology, 150: 3145-3150.
    [119] Kondoh, O., Takasuka, T., Arisawa, M., et al. (2002) Differential Sensitivity between Fks1p and Fks2p against a Novel beta-1,3-Glucan Synthase Inhibitor, Aerothricin 1. J. Biol. Chem., 277: 41744-41749.
    [120] Nakashima, T., Sekiguchi, T., Kuraoka, A., et al. (1993) Molecular cloning of a human cDNA encoding a novel protein, DAD1, whose defect causes apoptotic cell death in hamster BHK21 cells. Mol Cell Biol, 13: 6367-6374.
    [121] Makishima, T., Nakashima, T., Nagata-Kuno, K., et al. (1997) The highly conserved DAD1 protein involved in apoptosis is required for N-linked glycosylation. Genes to Cells, 2: 129-141.
    [122] Perez-Sala, D. and Moilinedo, F. (1995) Inhibition of N-linked glycosylation induces early apoptosis in human promyelocytic HL-60 cells. J Cell Physiol, 163: 523-531.
    [123] Frohlich, K. U. and Madeo, F. (2000) Apoptosis in yeast—a monocellular organism exhibits altruistic behaviour. FEBS Lett, 473: 6-9.
    [124] van der Vaart, J. M., Caro, L.H., Chapman, J. W., et al. (1995) Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae. J. Bacteriol., 177: 3104-3110.
    [125] Pichova, A., Vondrakova, D. and Breitenbach, M. (1997) Mutants in the Saccharomyces cerevisiae RAS2 gene influence life span, cytoskeleton, and regulation of mitosis. Can J Microbiol, 43: 774-781.
    [126] Clifford, J., Chiba, H., Sobieszczuk, D., et al. (1996) RXRalpha-null F9 embryonal carcinoma cells are resistant to the differentiation, anti-proliferative and apoptotic effects of retinoids. Embo J, 15: 4142-4155.
    [127] Lowary, P. T. and Widom, J. (1989) Higher-order structure of Saccharomyces cerevisiae chromatin. Proc Natl Acad Sci U S A, 86: 8266-8270.
    [128] Cerbon, J. and Calderon, V. (1991) Changes of the compositional asymmetry of phospholipids associated to the increment in the membrane surface potential. Biochim Biophys Acta, 1067: 139-144.
    [129] Martin, S. J., Reutelingsperger, C. P., McGahon, A. J., et al. (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med., 182: 1545-1556.
    [130] Garcia, R., Bermejo, C., Grau, C., et al. (2004) The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. J Biol Chem, 279: 15183-15195.
    [131] Weinberger, M., Ramachandran, L., Feng, L., et al. (2005) Apoptosis in budding yeast caused by defects in initiation of DNA replication: J Cell Sci, 118: 3543-3553.
    [132] Helenius, A. and Aebi, M. (2001) Intracellular functions of N-linked glycans. Science, 291: 2364-2369.
    [133] Hirsch, C., Blom, D. and Ploegh, H. L. (2003) A role for N-glycanase in the cytosolic turnover of glycoproteins. Embo J, 22: 1036-1046.
    [134] Osmond, B. C., Specht, C. A. and Robbins, P. W. (1999) Chitin synthase Ⅲ: Synthetic lethal mutants and "stress related" chitin synthesis that bypasses the CSD3/CHS6 localization pathway. PNAS, 96: 11206,-11210.
    [135] Choukroun, G. J., Marshansky, V., Gustafson, C. E., et al. (2000) Cytosolic phospholipase A2 regulates Golgi structure and modulates intracellular trafficking of membrane proteins. J. Clin. Invest., 106: 983-993.
    [136] Ye, Z. and Marth, J. D. (2004) N-glycan branching requirement in neuronal and postnatal viability. Glycobiology, 14: 547-558.
    [137] Guo, P., Chen, H. J., Wang, Q. Y., et al. (2006) Down regulation of N-acetylglucosaminyltransferase V facilitates all-transretinoic acid to induce apoptosis of human hepatocarcinoma cells. Mol Cell Biochem, 284: 103-110.
    [138] Lewis, K. (2000) Programmed Death in Bacteria. Microbiol. Mol. Biol. Rev., 64: 503-514.
    [139] Fabrizio, P. and Longo, V. D. (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell, 2: 73-81.
    [140] Khan, M. A. S., Chock, P. B. and Stadtman, E. R. (2005) Knockout of easpase-like gene, YCA1, abrogates apoptosis and elevates oxidized proteins in Saceharomyces cerevisiae. PNAS, 102:17326-17331.
    [141] Flower, T. R., Chesnokova, L. S., Froelich, C. A., et al. (2005) Heat shock prevents alpha-synuclein-induced apoptosis in a yeast model of Parkinson's disease. J Mol Biol. 351: 1081-1100.
    [142] Mazzoni, C., Herker, E., Palermo, V., et al. (2005) Yeast caspase 1 links messenger RNA stability to apoptosis in yeast. EMBO Rep, 6: 1076-1081.
    [143] Pozniakovsky, A. I., Knorre, D. A., Markova, O. V., et al. (2005) Role of mitochondria in the pheromone-and amiodarone-induced programmed death of yeast. J. Cell Biol., 168: 257-269.
    [144] Kwong, P. D., Doyle, M. L., Casper, D. J., et al. (2002) HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature, 420: 678-682.
    [145] Fleury, C., Mignotte, B. and Vayssiere, J. L. (2002) Mitochondrial reactive oxygen species in cell death signaling. Bioehimie, 84: 131-141.
    [146] Tang, X. Q., Feng, J. Q., Chen, J., et al. (2005) Protection of oxidative preconditioning against apoptosis induced by H2O2 in PC 12 cells: mechanisms via MMP, ROS, and Bcl-2. Brain Res, 1057: 57-64.
    [147] Skulachev, V. P. (1999) Mitochondrial physiology and pathology: concepts of programmed death of organelles, cells and organisms. Mol Aspects Med, 20: 139-184.
    [148] Glover, L. A. and Lindsay, J. G. (1992) Targeting proteins to mitochondria: a current overview. Biochem J, 284 (Pt 3): 609-620.
    [149] Gasnier, F.. Ardail, D., Lerme, F., et al. (1994) Further characterization of mitochondrial outer membrane: evidence for the presence of two endogenous sialylated glycoproteins. J Biochem (Tokyo), 116: 643-648.
    [150] Sottocasa, G., Sandri, G., Panfili, E., et al. (1972) Isolation of a soluble Ca 2+ binding glycoprotein from ox liver mitochondria. Biochem. Biophys. Res. Commun., 47: 808-813.
    [151] Glew, R. H., Kayman, S. C. and Kuhlenschmidt, M. S. (1973) Studies on the Binding of Concanavalin A to Rat Liver Mitochondria. J. Biol. Chem., 248: 3137-3145.
    [152] Chandra, N. C., Spiro, M. J. and Spiro, R. G. (1998) Identification of a Glycoprotein from Rat Liver Mitochondrial Inner Membrane and Demonstration of Its Origin in the Endoplasmic Reticulum. J. Biol. Chem., 273: 19715-19721.
    [153] Mavinakere, M. S., Williamson, C. D., Goldmacher, V. S., et al. (2006) Processing of Human Cytomegalovirus UL37 Mutant Glycoproteins in the Endoplasmic Reticulum Lumen prior to Mitochondrial Importation. J. Virol., 80: 6771-6783.
    [154] Matsuyama, S., Nouraini, S. and Reed, J. C. (1999) Yeast as a tool for apoptosis research. Current Opinion in Microbiology, 2: 618-623.
    [155] Zhang, Z., Gildersleeve, J., Yang, Y. Y., et al. (2004) A new strategy for the synthesis of glycoproteins. Science, 303: 371-373.
    [156] Macauley-Patrick, S., Fazenda, M. L., McNeil, B., et al. (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast, 22: 249-270.
    [157] Hamilton, S. R., Bobrowicz, P., Bobrowicz, B., et al. (2003) Production of complex human glycoproteins in yeast. Science, 301: 1244-1246.
    [158] Wildt, S. and Gerngross, T. U. (2005) The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol, 3: 119-128.
    [159] 章贻刚,李谐勋,李育阳,et al.(1990) α A干扰素在酿酒酵母中的表达.复旦学报 (自然科学版),29:368-373.
    [160] Fiedler, K. and Simons, K. (1995) The role of N-glycans in the secretory pathway. Cell, 81: 309-312.
    [161] Brenner, C. and Fuller, R. S. (1992) Structural and enzymatic characterization of a purified prohormone-processing enzyme: secreted, soluble Kex2 protease. Proc Natl Acad Sci U S A, 89: 922-926.
    1. Ballou, C. E. (1990) Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Methods Enzymol, 185: 440-470.
    2. Ballou, L., Hitzeman, R. A., Lewis, M. S., et al. (1991) Vanadate-resistant yeast mutants are defective in protein glycosylation. Proc Natl Acad Sci U S A, 88: 3209-3212.
    3. Byrd, J. C., Tarentino, A. L., Maley, F., et al. (1982) Glycoprotein synthesis in yeast. Identification of Man8GlcNAc2 as an essential intermediate in oligosaccharide processing. J Biol Chem, 257: 14657-14666.
    4. Chavan, M., Suzuki, T., Rekowicz, M., et al. (2003) Genetic, biochemical, and morphological evidence for the involvement of N-glycosylation in biosynthesis of the cell wall betal, 6-glucan of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 100: 15381-15386.
    5. Cid, V. J., Duran, A., del Rey, F., et al. (1995) Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol. Rev., 59: 345-386.
    6. Conde, R., Pablo, G., Cueva, R., et al. (2003) Screening for new yeast mutants affected in mannosylphosphorylation of cell wall mannoproteins. Yeast, 20: 1189-1211.
    7. Davidson, R. C., Blankenship, J. R., Kraus, P. R., et al. (2002) A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology, 148: 2607-2615.
    8. Dean, N. (1995) Yeast glycosylation mutants are sensitive to aminoglycosides. Proc Natl Acad Sci U S A, 92: 1287-1291.
    9. Fan, J. Q., Huynh, L. H. and Lee, Y. C. (1995) Purification of 2-aminopyridine derivatives of oligosaccharides and related compounds by cation-exchange chromatography. Anal Biochem, 232: 65-68.
    10. Faye, L. and Chrispeels, M. J. (1989) Apparent Inhibition of beta-Fructosidase Secretion by Tunicamycin May Be Explained by Breakdown of the Unglycosylated Protein during Secretion. Plant Physiol, 89: 845-851.
    11. Garcia, R., Bermejo, C., Grau, C., et al. (2004) The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. J Biol Chem, 279: 15183-15195.
    12. Graham, T. R., Seeger, M., Payne, G. S., et al. (1994) Clathrin-dependent localization of alpha 1,3 mannosyltransferase to the Golgi complex of Saccharomyces cerevisiae. J Cell Biol, 127: 667-678.
    13. Grubenmann, C. E., Frank, C. G., Hulsmeier, A. J., et al. (2004) Deficiency of the first mannosylation step in the N-glycosylation pathway causes congenital disorder of glycosylation type Ik. Hum Mol Genet, 13: 535-542.
    14. Herscovics, A. and Orlean, P. (1993) Glycoprotein biosynthesis in yeast. FASEB J., 7: 540-550.
    15. Horton, R. M., Hunt, H. D., Ho, S. N., et al. (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene, 77: 61-68.
    16. Jungmann, J. and Munro, S. (1998) Multi-protein complexes in the cis Golgi of Saccharomyces cerevisiae with alpha-1,6-mannosyltransferase activity. Embo J, 17: 423-434.
    17. Jungmann, J., Rayner. J. C. and Munro, S. (1999) The Saccharomyces cerevisiae Protein Mnn10p/Bedlp Is a Subunit of a Golgi Mannosyltransferase Complex. J. Biol. Chem., 274: 6579-6585.
    18. Kondoh, O., Takasuka, T., Arisawa, M., et al. (2002) Differential Sensitivity between Fkslp and Fks2p against a Novel beta -1, 3-Glucan Synthase Inhibitor, Aerothricinl. J. Biol. Chem., 277: 41744-41749.
    19. Kornfeld, R. and Kornfcld, S. (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem, 54: 631-664.
    20. Kukuruzinska, M. A., Bergh, M. L. and Jackson, B. J. (1987) Protein glycosylation in yeast. Annu Rev Biochem, 56: 915-944.
    21. Kukuruzinska, M. A. and Lennon, K. (1998) Protein N-glycosylation: molecular genetics and functional significance. Crit Rev Oral Biol Med, 9: 415-448.
    22. Kuraya, N. and Hase, S. (1992) Release of O-linked sugar chains from glycoproteins with anhydrous hydrazinc and pyridylamination of the sugar chains with improved reaction conditions. J Biochem (Tokyo), 112: 122-126.
    23. Lerouge, P., Cabanes-Macheteau, M., Rayon, C., et al. (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol, 38: 31-48.
    24. Manivasakam, P. and Schiestl, R. H. (1993) High efficiency transformation of Saccharomyces cerevisiae by electroporation. Nucleic Acids Res, 21: 4414-4415.
    25. Meaden, P., Hill, K., Wagner, J., et al. (1990) The yeast KRE5 genc encodes a probable endoplasmic reticulum protein required for (1——6)-beta-D-glncan synthesis and normal cell growth. Mol Cell Biol, 10: 3013-3019.
    26. Mondesert, C., Clarke, D. J. and Reed, S. I.(1997) Identification of Genes Controlling Growth Polarity in the Budding Yeast Saccharomyces cerevisiae: A Possible Role of N-Glycosylation and Involvement of the Exocyst Complex. Genetics, 147: 421-434.
    27. Nakayama, K., Nagasu, T., Shimma, Y., et al. (1992) OCHl encodes a novel membrane bound mannosyltransferase: outer chain elongation of asparagine-linked oligosaccharides. Embo J, 11: 2511-2519.
    28. Osmond, B. C., Specht, C. A. and Robbins, P. W. (1999)Chitin synthase Ⅲ: Synthetic lethal mutants and "stress related" chitin synthesis that bypasses the CSD3/CHS6 localization pathway. PNAS, 96: 11206-11210.
    29. Peat, S. and Whelan, W. J. (1961) Polysaccharides of baker's yeast. Ⅳ. Mannan. J Chem Soc, 29-34.
    30. Popolo, L., Gualtieri, T. and Ragni, E. (2001)The yeast cell-wall salvage pathway. Med Mycol, 39 Suppl 1: 111-121.
    31. Poster, J. B. and Dean. N. (1996) The Yeast VRG4 Gene Is Required for Normal Golgi Functions and Defines a New Family of Related Genes. J. Biol. Chem., 271: 3837-3845.
    32. Raschke, W. C,, Kern, K. A., Antalis, C., et al. (1973) Genetic Control of Yeast Mannan Structure. ISOLATION AND CHARACTERIZATION OF MANNAN MUTANTS. J. Biol. Chem., 248: 4660-4666.
    33. Sambrook, J., E, Fritsch. E. and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory 2nd ed.
    34. Sugiura, M. and Takagi, H. (2006) Yeast cell death caused by mutation of the OST2 gene encoding the epsilon-subunit of Saccharomyces cerevisiae oligosaccharyltransferase. Biosci Biotechnol Biochem, 70: 1234-1241.
    35. Teparic, R., Stuparevic, I. and Mrsa, V. (2004) Increased mortality of Saccharomyces cerevisiae cell wall protein mutants. Microbiology, 150: 3145-3150.
    36. Trimble, R. B. and Atkinson, P. H. (1986) Structure of yeast external invertase Man8-14GlcNAc processing intermediates by 500-megahertz lH NMR spectroscopy [published erratum appears in J Biol Chem 1987 Jul 5; 262(19): 9428]. J. Biol. Chem., 261: 9815-9824.
    37. Verostek, M. F., Atkinson, P. H. and Trimble, R. B. (1991) Structure of Saccharomyces cerevisiae alg3, secl8 mutant oligosaccharides. J Biol Chore, 266: 5547-5551.
    38. Yip, C. L., Welch, S. K., Klebl, F., et al. (1994) Cloning and analysis of the Saccharomyces cerevisiae MNN9 and MNNI genes required for complex glycosylation of secreted proteins. Proc Nall Acad Sci U S A, 91: 2723-2727.
    39. Zhong, Q., Gvozdenovic-Jeremic, J., Webster, P., et al. (2005) Loss of function of KRE5 suppresses temperature sensitivity of mutants lacking mitochondrial anionic lipids. Mol Biol Cell, 16: 665-675.
    Ballou CE (1990) Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Methods Enzymol 185: 440-470
    Cerbon J, Calderon V (1991) Changes of the compositional asymmetry of phospholipids associated to the increment in the membrane surface potential. Biochim Biophys Acta 1067:139-144
    Chandra NC, Spiro MJ, Spiro RG (1998) Identification of a Glycoprotein from Rat Liver Mitochondrial Inner Membrane and Demonstration of Its Origin in the Endoplasmic Reticulum. J. Biol. Chem. 273: 19715-19721
    Cid VJ, Duran A, del Rey F, Snyder MP, Nombela C, Sanchez M (1995) Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 59: 345-386
    Freeze HH, Westphal V (2001) Balancing N-linked glycosylation to avoid disease. Biochimie 83: 791-799
    Frohlich K-U, Madeo F (2001) Apoptosis in yeast: a new model for aging research. Experimental Gerontology 37: 27-31
    Frohlich KU, Madeo F (2000) Apoptosis in yeast—a monocellular organism exhibits altruistic behaviour. FEBS Lett 473: 6-9
    Gasnier F et al. (1994) Further characterization of mitochondrial outer membrane: evidence for the presence of two endogenous sialylated glycoproteins. J Biochem (Tokyo) 116: 643-648
    Glew RH, Kayman SC, Kuhlenschmidt MS (1973) Studies on the Binding of Concanavalin A to Rat Liver Mitochondria. J. Biol. Chem. 248: 3137-3145
    Guo P, Chen HJ, Wang QY, Chen HL (2006) Down regulation of N-acetylglucosaminyltransferase V facilitates all-transretinoic acid to induce apoptosis of human hepatocarcinoma cells. Mol Cell Biochem 284: 103-110
    Hauptmann P, Riel C, Kunz-Schughart LA, Frohlich KU, Madeo F, Lehle L (2006) Defects in N-glycosylation induce apoptosis in yeast. Mol Microbiol 59: 765-778
    Herscovics A, Orlean P (1993) Glycoprotein biosynthesis in yeast. FASEB J. 7: 540-550
    Jaeken J, Schachter H, Carchon H, De Cock P, Coddeville B, Spik G (1994) Carbohydrate deficient glycoprotein syndrome type Ⅱ: a deficiency in Golgi Iocalised N-acetyl-glucosaminyltransferase Ⅱ. Arch Dis Child 71: 123-127
    Jungmann J, Rayner JC, Munro S (1999) The Saccharomyces cerevisiae Protein Mnn10p/Bed1p is a Subunit ofa Golgi Mannosyltransferase Complex. J. Biol. Chem. 274: 6579-6585
    Kukuruzinska MA, Lennon K (1998) Protein N-glycosylation: molecular genetics and functional significance. Crit Rev Oral Biol Med 9: 415-448
    Laun P et al. (2001) Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 39: 1166-1173
    Lowary PT, Widom J (1989) Higher-order structure of Saccharomyces cerevisiae chromatin. Proc Natl Acad Sci U S A 86: 8266-8270
    Madeo F, Frohlich E, Frohlich K-U (1997) A Yeast Mutant Showing Diagnostic Markers of Early and Late Apoptosis. J. Cell Biol. 139: 729-734
    Madeo F et al. (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145: 757-767
    Martin SJ et al. (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexprcssion of Bcl-2 and Abl. J. Exp. Med. 182: 1545-1556
    Mavinakere MS, Williamson CD, Goldmacher VS, Colberg-Poley AM (2006) Processing of Human Cytomegalovirus UL37 Mutant Glycoproteins in the Endoplasmic Reticulum Lumen prior to Mitochondrial Importation. J. Virol. 80: 6771-6783
    Perez-Sala D, Mollinedo F (1995) Inhibition of N-linked glycosylation induces early apoptosis in human promyelocytic H L-60 cells. J Cell Physiol 163: 523-531
    Pichova A, Vondrakova D, Breitenbach M (1997) Mutants in the Saccharomyces cerevisiae RAS2 gene influence life span, cytoskeleton, and regulation of mitosis. Can J Microbiol 43: 774-781
    Pozniakovsky Al, Knorre DA, Markova OV, Hyman AA, Skulachev VP, Severin FF (2005) Role of mitochondria in the pheromone-and amiodarone-induced programmed death of yeast. J. Cell Biol. 168: 257-269
    Schachter H (2001) Congenital disorders involving defective N-glycosylation of proteins. Cell Mol Life Sci 58: 1085-1104
    Skulachev VP (1999) Mitochondrial physiology and pathology; concepts of programmed death of organelles, cells and organisms. Mol Aspects Med 20: 139-184
    Sottocasa G et al. (1972) Isolation of a soluble Ca 2+ binding glycoprotein from ox liver mitochondria. Biochem. Biophys. Res. Commun. 47: 808-813
    Sugiura M, Takagi H (2006) Yeast cell death caused by mutation of the OST2 gene encoding the epsilon-subunit of Saccharomyces cerevisiae oligosaccharyltransferase. Biosci Biotechnol Biochem 70: 1234-1241
    van der Vaart JM, Caro LH, Chapman JW, Klis FM, Verrips CT (1995) Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae. J. Bacteriol. 177: 3104-3110
    Weinberger M, Ramachandran L, Burhans WC (2003)Apoptosis in yeasts. IUBMB Life 55: 467-472
    Weinberger M et al. (2005) Apoptosis in budding yeast caused by defects in initiation of DNA replication. J Cell Sci 118: 3543-3553
    Yamaki M, Umehara T, Chimura T, Horikoshi M (2001) Cell death with predominant apoptotic features in Saccharomyces cerevisiae mediated by deletion of the histone chaperone ASFl/CIAl. Genes to Cells 6: 1043-1054
    Ye Z, Marth JD (2004) N-glycan branching requirement in neuronal and postnatal viability. Glycobiology 14: 547-558

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700