用户名: 密码: 验证码:
Ad-p16、Ad-p53联合紫杉醇治疗乳腺癌的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分乳腺癌p16,p53基因蛋白及其mRNA表达的研究
     目的乳腺癌位居女性恶性肿瘤之首,全球每年大约有40万人死于乳腺癌,同时发病率呈逐年上升、发病呈现年轻化之势。大量研究表明,癌基因、肿瘤抑制基因(抑癌基因)的异常与乳腺癌的发生、发展密切相关。如p16、p53、C-cerbB-2及p21基因等。p16抑癌基因突变和/或缺失广泛存在于各种肿瘤中,参与肿瘤细胞增殖的调控,在肿瘤的发生、发展过程中起着重要作用。通过免疫组织化学方法检测p16基因表达蛋白,发现阳性率在24%~60%不等。p53抑癌基因突变在人类肿瘤中最为常见,是目前发现与人类肿瘤关系最为密切的基因,已知乳腺癌组织p53基因的突变率为15%~60%。我们通过检测乳腺癌组织内p16、p53基因蛋白以及mRNA的表达,分析其表达与乳腺癌临床病理特征的相互关系,探讨其表达对乳腺癌分子生物学特性的影响,为临床和临床基础研究乳腺癌的治疗和预后评估提供理论基础和依据。
     方法我们利用免疫组织化学SP法和逆转录-聚合酶链反应(reverse transcription polymerase chain reaction,RT-PCR)技术,检测乳腺癌组织内p16、p53基因蛋白和mRNA的表达。运用统计学方法分析各种表达与乳腺癌临床病理学特征之间的关系。
     结果免疫组织化学检测癌旁正常乳腺组织中p16基因蛋白的表达率为90%(27/30),其中48.1%(13/27)为(+++);29.6%(8/27)为(++);22.2%(6/27)为(+);p53基因蛋白的表达率为6.67%(2/30),全部为(+)。乳腺癌组织中p16基因蛋白阳性表达率为38.3%(23/60),其中60.9%(14/23)为(+++),26.1%(6/23)为(++),13.0%(3/23)为(+);p53基因蛋白阳性表达率为48.3%(29/60),其中79.3%(23/29)为(+++),13.8%(4/29)为(++),6.9%(2/29)为(+)。RT-PCR检测癌旁正常乳腺组织的p16mRNA显著高于乳腺癌组织(P=0.023),而p53mRNA在乳腺癌组织的水平显著高于癌旁正常乳腺组织(P=0.001)。p16、p53蛋白表达与乳腺癌组织学分级、淋巴结和/或器官转移相关。乳腺癌细胞分化程度越高p16蛋白阳性表达率越高,而p53表达蛋白正相反;有淋巴结和/或器官转移的病例p16蛋白的表达率明显低于无淋巴结和/或器官转移者,而p53蛋白的表达率显著增加。p16mRNA在组织学Ⅰ级的水平显著高于Ⅱ、Ⅲ级,而Ⅱ、Ⅲ级之间无明显差异;p53mRNA与组织学分型无明显关系。有淋巴结和/或器官转移的p16mRNA、p53mRNA表达均明显高于无淋巴结和/或器官转移。
     结论(1)p16、p53基因蛋白的表达与乳腺癌组织学分级、淋巴结和/或器官转移有密切关系。(2)p16mRNA的表达与乳腺癌组织学分级有关。p16mRNA、p53mRNA表达与淋巴结和/或器官转移有关。(3)p16、p53基因的缺失、突变或甲基化等改变与乳腺癌的发生发展密切相关,可以用于评估乳腺癌的预后。(4)通过特殊载体将外源性野生型p16和p53基因进行转导,以纠正p16、p53基因的异常改变,将有帮助于乳腺癌的治疗。第二部分重组p16和p53腺病毒的构建、鉴定、纯化和测定
     目的研究显示恶性肿瘤的发生、发展与基因突变、缺失、磷酸化和甲基化等密切相关,其中基因突变在恶性肿瘤细胞表型中起重要作用。表明通过转导外源正常的目的基因的方法,进行修饰突变的基因可以治疗肿瘤。设计肿瘤基因治疗方案的关键在于构建有效的目的基因载体系统,以达到特异性地将目的基因转送至靶细胞。非病毒载体在体内的转染效率远低于病毒载体。腺病毒载体可以有效地感染和传递目的基因,广泛地适用于分裂和静息的组织和细胞,腺病毒DNA不与宿主细胞DNA整合。腺病毒载体的缺点是如要保持转基因的持续表达可导致机体强烈的炎性和免疫反应。但是这种免疫特性可增加目的基因对肿瘤的杀伤作用。腺病毒载体易于构建,经辅助细胞培养可产生大量腺病毒载体。该研究应用基因重组腺病毒的方法,构建携带抑癌基因p16、p53的C亚群5型重组腺病毒(Ad5),并对其进行鉴定、筛选和纯化;应用人胚胎肾293细胞进行扩增,并确定重组腺病毒p53(Ad-p53)、p16(Ad-p16)和Lac Z(Ad-Lac Z)的纯化程度、病毒滴度、感染率、转导率和扩增情况,以及细胞感染后p53、p16蛋白的表达状况。
     方法应用HindⅢ和SpeⅠ酶对含野生型p16cDNA质粒pBluescript-p16进行双酶切;应用KpnⅠ和XaⅠ酶对野生型p53cDNA质粒pGEM-p53进行双酶切。酶切后进行电泳,回收p16cDNA和p53cDNA。用HindⅢ/KpnⅠ和SpeⅠ酶对pAdCMV穿梭质粒进行双酶切,酶切后将回收的p16cDNA和p53cDNA插入定向pAdCMV中,并得到pAdCMV-p16和pAdCMV-p53。pAdCMV-p16/p53重组质粒与腺病毒质粒pJM17在293细胞内进行同源重组,p16/p53基因被转移到腺病毒基因中,生成的E1基因缺陷的重组腺病毒在293细胞中进行繁殖,因E1基因产物的反式作用下大量增殖。以腺病毒、p16、p53特异引物进行扩增,琼脂糖凝胶电泳分析PCR扩增产物,根据PCR扩增产物特有的片段长短筛选p53cDNA、p16cDNA阳性的重组腺病毒空斑,通过传代293细胞扩增阳性空斑内的病毒,以氯化铯密度梯度超速离心机进行病毒的纯化。再次在293细胞中进行繁殖以增加滴度,最多繁殖5代。采用293细胞空斑实验(plaque formation test)测定重组腺病毒滴度。应用报告基因Lac Z以测定重组腺病毒感染率。免疫组织化学技术(SP方法)检测重组腺病毒介导的基因转移效率。Western blot分析p53和p16蛋白表达。
     结果p16cDNA、p53cDNA插入pAdCMV得到pAdCMV-p16、pAdCMV-p53。经293细胞中进行繁殖,10-14d即可出现细胞病变(cytopathic effect,CPE),即典型的病毒空斑,此时显微镜下可见293细胞圆缩脱落,表明pAdCMV-p16、pAdCMV-p53重组质粒与腺病毒质粒pJM17已在293细胞内发生了同源重组,p16、p53基因被转移到腺病毒基因中,培养液的上清液中含有重组腺病毒颗粒,所制备的重组腺病毒分别命各为Ad-p16、Ad-p53。PCR扩增出860bp的腺病毒DNA片段和570 bp的p16cDNA片段、642 bp的p53cDNA片段即为重组p16、p53腺病毒。空斑形成试验计算出的滴度为:Ad-p53 2.1×10~(10);Ad-p16 6.7×10~(10);Ad-Lac Z1.0×10~(10)。当Ad-Lac Z的MOI为25时,293细胞的感染率为32%:MOI为50时,感染率达到78.9%;而MOI为100时,感染率达到98.6%,因此可以应用重组腺病毒MOI≥100感染人乳腺癌MDA-MB-231细胞株,以观察细胞的基因表达和凋亡情况。免疫组织化学染色结果表明重组腺病毒介导的基因转导率(%)p16为93.8±2.5,p53为96.3±3.8。Ad-Lac Z感染的肿瘤细胞无p53和p16蛋白表达。但是,p53和p16联合感染的肿瘤细胞有明显的p53和p16蛋白表达,说明重组腺病毒可有效地介导外源基因的高效转移。
     结论(1)重组腺病毒能够正确携带目的基因进入靶细胞,并准确表达目的基因蛋白。(2)生产重组腺病毒载体较为经济、滴度高。(3)治疗量病毒的体积小,有助于在体内使用。第三部分Ad-p16、Ad-p53联合紫杉醇治疗乳腺癌的研究
     目的正常细胞通过关卡作用以调节细胞周期的进程,保持细胞增殖和凋亡地平衡。发现癌基因和抑癌基因均是通过调控细胞周期而发挥作用。肿瘤的发生常涉及多个抑癌基因的突变、磷酸化或/和失活。将正常肿瘤抑制基因导入肿瘤细胞以替代失去功能的基因,而达到逆转其恶性表型、抑制肿瘤生长,甚至消灭肿瘤成为肿瘤基因治疗的热点。p16和p53是人体内重要的肿瘤抑制基因,直接或间接调控细胞周期,使细胞周期停滞于G1期。p16和p53基因发生缺失、突变、重排、磷酸化或不表达可存在于多种肿瘤的发生、发展过程中。恢复野生型p16和p53基因的功能成为抗肿瘤基因治疗研究的重要途径。紫杉醇可诱导多种肿瘤的凋亡,尤其对转移性乳腺癌的作用尤为引人注目。该研究对Tax、Ad-p16、Ad-p53及其联合应用对人乳腺癌细胞株MDA-MB-231的生长抑制和细胞凋亡进行深入研究。然后,应用Tax、Ad-p16、Ad-p53及其联合对乳腺癌细胞MDA-MB-231成瘤裸鼠模型进行动物治疗实验。观察治疗效果,为研究肿瘤治疗以及治疗途径提供依据。
     方法显微镜下观察Ad-p16、Ad-p53及其联合对MDA-MB-231细胞形态学以及生长抑制的影响。MTT法监测Tax、Ad-p16、Ad-p53及联合应用对MDA-MB-231细胞生长的抑制率。应用流式细胞仪Annexin V-FITC/PI法检测分析Tax、Ad-p16、Ad-p53及其联合应用后MDA-MB-231细胞的凋亡率。应用流式细胞仪分析Tax、Ad-p16、Ad-p53及其联合对MDA-MB-231细胞周期和凋亡影响。裸鼠乳房脂肪垫内注射MDA-MB-231细胞悬浮液,使裸鼠形成乳腺癌模型。应用Ad-Lac Z、Tax、Ad-p16、Ad-p53、Tax+Ad-p16、Tax+Ad-p53、Ad-p16+Ad-p53和Tax+Ad-p16+Ad-p53对成瘤裸鼠进行治疗,观察肿瘤体积和抑瘤率的变化治疗,分析治疗效果。并对治疗后的肿瘤标本进行常规病理检查。应用脱氧核苷酸末端转移酶介导的缺口末端标记法(TUNEL)检测分析肿瘤组织细胞凋亡的状况。实验数据采用SPSS11.0统计软件包进行分析。
     结果Ad-p16、Ad-p53和二者联合感染可导致人乳腺癌MDA-MB-231细胞生长抑制。Ad-p16对细胞生长的抑制作用比Ad-p53强,但导致的细胞形态学发生改变时间晚。Ad-p16和Ad-p53联合感染可导致细胞生长近乎停止,在细胞生长抑制和形态学改变均较单一感染明显且发生时间早。而Ad-Lac Z感染后细胞生长良好,细胞形态学无明显变化。Tax对MDA-MB-231细胞的抑制随着剂量的增加,细胞生长抑制率明显增加,细胞抑制率与时间呈正相关(r=0.923,P=0.000)。与Ad-Lac Z相比较,Ad-p16、Ad-p53以及二者联合感染MDA-MB-231细胞后,对肿瘤细胞均有明显的抑制作用(P值均为0.000)。Ad-p16的抑制率在各个时相均高于Ad-p53(P_(24h)=0.038,P_(48h)=0.004,P_(72h)=0.003,P_(96h)=0.001,P_(120h)=0000)。Ad-p16的抑制作用呈现逐渐上升趋势,而Ad-p53在72h时达到高峰后有下降趋势,但是均无统计学意义。Ad-p16与Ad-p53联合感染MDA-MB-231细胞后,在各个时相的细胞抑制率均显著大于单一感染的抑制率(vs Ad-p16,P值在0.001-0.004之间;vs Ad-p53,P值均为0.000);并且随着时间的延长,细胞抑制率明显增加(120h vs72h,P=0.006),与感染时间有明显的正相关(r=0.89,P=0.001)。Tax与Ad-p16联合作用于MDA-MB-231细胞后,在各个时相上细胞生长抑制率均显著大于单一应用,于96h时达到高峰,抑制率达到70.96%(70.96±3.30)(vs Ad-p16,P=0.001;vs Tax,P=0.000);并且细胞抑制率随着时间的延长明显增加(120h vs 72h,P=0.028)。Tax与Ad-p53联合有同样效果,但与Tax与Ad-p16联合的抑制率在各个时相上相比较无显著性差异(P值在0.069-0.86之间)。Tax、Ad-p16和Ad-p53三者联合应用,对MDA-MB-231细胞的抑制作用更加明显,在各个时相上均有明显增加(P值均为0.000),最高抑制率达到90%以上。Tax、Ad-p16或Ad-p53单一作用于MDA-MB-231细胞可诱导其发生凋亡,并且随着时间的延长细胞凋亡率明显增加,72h时分别达到15.31%、19.34%和29.05%。但是,感染Ad-p16的MDA-MB-231细胞发生凋亡较Tax和Ad-p53晚,凋亡率明显低于Ad-p53。Tax与Ad-p16或Ad-p53联合可明显增加MDA-MB-231细胞的凋亡率。Ad-p16与Ad-p53联合也可明显增加MDA-MB-231细胞的凋亡。Tax、Ad-p16和Ad-p53三者联合诱导MDA-MB-231细胞的能力明显提高,效果更加显著。Tax可导致MDA-MB-231细胞停滞于G2/M期,Ad-p16、Ad-p53或二者联合感染使MDA-MB-231细胞停滞于G0/G1期。Tax、Ad-p16和Ad-p53联合时,大多数细胞停滞于G0/G1和G2/M期。Tax、Ad-p16、Ad-p53及其联合作用于MDA-MB-231细胞72h后琼脂糖凝胶电泳呈现典型的凋亡梯形电泳带,而对照组仅仅呈现基因组DNA。Tax、Ad-p16和Ad-p53组裸鼠体内肿瘤明显受到抑制,第20天时与Ad-Lac Z组比较的P值均为0.000;各组较治疗前肿瘤体积虽有所减小,但是均无统计学意义(P值分别为0.216、0.895和0.138)。Ad-p16与Ad-p53联合应用不仅可以抑制肿瘤的增长,尚可以使肿瘤体积明显减小(0d vs 16d,P=0.034;0d vs 20d,P=0.007)。Tax、Ad-p16和Ad-p53三者联合,裸鼠肿瘤减小更加明显(0d vs 12d,P=0.041;0d vs 16d,P=0.003;0d vs 20d,P=0.000)。治疗组的肿瘤组织间质明显增加,肿瘤细胞以及细胞核分裂明显减少,细胞核呈现浅蓝色,细胞核与细胞浆比例减小,可见散在的新月形核染色质和细胞核碎裂的碎片。Ad-Lac Z、Tax、Ad-p16、Ad-p53、Ad-p16+Ad-p53和Tax+Ad-p16+Ad-p53组肿瘤组织细胞凋亡率(%)分别为1.4±0.9、14.7±2.6、19.5±2.5、21.3±3.1、30.5±3.2和42.3±4.3。
     结论(1)Ad-p16、Ad-p53和二者联合感染可导致人乳腺癌MDA-MB-231细胞形态学改变和生长抑制。而此现象并非是腺病毒本身所致,而是外源性p16和p53基因所发挥的作用。(2)Tax、Ad-p16和Ad-p53在诱导MDA-MB-231细胞凋亡上有明显的协同作用,p16和p53基因的表达可以增加Tax对MDA-MB-231细胞的敏感性,p16基因可以促进p53基因所诱导的细胞凋亡。(3)Tax可导致MDA-MB-231细胞停滞于G2/M期,Ad-p16、Ad-p53或二者联合感染使MDA-MB-231细胞停滞于G0/G1期。Tax、Ad-p16和Ad-p53联合时,大多数细胞停滞于G0/G1和G2/M期。(4)Tax、Ad-p16和Ad-p53三者之间有协同抑制裸鼠体内肿瘤生长的作用,尤其是三者联合更加明显。在抑制肿瘤生长同时,可导致肿瘤组织细胞凋亡。
Part 1
    Study on breast cancer p16 and p53 gene protein and mRNA expression
    Objectives Breast cancer ranks the top among the malignant tumors of women. About 400,000 people die of breast cancer all over the world every year. Meanwhile, the incidence of breast cancer has been increasing annually and breast cancer patients tend to be younger. A great deal of research shows that abnormality of oncogene and tumor suppressor gene (antioncogene) is closely related to the occurrence and development of breast cancer, such as p16, p53, C-cerbB-2 and p21 genes, p16 antioncogene mutation and /or deficiency is widely available in various tumors, is involved in regulation of tumor cell proliferation and plays an important role in the occurrence and development process of tumor. Through immunohistochemical method, we found out that the positive rate of p16 gene protein expression varied between 24% and 60%. p53 antioncogene mutation is the most popular in the human tumors, and p53 is the gene with the closest relation with the human tumors according to the existing researches. It is known that the p53 gene mutation rate in breast cancer tissue is 15%~60%. Through testing the breast cancer tissue p16 and p53 gene protein and mRNA expression, we analyzed the correlation between the expression and the clinical pathological characteristics of breast cancer and explored the effects of the expression on the molecular biological characteristics of breast cancer to provide a theoretical foundation and basis for treatment and prognosis assessment of breast cancer in clinical and basic researches.
    Methods We tested p16 and p53 gene protein and mRNA expression within the breast cancer tissue through immunohistochemical SP method and reverse transcription polymerase chain reaction (RT-PCR) technique and analyzed the relationship between the expressions and the clinical pathological characteristics of breast cancer through statistical methods.
    Results Through immunohistochemical method we found out that the expression rate of p16 gene protein within the tumor-adjacent normal breast tissue was 90%(27/30), including 48.1%(13/27)(+++); 29.6% (8/27)(++); 22.2%(6/27)
    (+) ; the expression rate of p53 gene protein was 6.67% (2/30) , all as (+) ; while the positive rate of p16 gene protein expression within the breast cancer tissue was 38.3% (23/60) , including 60.9% (14/23) (+++), 26.1% (6/23) (++) and 13.0%
    (3/23) (+) ; the positive rate of p53 gene protein expression was 48.3% (29/60) , including 79.3% (23/29) (+++) , 13.8% (4/29) (++) and 6.9% (2/29) (+) .The results of RT-PCR test showed that pl6mRNA of tumor-adjacent normal breast tissue was obvious higher than that of breast cancer tissue (P=0.023), while p53mRNA of the breast cancer tissue was significantly higher than that of tumor-adjacent normal breast tissue (P=0.001) . Expression of pl6 and p53 proteins is closely related to histological grade of breast cancer tissue, and lymph node and/or organ metastasis. The higher the cell differentiation of breast cancer is, the higher the positive rate of p16 protein expression. The p53 expression rate was on the contrary. The cases with lymph node and/or organ metastasis showed significantly lower expression rate of p16 protein than that of those without lymph node and / or organ metastasis, while the expression rate of p53 protein in metastasis cases was significantly higher. p16mRNA at histological grade I was obviously higher than that at grade II and III, but no obvious difference was observed between the p16mRNA level at grade II and grade III. No obvious relation was found between p53mRNA and histological classification. The p16mRNA and p53mRNA expression rates for cases with lymph node and /or organ metastasis were obviously higher than those for cases without lymph node and / or organ metastasis.
    Conclusion (1) Expression of p16 and p53 gene proteins is closely related to histological grade of breast cancer, and lymph node and/or organ metastasis. (2) Expression of pl6mRNA is related to histological grade of breast cancer. Expression of pl6mRNA and p53mRNA is related to lymph node and/or organ metastasis. (3) Deficiency, mutation or methylation, etc of p16 and p53 genes is closely related to the occurrence and development of breast cancer and can be used in prognosis assessment of breast cancer. (4) Exogenous wild-type p16 and p53 genes can be transfected through specific vectors to correct the abnormal changes of p16 and p53 genes and contribute to the treatment of breast cancer.
    Part 2
    Construction, identification, purification and determination of recombinant pl6 and p53 adenovirus
    Objectives The study shows that the occurrence and development of malignant tumor is closely related to gene mutation, deficiency, phosphorylation, methylation, etc, and gene mutation plays an important role in malignant tumor cell phenotype. It is shown that transfection of exogenous normal target genes can be used to modify the mutant genes and serves as a tumor therapy. The key to designing a gene therapy is to construct an effective target gene vector system for specific transfer of target genes to target cells. The transfection efficiency of non-virus vectors within the body is far lower than that of virus vectors. Adenovirus vectors can effectively infect and transfer the target genes, and are widely applicable to both dividing and static tissues and cells, and the adenovirus DNA does not integrate with DNA of host cells. The disadvantages of adenovirus vectors include severe inflammation and immunoreaction if continuous expression of transgenes is maintained. But such immune characteristics may enhance the effects of target genes on killing tumors. Adenovirus vectors are easily constructed and a large number of adenovirus vectors may be cultured through helper cells. In this study, gene recombinant adenovirus method was adopted to construct recombinant adenovirus type 5 (Ad5) of sub-group C of antioncogene p16 and p53, which were identified, sifted and purified. Human embryonic kidney 293 cells were used for amplification, and the purification rate, virus titer, infection rate, transfection rate, and amplification of recombinant adenovirus p53 (Ad-p53) , p16 (Ad-p16) , as well as expression of p53 and p16 protein after cell infection was determined to provide sound recombinant adenovirus vectors for future experiments, namely Ad-p16 and Ad-p53.
    Methods HindIII and SpeI enzymes were used for double enzyme digestion of pBluescript-p16 plasmids containing wild type p16cDNA; KpnI and XaI enzymes were used for double enzyme digestion of pGEM-p53 plasmid containing wild type p53cDNA, and then p16cDNA and p53cDNA were recovered through electrophoresis. HindIII/KpnI and SpeI enzymes were used for double enzyme digestion of pAdCMV shuttle plasmid and the recovered pl6cDNA and p53cDNA were then inserted into directional pAdCMV to get pAdCMV-p16 and pAdCMV-p53. Homologous recombination between pAdCMV-p53 recombinant plasmid and adenovirus plasmid pJM17 was made within 293 cells and p53 gene was transferred into the adenovirus gene. The generated El gene-defective recombinant adenovirus multiplied within the 293 cells and proliferated vigorously under transacting effects of El gene products. Adenovirus-, p16-, p53-specific primers were adopted for amplification and PCR amplification products were analyzed through agarose gel electrophoresis. Based on the length of specific fragments of PCR amplification products, the recombinant adenovirus plaques with positive p16cDNA, p53cDNA were selected. The virus in the positive plaques proliferated through subculture 293 cells. The viruses were purified through ultracentrifuge with cesium chloride density gradient. The viruses re-multiplied within 293 cells up to 5 generations to increase titer. 293 cell plaque formation testing was adopted to measure the recombinant adenovirus titer. Reporter gene Lac Z was used to measure the recombinant adenovirus infection rate. Immunohistochemical method (SP method) was used to test the efficiency of recombinant adenovirus-mediated gene transfer, and Western blot method was used to analyze expression of p53 and p16 protein.
    Results pl6cDNA, p53cDNA were inserted into pAdCMV to get pAdCMV- p16, pAdCMV- p53. Through multiplication within 293 cells, cytopathic effect (CPE) , namely, typical virus plaque occurred after 10-14 days. Then we saw through a microscope that 293 cells rounded up, shrank and fell off, indicating homologous recombination between pAdCMV-pl6/p53 recombinant plasmids and adenovirus plasmid pJM17within 293 cells, p16/p53 gene transferred into adenovirus gene and the upper clean solution of culture media containing the recombinant adenovirus plasmids, with the prepared recombinant adenovirus respectively named Ad-p16, Ad-p53. From PCR amplification, there were 860bp adenovirus DNA segment, 570 bp p16cDNA segment, 642 bp p53cDNA segment, namely, the recombinant p53, pl6 adenovirus. The titer calculated after the plaque formation test was Ad-p53 2.1×10~(10); Ad-p16 6.7×10~(10); Ad-LacZ1.0×10~(10). When MOI of Ad-Lac Z was 25, 50 and 100, the infection rate of 293 cells was 32%, approached 78.9% and reached 98.6% respectively. Therefore, it is feasible to use recombinant adenovirus with MOI≥100 to infect human breast cancer MDA-MB-231 cell strain to observe the gene expression and apoptosis. Immunohistochemical staining results showed the recombinant adenovirus mediated gene transfection rate of pl6 being 93.8±2.5% and of p53 being 96.3±3.8%. No p53 or p16 protein expression was available in Ad-Lac Z infected tumor cells. However, tumor cells infected by both p53 and p16 showed obvious expression of p53 and p16 proteins, indicating that recombinant adenovirus could effectively mediate highly efficient transfer of exogenous genes.
    Conclusion (1) The recombinant adenovirus can properly carry target genes into target cells and accurately express target gene protein. (2) It is economical to produce recombinant adenovirus vector with high titer. (3) The therapeutic dosage volume of virus is small and will be good for applications within the human body.
    
    
    
    Part 3 Study on breast cancer therapy combining Ad-p16 and Ad-p53 with Tax
    Objectives Normal cells rely on checkpoint function to regulate cell cycle progression and maintain balance between cell proliferation and apoptosis. We found that both oncogene and antioncogene act through regulation of cell cycle. Occurrence of tumor often involves mutation, phosphorylation and/or inactivation of a number of antioncogenes. It has become a popular tumor gene therapy to transduce normal tumor suppressor genes into tumor cells to replace dysfunctional genes to reverse malignant phenotype and inhibit tumor growth and even eliminate tumor, p16 and p53 are important tumor suppressor genes in human body and directly or indirectly regulate cell cycle to cause stasis in G1 stage. Deficiency, mutation, rearrangement, phosphorylation or non-expression of p16 and p53 genes may be present in the occurrence and development of various tumors. It has become an important way of anti-tumor gene therapy study to restore the functions of wild type p16 and p53 genes. Tax may induce apoptosis of various tumors, and is especially effective in treatment of metastatic breast cancer. In this study, in-depth research was conducted over the effects of Tax, Ad-p16, Ad-p53 and their combination on growth inhibition and cell apoptosis of human breast cancer cell strain MDA-MB-231. Then Tax, Ad-p16, Ad-p53 and their combination was applied to breast cancer cell MDA-MB-231 in the tumorigenesis model of nude mice for an animal therapy experiment. The therapeutic effects were observed to provide basis for tumor therapy and therapeutic approaches.
    Methods The effects of Ad-p16, Ad-p53 and their combination on morphology and growth inhibition of MDA-MB-231 cells were observed through a microscope. MTT method was used to monitor and measure the growth inhibition rate of MDA-MB-231 cells applied with Tax, Ad-p16, Ad-p53 or their combination. The flow cytometer Annexin V-FITC/PI method was applied to test and analyze the apoptosis rate of MDA-MB-231 cells after application of Tax, Ad-p16, Ad-p53 and their combination. The flow cytometer was used to analyze the effects of Tax, Ad-p16, Ad-p53 and their combination on cell cycle and apoptosis of MDA-MB-231. MDA-MB-231 cell suspension was injected into the mammary fat pad of nude mice to form a breast cancer model in the nude mice. Ad-Lac Z, Tax, Ad-p16, Ad-p53, Tax+Ad-pl6, Tax+Ad-p53, Ad-pl6+ Ad-p53 and Tax+Ad-p16+Ad-p53 was used as a therapy for tumorigenesis in nude mice, and the changes in tumor size and tumor inhibition rate were observed and then the therapeutic effects were analyzed. In addition, routine pathological examination was made over the tumor specimens after treatment. Terminal deoxynucleotide transferase (TdT) mediated dUTP-biotin nick end labeling (TUNEL) method was used to test and analyze the apoptosis of tumor tissue cells. SPSS11.0 statistical software package was used to analyze the experiment data.
    Results Ad-p16, .Ad-p53 or their combined infection can inhibit growth of human breast cancer cell MDA-MB-23. Ad-p16 was more effective in inhibiting cell growth than Ad-p53, but with morphologic changes occurring later. Combined Ad-p16 and Ad-p53 infection may almost stop cell growth, with obviously more effective cell growth inhibition and earlier morphologic changes compared with Ad-pl6 or Ad-p53 infection. In case of Ad-Lac Z infection, the cell grew well without obvious morphologic changes. With increasing dose of Tax, the inhibition effects on MDA-MB-231 cells increased with obviously higher inhibition rate and positive correlation between cell inhibition rate and time (r=0.923, P=0.000) . Compared with Ad-Lac Z, Ad-p16, Ad-p53 or their combined infection was obviously effective in inhibiting the tumor cells (P=0.000 in all cases) . The inhibition rate of Ad-p16 ]was higher than that of Ad-p53 in all the time phases (P_(24h)=0.038, P_(48h)=0.004, P_(72h)=0.003, P_(96h)=0.001, P_(120h)=0.000) . The inhibition effects of Ad-p16 tended to go up gradually, while the inhibition effects of Ad-p53 tended to go down after reaching the peak value at 72h, but without statistical significance in both cases. In case of combined Ad-p16 and Ad-p53 infection, the inhibition rate of MDA-MB-231 cells was higher than that of Ad-p16 or Ad-p53 infection in all the time phases (vs Ad-p16, P = 0.001-0.004; vs Ad-p53,P=0.000); and obviously increased with time( 120h vs72h, P=0.006) , indicating obvious positive correlation with infection time (r=0.89, P=0.001) . After application of combined Tax and Ad-p16 into MDA-MB-231 cells, the cell growth inhibition rate was notably higher than that of Tax or Ad-p16application in all the time phases and reached the peak value at 96h up to 70.96% (70.96±3.30) (vsAd-p16,P=0.001;vsTax,P=0.000) ; and notably increased with time (120h vs 72h,P=0.028) . Same effects were observed in case of combined application of Tax and Ad-p53 but without obvious difference of inhibition rate in various time phases (P = 0.069-0.86) compared with the inhibition rate in case of application of Tax and Ad-p16. Inhibition of MDA-MB-231 cells was more obvious in case of combined application of Tax, Ad-pl6 and Ad-p53, and increased in all the time phases (P = 0.000 in all phases) with the highest inhibition rate up to over 90%. Application of Tax, Ad-p16 or Ad-p53 to MDA-MB-231 cells may induce cell apoptosis and the apoptosis rate obviously increased with time and reached 15.31%, 19.34% and 29.05% respectively at 72h. However, Ad-p16-infected MDA-MB-231 cell apoptosis occurred later than apoptosis of Tax- or Ad-p53-infected cells with apoptosis rate for Ad-p16 obviously lower than that for Ad-p53. Application of combined Tax and Ad-p16 or Ad-p53 can obviously increase the apoptosis rate of MDA-MB-231 cells, and combined application of Ad-p16 and Ad-p53 can also increase apoptosis of MDA-MB-231 cells. Application of combined Tax, Ad-p16 and Ad-p53 obviously improved the ability to induce MDA-MB-231 cell apoptosis with more notable effects. Tax may cause MDA-MB-231 cell stasis in G2/M stage, while application of Ad-p16, Ad-p53 or their combined infection may cause MDA-MB-231 cell stasis in G0/G1 stage. Application of combined Tax, Ad-p16 and Ad-p53 caused stasis of most cells in G0/G1 and G2/M stage. In case of application of Tax, Ad-p16, Ad-p53 or their combination into MDA-MB-231 cells, 72h agarose gel electrophoresis showed typical apoptosis trapezoidal belt, while the control group only showed gene group DNA. The tumors in the nude mice were obviously inhibited for Tax, Ad-p16 and Ad-p53 group, and P = 0.000 for all cases at the 20~(th) day compared with Ad-Lac Z group. Although the tumor size decreased for all groups compared with pre-treatment but without statistical significance (P = 0.216, 0.895, 0.138 respectively) . Application of combined Ad-p16 and Ad-p53 can both inhibit tumor growth and obviously reduce tumor size (0d vs 20d,P=0.034; 0d vs 20d,P=0.007). Application of combined Tax, Ad-pl6 and Ad-p53 more obviously reduced tumor size (0d vs 12d, P=0.041; 0d vs 16d, P=0.003; 0d vs 20d, P=0.000) . For the therapy group, tumor tissue stroma increased obviously and the tumor cells and nuclear division decreased notably with light blue nucleus, decreasing ratio between nucleus and cell plasma and scattered crescent chromatin and nucleus fragments visible. The tumor tissue cell apoptosis rate was 1.4±0.9%, 14.7±2.6%, 19.5±2.5%, 21.3±3.1%, 30.5±3.2% and 42.3±4.3 respectively in case of application of Ad-Lac Z, Tax, Ad-p16, Ad-p53, Ad-p16+Ad-p53 and Tax+Ad-p16+Ad-p53.
    Conclusion (1) Ad-p16, Ad-p53 or combined application of both can contribute to morphologic change and growth inhibition of oncogenic MDA-MB-231 cells, while this is due to the functions of exogenous p16 and p53 genes, instead of adenovirus virus. (2) There is obvious synergetic effect of Tax, Ad-p16 and Ad-p53 in inducing apoptosis of MDA-MB-231 cells, expression of p16 and p53 genes can enhance sensitivity of Tax to MDA-MB-231 cells, and p16 genes can contribute to apoptosis induced by p53 genes. (3) Tax can cause MDA-MB-231 cell stasis in G2/M stage, while Ad-p16 infection, Ad-p53 infection or combined Ad-pl6 and Ad-p53 infection can cause MDA-MB-231 cell stasis in G0/G1 stage. Action of combined Tax, Ad-p16 and Ad-p53 causes stasis in G0/G1 stage and G2/M stage of most cells. (4) Tax, Ad-p16 and Ad-p53 have synergetic effects of inhibiting tumor growth in Balb/c nu/nu, and the synergetic effects of combined Tax, Ad-p16 and Ad-p53 are more obvious. Besides inhibiting the tumor growth, they can also cause apoptosis of tumor cells.
引文
1.吴阶平,裘法祖主编.黄家驷外科学[M].第6版.北京:人民卫生出版社,1999:831.
    2. Silva JM,Dominguez G, Gonzalez R,et al. Presence of tumor DNA in plasma of breast cancer patients:clinico-pathological correlation[J]. Cancer Res, 1999, 59(9):3252-3256.
    3. Norberg T, Lennerstand J,Inganas M,et al. Comparison between p53 protein measurements using the lumi-metric immu-assay and immuhis- tochemistry with detection of p53 mutation using eDNA sequencing in human breast tumor[J]. Int J Cancer, 1998, 79(6):376-383.
    4. Dutrilaux B,Gerbault-Seureau M,Zafrani B,et al. Characterization of chromosomal anomalies in human breast cancer[J]. Cancer Genet Cytogenet, 1990, 49(10): 1990-1993.
    5. Lindblom A, Skong L,Rotstein S,et al. Loss of heterozygosity in familial breast carcinomas[J]. Cancer Res, 1993, 53(18):4356-4359.
    6. Cher LC,Kurisu W, Ljung BM,et al. Heterogeneity for allelie loss in human breast cancer[J]. J Natl Cancer Inst, 1992, 84(7):506-509.
    7.王深明,殷恒讳.乳腺癌基因治疗的现状与存在问题[J].中华医学杂志,2006,86(1):55-58.
    8. Kamb A,Gruis NA,Weaver-Feldhaus J,et al. A cell cycle regulator potent- ially involved in genesis of many tumor types[J]. Science, 1994,264:436-440.
    9. Levine AJ,Momand J,Finlay CA,et al. The p53 tumor suspression gene[J]. Nature, 1991, 351(6326):453-456.
    10. Buchman Vl,Chummakov PM,Ninkina NN,et al. A variation in the structure of the protin-coding of the human p53 gene[J]. Gene, 1998, 70:245-248.
    11. Rush EB,Medo A,Mao LI,et al. Analysis of MTS1/CDK4 in female breast carcinomas[J]. Cancer Lett, 1995,89(20):223-226
    12. Ponter PP, Flatow U,King CR, et al. Evolutionary conservation in the untranslated regions of actin mRNA:DNA sequence of a human beta-acting cDNA[J]. Nucleic Acids Res, 1984,12:1687-1692.
    13.丁锦辉,于冰.C-erbB-2、nm23、p53基因与乳腺癌预后[J].医学综述,2006,12(11):671-673.
    14. Bishop JM. Molecular themes in oncigenesis[J]. Cell, 1991,64:235-248.
    15. Serrano M,Hannon GJ,Beach D. A new regulary motif in cell-cycle control causing specific inhibition of cyclin D/CDK4 [J]. Nature, 1993, 366:704-707.
    16. Nobori T, Miuea R,Wu DJ,et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers[J]. Nature, 1994, 368:753-756.
    17. Herman JG, Abouezzi Z,Borgen PI,et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation all common human cancers[J]. Cancer Res, 1995, 55(18):4525-4530.
    18.曹新,魏钦俊,姜玉章.乳腺癌组织中p16基因变异及CpG岛甲基化状态的研究[J].肿瘤,2005,25(4):366-369.
    19. Xu L,Sgroi D,Stemer CJ,et al. Mutation analysis of CDKN2(MTS1/p16ink4) in human breast carcinomas[J]. Cancer Res, 1994, 54(20): 5256-5264.
    20. Brenner AJ,Aldaz CM. Chomosome 9p allelic loss and p16/CDKN2 in breast cancer and evidence of p16 inactivation in immortal breast epithelial cells[J]. Cancer Res, 1995, 55(13):2892-2895.
    21.王本忠,朱新生.乳腺癌细胞p16基因的研究[J].中华外科杂志,2000,38(1):17-18.
    22. Bems EM,Klijin JG, Smid M,et al. Infrequent CDKN2(MTS1/p16) gene alterations in human primary breast cancer[J]. Br J Cancer, 1995, 72(4):964-967.
    23. Quesnel B,Fenaux P, Philippe N,et al. Analysis of p16 gene detection and point mutation in breast carcinomas[J]. Oncogene, 1995, 10(2): 351-355.
    24. Rusa M,Peters G. The p16INK4a/CDKN2A tumor suppressor and relatives[J]. Biochim Biophys Acta, 1998, 1378(2):F115-117.
    25.罗建红,黄飞舟.蛋白质p16与乳腺癌关系的研究进展[J].右江民族医学院学报,2003,25(4):562-563.
    26. Vander Riet P, Nawroz H,Hruban R. Frequent loss of chromosome 9p21-22 early in head and neck cancer progression[J]. Cancer Res, 1994, 54:1156-1158.
    27.王琼书,杜鹃,刘元娇.子宫内膜癌中p16基因缺失及CpG岛甲基化的研究[J].肿瘤,2002,22(3):213-219.
    28. Klump B,Hsieh CJ,Nehls O,et al. Methylation status of p14ARF and p16INK4a as detected in pancreatic secretions[J]. Br J Cancer, 2003, 88(2):213-219.
    29. Woodcock DM,Linsenmeyer ME,Doherty JP, et al. DNA methylation in the promoter region of the p16(CDKN2/MTS-1/INK4A) gene in human breast tumours[J]. Br J Cancer, 1999, 79(2):251-256.
    30.高学硕,万文徽,赵爱莲等.p16蛋白在乳腺癌中表达状况及生物学意义[J].实用肿瘤学杂志,2000,15(2):93-94.
    31.郭洪斌,张培,王斌等.p16蛋白、C-erbB-2在乳腺癌中表达的意义[J].中国老年学杂志,2005,25(6):718-719.
    32.高鹤立,孙哲,纪卫华等.乳腺癌抑癌基因蛋白p16的检测及其临床意义[J].大连医科大学学报,2006,28(2):101-103.
    33.郭山春,廖松林,丁华野等.p16蛋白在乳腺癌中的表达及其预后关系[J].中华病理学杂志,1997,26(3):175-176.
    34.邓敏,顾永平.乳腺癌中p16,Cyclin D1基因的表达及意义[J].江苏大学学报(医学版),2002,12(3):242-245.
    35.郑建明,范决,詹溶洲等.p16基因mRNA及其编码蛋白在人乳腺癌中表达[J].中国癌症杂志,2000,10(1):11-14.
    36.张海英,何旭,宋晓环.乳腺癌中p16和p53蛋白的表达及意义[J].中国实验诊断学,2005,9(2):203-205.
    37.周蕾蕾,赵俊玲,杨金巧.乳腺癌组织中Cyclin D1及p16蛋白表达的联合检测及其意义[J].中华肿瘤防治杂志,2006,13(3):199-202.
    38.陈建武,王佩飞.乳腺癌相关基因蛋白的表达及意义[J].现代实用医学,2003,15(11):680-683.
    39. Linzer DIH, Levine AJ. Characterization of a 54k dalton celluar SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinnoma cells[J]. Cell, 1979, 17(1):43-52.
    40. Harris AL. Mutation p53 the commonest genetic abnormality in human cancer[J]. J Pathol, 1990, 162(1):5-6.
    41. Weninberg RA. Tumor suppressor genes[J]. Science, 1991,254:1138-1145.
    42. Marx I. New tumor suppressor on may rival p53[J]. Science, 1994, 264(5157):344-345.
    43. Geisler S,Borresen-Dale AL,Johnsen H,et al. Tp53 gene mutation predict the response to neoadjuvant treatment with 5-Fluorouracil and mitomycin in locally advanced breast cancer[J]. Clin Cancer Res, 2003, 9(15): 5582-5588.
    44. Gottlieb TM,Oren M. p53 in growth control and neoplasia[J]. Biochim Biophys Acta, 1996, 1287:77-102.
    45. Hirao A,Kong YY, Matsuoka SH,et al. DNA damage induced activation of p53 by the checkpoint CDK2[J]. Science, 2000, 287(5459):1824-1827.
    46. Fontanini G, Boldrini L,Calcinal A,et al. Thrombospondins and messenger RNA expression in breast cancer:Relationship with p53 alterations,angiogenie growth factors,and vascular density[J]. Clin Cancer Res, 1999, 5(3): 156-161.
    47. Sotiriou C,Powles TJ,Dowsett M,et al. Gene expression profiles derived from fine needle aspiration correlate with response to systemic chemo-ththerapy in breast cancer[J]. Breast Cancer Res, 2002, 4(3):R3.
    48. Silva JM,Gonzalez R, Dominguez G, et al. Tp53 gene mutation in plasma DNA of cancer patients[J]. Gene Chromosome Cancer, 1999, 24(2): 160-161.
    49. Goel MM,Goel R, Mehrotra A,et al. Immunohistochemical location and correlation of p53 and PCNA expression in breast carcinomas[J]. Indian J Exp biol, 2000, 38(3):225-229.
    50. Schmitt FC,Leal C,Lopes C. p53 protein expression and nuclear DNA content in breast intraductal proliferations[J]. J Pathol, 1995, 176 (3):233-241.
    51. Poelman SM,Heimann R,Flming GF, et al. Invariant p53 immuno-staining in primary and recurrent breast cancer[J]. Eur J Cancer, 2004, 40(1): 28-32.
    52.李莉,祝峙,方国恩等,COX-2和p53在乳腺癌组织中的表达及其相关性[J].中华肿瘤防治杂志,2006,13(4):287-289.
    53. Allred DC,Clark GM,Elledge R, et al. Association of p53 protein expression with tumor cell proliferation rate and clinical outcome in node-negative breast cancer[J]. J Natl Cancer Inst, 1993, 85:200-206.
    54. Vant Veer LJ,Dai H,van de Vijver MJ,et al. Gene expression profiling predicts clinical outcome of breast cancer[J]. Nature, 2002, 415 (6871): 530-535.
    55.曹亚丽,吴晓波,王忆丽等.乳腺癌组织中C-erbB-2、p53、PCNA和nm23蛋白表达及其临床意义[J].中国肿瘤临床与康复,2005,12(3):208-211.
    56.于志勇,于金明,吴泰璜等.乳腺癌分子生物学特性检测的临床意义[J].中华肿瘤杂志,2005,27(7):420-422.
    57.杜长征,李惠平,马立文等.中国乳腺癌患者p53表达临床生物学意义的Meta分析[J].中国癌症杂志,2005,15(6):514-517.
    58. Linderholm B,Lindh B,Tavelin B,et al. p53 and vascular-endothelial-growth-factor (VEGF) expression predicts outcome in 833 patients with premary breast caecinoma[J]. Int J Cancer, 2000, 89(1):51-62.
    59.孙慧,张立华,阎庆娜等.p53、nm23、PCNA在临床Ⅰ期乳腺癌中的表达及其临床意义[J].中国肿瘤临床,2002,29(2):82-86.
    60. Reed W, Hannisdal E. The prognostic value of p53 and C-cerbB-2 immuno-staining is overrated for patients with lymph node negative breast carcinoma:a multivariate analysis of prognostic factor in 613 patients with a follow-up of 14-30years[J]. Cancer, 2000,88(4):804-813.
    1. Bishop JM. Cancer: the rise of the genetic paradigm[J]. Genes Dev, 1995,9: 1309-1315.
    
    2. Romano G, Pacilio C, Giordano A. Gene transfer technology intherapy: current applications and future goals[J]. Stem Cells, 1999,17: 191-202.
    
    3. Dyer MR, Herrling PL. Progress and potential for gene-based medicine [J]. Mol Ther, 2000,1:213-224.
    
    4. Hilleman MR, Werner JH. Recovery of new agents from patients with acute respiratory illness[J]. Proc Soc Exp Biol Med, 1954, 85: 183-188.
    
    5. Shenk T. Adenoviridae: The Viruses and Their Replication[M]. In: Knipe DM, Fields BN ,Howley PM ,Eds. Fields virology. Lippincott-Raven, Philadelphia, Pa 1996,3~(rd) ed.2111-2148.
    
    6. Hitt MM , Graham FL . Adeno virus vectors for human gene therapy [J]. Adv Virus Res, 2000,55: 479-505.
    
    7. Zakhartchouk A,Connors W,vanKessel A,et al. Bovine adenovirus type3 containing heterologous protein in the C-ter minus of minor capsid protein IX[J]. Virology, 2004,320:291-300.
    
    8. Anderson C W, Young ME , Flint SJ. Characterization of the adenovirus 2 virion protein, mu[J]. Virology, 1989, 172:506-512.
    
    9. Matthews DA, Russell WC. Adenovirus protein-protein interactions: molecular parameters governing the binding of protein VI to hexon and the activation of the adenovirus 23K protease[J]. J Gen Virol, 1995, 76:1959-1969.
    
    10. Weber J. Genetic analysis of adenovirus type 2. III. Temperature sensitivity of processing viral proteins[J]. J Virol, 1976,17: 462-471.
    
    11. Webster A, Russell S, Talbot P,et al. Characterization of the adenovirus proteinase: substrate specificity [J]. J Gen Virol, 1989,70: 3225-3234.
    
    12. Horwitz MS. Adenovirus[M]. In: Knipe DM, Fields BN, Howley PM,Eds. Fields virology. Lippincott-Raven, Philadelphia, Pa, 3rd ed. 1996,2149-2171.
    13. Wu QH,Tikoo SK.Altered tropism of recombinant bovine adenovirus type3 expressing chimeric fiber[J]. Virus Res, 2004,99:9-15
    
    14. Bergelson JM, Cunningham JA, Droguett G,et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5[J]. Science, 1997, 275: 1320-1323.
    
    15. Tomko RP, Xu R, Philipson L. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses[J]. Proc Natl Acad Sci USA, 1997,94: 3352-3356.
    
    16. Kirby I, Davison E, Beavil AJ,et al. Mutations in the DG loop of adenovirus type 5 fiber knob protein abolish high-affinity binding to its cellular receptor CAR[J]. J Virol, 1999,73:9508-9514.
    
    17. Santis G, Legrand V, Hong SS,et al. Molecular determinants of adenovirus serotype 5 fibre binding to its cellular receptor CAR[J]. J Gen Virol, 1999,80: 1519-1527.
    
    18. Kirby I, Davison E, Beavil AJ,et al. Identification of contact residues and definition of the CAR-binding site of adenovirus type 5 fiber protein[J]. J Virol,2000,74: 2804-2813.
    
    19. Hong SS, Karayan L, Tournier J,et al. Adenovirus type 5 fiber knob binds to MHC class I (?)2 domain at the surface of human epithelial and B lymphoblastoid cells[J]. EMBO J,1997,16: 2294-2306.
    
    20. Arnberg N, Edlund K, Kidd AH,et al. Adenovirus type 37 uses sialic acid as a cellular receptor[J]. J Virol,2000,74: 42-48.
    
    21. Stewart PL, Chiu CY, Huang S,et al. Cryo-EM visualization of an exposed RGD epitope on adenovirus that escapes antibody neutralization [J]. EMBO J,1997,16:1189-1198.
    
    22. Wickham TJ, Mathias P, Cheresh DA,et al. Integrins αv β3 and αv β5 promote adenovirus internalization but not virus attachment[J]. Cell, 1993,73: 309-319.
    
    23. Mathias P, Galleno M, Nemerow GR. Interactions of soluble recombinant integrin αv β5 with human adenoviruses[J]. J Virol, 1998,72: 8669-8675.
    24. Meredith JEJr, Winitz S, Lewis JM, et al. The regulation of growth and intracellular signaling by integrins[J]. Endocrinol Rev, 1996,17: 207-220.
    
    25. Li E, Stupack D, Bokoch GM,et al. Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases[J]. J Virol, 1998,72: 8806-8812.
    
    26. Rauma T, Tuukkanen J, Bergelson JM,et al. rab5 GTPase regulates aderioVirus endocytosis[J]. J Virol,1997,3: 9664-9668.
    
    27. Greber UF, Webster P, Weber J,et al. The role of the adenovirus protease on virus entry into cells[J]. EMBO J,1996,15: 1766-1777.
    
    28. Leopold PL, Kreitzer G, Miyazawa N,et al. Dynein- and microtubule-mediated translocation of adenovirus serotype 5 occurs after endosomal lysis [J]. Hum Gene Ther, 2000,11:151-165.
    
    29. Suomalainen M, Nakano MY, Keller S,et al. Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus[J]. J Cell Biol, 1999,144: 657-672.
    
    30. Angeletti PC ,Engler JA. Adenovirus preterminal protein binds to the CAD enzyme at active sites of viral DNA replication on the nuclear matrix[J]. J Virol, 1998,72: 2896-2904.
    
    31. Fredman JN, Engler JA. Adenovirus precursor to terminal protein interacts with the nuclear matrix in vivo and in vitro[J]. J Virol, 1993,67: 3384-3395.
    
    32. Hay JG, Shapiro N, Sauthoff H,et al. Targeting the replication of adenoviral gene therapy vectors to lung cancer cells: the importance of the adenoviral Elb-55kD gene[J].Hum Gene Ther,1999,10: 579-590.
    
    33. Deryckere F, Burgert HG. Tumor necrosis factor alpha induces the adenovirus early 3 promoter by activation of NF-kappaB[J]. J Biol Chemi, 1996, 271: 30249-30255.
    
    34. de Stanchina E, McCurrach ME, Zindy F,et al. El A signaling to p53 involves the pl9 (ARF) tumor suppressor[J]. Genes Dev,1998,12: 2434-2442.
    
    35. Honda R, Yasuda H. Association of p19 (ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53[J]. EMBO J, 1999,18: 22-27.
    36. Tao W, Levine AJ. p19 (ARF) stabilizes p53 by blocking nucleocytoplasmic shuttling of Mdm2[J]. Proc Natl Acad Sci USA, 1999, 96: 6937-6941.
    
    37. Weber JD, Taylor LJ, Roussel MF,et al. Nucleolar Arf sequesters Mdm2 and activates p53 [J]. Nat Cell Biol, 1999,1: 20-26.
    
    38. Han J,Sabbatini P,Perez D,et al.The ElB 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein[J]. Genes Dev, 1996,10:461-477.
    
    39. Grand RJ, Parkhill J, Szestak T,et al. Definition of a major p53 binding site on Ad2ElB58K protein and a possible nuclear localization signal on the Adl2ElB54K protein[J]. Oncogene,1999,18: 955-965.
    
    40. Bischoff JR, Kirn DH, Williams A,et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells[J]. Science, 1996,274: 373-376.
    
    41. Ridgway PJ, Hall AR, Myers CJ,et al. p53/Elb58kDa complex regulates adenovirus replication[J]. Virology, 1997,237: 404-413.
    
    42. Horridge JJ, Leppard KN. RNA-binding activity of the ElB 55-kilodalton protein from human adenovirus type 5[J]. Journal of Virology, 1998,72: 9374-9379.
    
    43. Tollefson AE, Ryerse JS, Scaria A, et al. The E3-11.6-kDa adenovirus death protein (ADP) is required for efficient cell death: characterization of cells infected with adp mutants[J]. Virology, 1996,220: 152-162.
    
    44. Bennett EM, Bennink JR, Yewdell JW,et al. Cutting edge: adenovirus E19 has two mechanisms for affecting class I MHC expression[J]. J Immunology, 1999, 162: 5049-5052.
    
    45. Tatsis N,Ertl HCJ. Adenoviruses as vaccine vector[J]. Mol Ther, 2004,10(4):616-629.
    
    46. Weigel S, Dobbelstein M. The nuclear export signal within the E4orf6 protein of adenovirus type 5 supports virus replication and cytoplasmic accumulation of viral mRNA[J]. J Virol,2000,74: 764-772.
    
    47. Li X,Babiuk LA,Tikoo Sk. Analysis of porcine adenovirus type3[J]. Virus Res, 2004,104:181-190.
    48. Kaplan JM, Armentano D, Sparer TE,et al. Characterization of factors involved in modulating persistence of transgene expression from recombinant adenovirus in the mouse lung[J]. Hum Gene Ther,1997,8: 45-56.
    
    49. Mannervik M, Fan S, Strom AC,et al. Adenovirus E4 open reading frame 4-induced dephosphorylation inhibits El A activation of the E2 promoter and E2F-1-mediated transactivation independently of the retinoblastoma tumor suppressor protein[J]. Virology, 1999,256: 313-321.
    
    50. Boyer JL, Ketner G. Genetic analysis of a potential zinc-binding domain of the adenovirus E4 34k protein[J]. J Biol Chemi, 2000,275: 14969-14978.
    
    51. Konig C, Roth J, Dobbelstein M. Adenovirus type 5 E4orf3 protein relieves p53 inhibition by E1B-55-kilodaltonprotein[J]. J Virol,1999, 73: 2253-2262.
    
    52. Sandy P, Gostissa M, Fogal V,et al. p53 is involved in the p120E4F-mediated growth arrest[J]. Oncogene, 2000,19: 188-199.
    
    
    53. Hay RT, Freeman A, Leith I,et al. Molecular interactions during adenovirus DNA replication[M]. In: Doerfler W, Bohm P,eds. The Molecular Repertoire of Adenoviruses. Berlin: Springer, 1995. 31-48.
    
    
    54. Lutz P, Kedinger C. Properties of the adenovirus IVa2 gene product, an effector of late-phase-dependent activation of the major late promoter[J]. J Virol, 1996,70: 1396-1405.
    
    55. Lutz P, Rosa-Calatrava M, Kedinger C. The product of the adenovirus intermediate gene IX is a transcriptional activator [J]. J Virol, 1997, 71: 5102-5109.
    
    56. Li X,Tikoo SK. Promoter activity of left inverted terminal repeat and downstream sequences of porcine adenovirus type3[J]. Virus Res, 2005,109:51-58.
    
    57. Hearing P, Samulski RJ, Wishart WL,et al. Identification of a repeated sequence element required for efficient encapsidation of the adenovirus type 5 chromosome[J]. J Virol, 1987,61: 2555-2558.
    
    58. Tollefson AE, Hermiston TW, Lichtenstein DL,et al. Forced degradation of Fas inhibits apoptosis in adenovirus-infected cells[J].Nature, 1998,392: 726-730.
    59. Graham FL, Prevec L. Adenovirus-based expression vectors and recombinant vaccines[J]. Biotechnology, 1992,20: 363-390.
    
    60. Graham FL, Smiley J, Russell WC,et al. Characteristics of a human cell line transformed by DNA from human adenovirus type 5[J]. J Gen Virol, 1977,36: 59-72.
    
    61. Fallaux FJ, Kranenburg O, Cramer SJ, et al. Characterization of 911, a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors[J]. Hum Gene Ther, 1996,7: 215-222.
    
    62. Fallaux FJ, Bout A, van der Velde I,et al. New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses[J]. Hum Gene Ther, 1998,9:1909-1917.
    
    63. Bangari DS,Shukla S,Mittal SK. Comparative transduction efficiencies of human and monhuman adenovirus vector in human,murine,and porcine cell in culrure[J]. Bioche Biophys Res Commun, 2005,327:960-966.
    
    64. Worgall S, Wolff G, Falck-Pedersen E,et al. Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration[J]. Hum Gene Ther, 1997, 8: 37-44.
    
    65. Michou AJ, Santoro L, Christ M,et al. Adenovirus-mediated gene transfer: influence of transgene, mouse strain and type of immune response on persistent transgene expression[J]. Gene Ther, 1997,4: 473-482.
    
    66. Yang Y, Su Q, Wilson J. Role of viral antigens in destructive cellular immune responses to adenovirus vector-transduced cells in mouse lungs[J]. J Virol, 1996,70: 7209-7212.
    
    67. Yang Y, Li Q, Ertl HCJ, et al. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses[J]. J Virol, 1995,69: 2004-2015.
    
    68. Amalfitano A. Production and characterization of improved adenovirus vectors with the E1, E2b, and E3 genes deleted[J]. J Virol, 1998, 72: 926-933.
    
    69. Kochanek S. High-capacity adenoviral vectors for gene transfer and somatic gene therapy[J]. Hum. Gene Ther, 1999,10: 2451-2459.
    70. Russell WC. Update on adenovirus and its vectors[J]. J Gen Virol, 2000,81: 2573-2604.
    
    71. Steinwaerder DS, Carlson CA,et al. Generation of adenovirus vectors devoid of all viral genes by recombination between inverted repeats[J]. J Virol, 1999, 73: 9303-9313.
    
    72. Polo JM, Dubensky TW. Virus-based vectors for human vaccine application[J]. Drug Discov Today, 2002,7:719-727.
    
    73. Li X,Tikoo SK. Chaeacterization of cis-Acting packaging motifs of porcine adenovirus type3[J]. Virus res, 2004,104:207-214.
    
    74. Moraes MP,Mayr GA,Grubman MJ. pAd5-Blue:diret ligation system for engineering recombinant adenovirus constructs [J]. Biotechniques, 2001, 31: 1056-1064.
    
    75. Hama S,Heike Y,Narse I,et al. Adenovirus-mediated pl6 gene transfer prevents drug-induced cell death through G1 arrest in human glioma cells[J]. Int J Cancer, 1998,77:47-54.
    
    76. McGorory WJ,Bautista DS,Graham FL. A simple technique for the rescue of early regionl mutation into infection human adeno-virus type 5[J]. Virology ,1988,163:614-617.
    1. Chiba I,Takahashi T,Nau MM,et al. Mutations in the p53 gene are frequent in primary, resected non-small cell lung cancer[J]. Oncogene, 1990,5:1603-1610.
    2. Kratzke K,Greatens TM,Rubins JB,et al. Rb and p16INK4a expression in resected non-small cell lung tumour[J]. Cancer Res, 1996,56:3415-3420.
    3. Ohashi M,Kanai F, Ueno H,et al. Adenovirus mediate p53 tumour suppressor gene therapy for human gastric cancer cell in vitro and in vivo[J]. Gut, 1999, 44 (3):366-371.
    4. Merkle C,Fritsche M,Mundt M,et al. Transcriptional regulation and indution of apoptosis:implication for the use of monomeric p53 variants in gene therapy[J]. Gene Thre, 1998,5:1631-1638.
    5. Craig C,Kim M,Ohri E,et al. Effects of adenovirus-mediated p16INK4A expression on cell cycle arrest are determined by endogenous p16 and Rb status in human cancer cells[J]. Oncogene, 1998,16:265-269.
    6. Roberts JR,Allison DC,Donehower RC,et al. Development of polypolidi-zation in taxol-resistant human leukemia cell in vitro[J]. Cancer Res, 1990, 50(3): 710-716.
    7. Donaldson KL,Goolsby G, Kiener PA,et al. Activation of p34(cdc2) coincident with taxol-induced apoptosis[J]. Cell Growth, 1994,5(6): 1041-1050.
    8. McCloskey DE,Kaufmann SH,Prestigiacomo LJ,et al. Palitaxel induces programmed cell death in MDA-MB-486 human breast cancer cells[J]. Clin Cancer Res, 1996,2(5):847-854.
    9. McNeish IA,Bell SJ,Lemoine NR. Gene therapy progress and prospects: cancer gene therapy using tumour suppressor genes[J]. Gene Thre, 2004,11:497-503.
    10.徐淑云,卞如濂,陈修主编.药理学实验方法学[M].第3版.北京:人民生出版社,1997,p:1768-1769.
    11. Blaese RM,Carter CS,Clerici M,et al. Treatment of severe comined immunodeficiency due to adenosine deaminase deficiency with autologous lymphocytes transduced with a human DAD gene[J]. Hum Gene Ther, 1990,1:327-362.
    12.Blaese RM,Culver KW,Miller AD,et al. T lymphocyte-directed gene therapy for ADA-SCID:initial trial results after 4 years[J]. Science, 1995,270:475-480.
    13.Kay MA,Manno CS,Ragni MV,et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector[J]. Nat Genet, 2000,24:257-261.
    14.Cavaz-Zana-Calvo M,Hacein-Bey S,de Saint Basile G,et al.Gene therapy of human severe combined immunodeficiency(SCID)-Xl disease[J]. Science, 2000, 288: 669-672.
    15.Khuri FR,Nemunaitis J.Ganly I,et al. A Control trial of intratumoral ONYX-015,a selectively replicating adenovirus,in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer[J]. Nat Med, 2000, 6:879-885.
    16.Isner JM,Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization[J]. J Clin Invest, 1999,103:1231 -1236.
    17.Gerdes B,Ramaswamy A,Ziegler A,et al.p16(INK4a)is a prognostic marker in resected ductal pancreatic cancer- an analysis of p16(INK4a),p53, MDM2,and Rb[J].Ann Surg, 2002,235:51-59.
    18.Bishop JM.Cancer:the rise of the genetic paradigm[J]. Genes Dve, 1995, 9:1309-1315.
    
    19.Rosenwald A,Wright G,Chan WC,et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma [J]. N Engl J Med, 2002,346:1937-1947.
    20.Khan J,Wei JS,Ringer M,et al.Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks[J]. Nat Med, 2001, 7:673-679.
    
    21.Anderson WF. Gene therapy scores against cancer[J]. Nat Med, 2000, 6:862-863.
    22.Vile RG,Russell SJ,Lemoine NR. Cancer gene therapy:hard lessons and new courses[J]. Gene Ther, 2000, 7:2-8.
    23.Zeng ZJ,Li ZB,Liu SQ,et al. Retrovirus-mediated tk gene therapy of implanted human breast cancer in nude mice under the regulation of Tet-On[J]. Cancer Gene Ther, 2006,13:290-297.
    24.Jordan M,Wurm F. Transfection of adherent and suspended cells by calcium phosphate[J]. Methods, 2004, 33(2):136-143.
    25.Dyer MR,Herrling PL. Progress and potential for gene-based medicine[J]. Mol Ther, 2000, 1:213-224.
    26.Zhang W. Development and application of adenoviral vectors for gene therapy of cancer[J]. Cancer Gene Ther, 1999,6:113-138.
    27.Hitt MM,Graham FL. Adenovirus vectors for human gene therapy[J]. Adv Virus Res, 2000, 55:479-505.
    28.Wiewrodt R,Amin K,Kiefer M,et al.Adenovirus-mediated gene transfer of enhanced Herpes simplex virus thymidine kinase mutants improves prodrug-mediated tumor cell killing[J]. Cancer Gene Ther, 2003, 10(5): 353-364.
    29.Volper C,Kochanek S. Adenoviral vectors for gene transfer and therapy [J]. J Gene Med,2004,6:S164-S171.
    30.Anders M,Hansen R,Ding RX,et al. Disruption of 3D tissue integrity facilitates adenovirus infection by deregulating the coxsackievirus and adenovirus receptor [J]. PNAS, 2003,100(4):1943-1948.
    31 .Martin S J.Green DR. Apoptosis as a goal of cancer therapy [J]. Curr Opin Oncl, 1994,6:616-619.
    32.Kerr JF,Wyllie AH,Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implication in tissue kinetics[J]. Br J Cancer, 1972,26:239-257.
    33.Scott WL,Athena WL. Apoptosis in cancer[J]. Carcinogenesis, 2000,21 (3): 485-495.
    34.Thompson CB. Apoptosis in the pathogenesis and treatment of disease[J]. Science, 1995,267:1456-1462.
    
    35.Nagdta S. Apoptosis by daeth factor[J]. Cell, 1997,88:355-365.
    36.Kerr JF,Winterford CM,Harmon BV. Apoptosis-its significance in cancer and cancer therapy [J]. Cancer, 1994,73:2013-2026.
    37.Leist M,Jaattela M. Four deaths and funeral from caspases to alternative mechanisms[J]. Nat Rev Moi Cell Biol, 2001,2(8):589-598.
    38.Van Cruchthen S,Van Den Broeck W. Morphological and biochemical aspects of apoptosis,oncosis and necrosis[J]. Anat Histol Embryol, 2002,31(4):214-223.
    39.Rocco JW,Sidransky D. p16(MTS-l/CDKN2/INK4a) in cancer progression[J]. Exp Cell Res, 2001,264:42-55.
    
    40.Sherr CJ. Cancer cell cycle[J]. Science, 1996,274:1672-1677.
    41.Carnero A,Hudson JD.Price CM,et al. p16(INK4a) and pl9(ARF) act in overlapping pathways in cellular immortalization[J]. Nat Cell Biol, 2000, 2:148-155.
    42.Kwonga FM,Johnny CT,Gopesh S,et al. Inactivation mechamisms and growth suppressive effects of p16INK4a in Asian esophageal squamous carcinoma cell lines[J]. Cancer Letters, 2004,208:207-213.
    43.Sherr CJ,McCormick F. The Rb and p53 pathways in cancer[J]. Cancer Cell, 2002,2:103-112.
    44.1nvanchuk Sm,Mondal S,Dirks PB,et al. The INK4/ARF locus:role in cell cycle control and apoptosis and implications for glioma growth[J]. J Neurooncol, 2001,51:219-229.
    45.Sharpless NE,Castrillon DH,De Pinho RA,et al. Both products of the mouse INK4a/ARF locus suppress melanoma formation in vivo[J]. Oncogene, 2003,22:5055-5059.
    46.Merlar A,Herman J,Mao L,et al.5'CpG island methylation is associated with transcriptional silencing of the tumor suppressor p16/CDK2/MTS1 in human cancers[J]. Nat Med, 1995,1:686-692.
    47.Jin X,Nguyen D,Zhang W,et al. Cellcycle arrest and inhibition of tumor cell proliferation by the pl6 gene mediated by an adenovirus vector[J]. Cancer Res, 1995,55:3250-3252.
    48.Schrump D,Chen G,Consuli U,et al. Inhibition of esophageal cancer proliferation by adenovirally mediated delivery of p16[J]. Cancer Gene Ther, 6:357-364. 49.Gotoh A,Kao C,Ko S,et al. Cytotoxic effects of recombinant adenovirus p53 and cell cycle regulator gene(p21 and p16) in human prostate cancers [J]. J Urol, 1997,158:636-641.
    50.Kobayashi S,Shirasawa H,Sashiyama H,et al. p16INK4a expression adenovirus vector to suppress pancreas cancer cell proliferation[J]. Clin Cancer Res, 1999,5:4182-4185.
    51.Fueyo J,Gomez-Manzano C,Yung W,et al. Adenovirus-mediated p16/CDK2 gene transfer induces growth arrest and modifies the transformed phenotype of glioma cells[J]. Oncogene, 1996,12:103-110.
    52.Modesitt SC,Ramirez P,Zu Z,et al. In vitro and in vivo adenovirus -mediated p53 and p16 tumor supprsssor therapy in ovarian cancer[J], Clin Cancer Res, 2001,7:1765-1772.
    53.Lu Y,Zhang J,Beech DJ,et al. p16 downregulates VEGF and inhibits angiogenesis in breast cancer cells[J]. CancerTher, 2003,1:143-151.
    54.Duan JM,Chen Z,Liu PH,et al. Wild-type p16INK4a suppresses cell growth,telomerase activity and DNA repair in human breast cancer MCF-7 cells[J]. Int J oncol, 2004,24:1597-1605.
    55.Granger MP,Wright WE,Shay JW. Telomerase in cancer and aging[J]. Crit Res Oncol Hematol, 2002,41:29-40.
    56.Fuxe J,Akusjarvi G,Goike HM,et al. Adenovirus-mediated overexpression of p15(INK4B) inhibits human glioma cell growth,induces replicative senescence,and inhibits telomerase activity similarly to p16(INK4a) [J]. Cell Growth Differ, 2000,11:373-384.
    57.Campbell I,Magliocco A.Moyana T,et al. Adenovirus-mediated p16~(INK4) gene transfer significantly suppresses human breast cancer growth[J]. Cancer Gene Ther, 2000,7:1270-1278.
    58.Sandig V,Brand K,Herwig S,et al. Adenovirally transferred p16INK4/CDKN2 and p53 genes cooperate to induce apoptotic .tumor cell death[J]. Nat Med,1997,3:313-319.
    59.Frizelle SP,Grim J,Zhou J,et al. Re-expression of pl6INK4a in mesothelioma cells results in cell cycle arrest,cell death.tumor suppression and tumor regression[J]. Oncogene, 1998,16:3087-3095.
    60.Kim M,Katayose Y,Rojanala L,et al. induction of apoptosis in p16~(INK4A) mutant cell lines by adenovirus-mediated overexpression of p16~(INK4A) protein[J]. Cell Death & Differ, 2000,7:706-711.
    
    61.Vosden KH. p53:death star[J]. Cell, 2000,103:691-694.
    62.Kimura T, Gotoh M, Nakamura Y,et al. hCDC4b, a regulator of cyelin E, as a direct transcriptionaltarget of p53[J]. Cancer Sci 2003,94: 431-436.
    63.Gartel AL,Tyner AL. The Role of the Cyelin-dependent Kinase Inhibitor p21 in Apoptosis[J]. Mol Cancer Ther. 2002,1: 639-649
    64.Rocha S,Martin AM,Meek DW,et al. p53 represses cyclin D1 transcription through down regulation of Bel-3 and inducing increased association of the p52 NF-kappaB subunit with histione deacetylase 1[J]. Mol Cell Biol, 2003,23(13):4713-4727.
    65.Chin PL, Momand J, Pfeifer GP. In vivo evidence for binding of p53 to consensus binding sites in the p21 and GADD45 genes in response to ionizing radiation[J]. Oncogene. 1997,15(1):87-99.
    66.Innocente SA, Abrahamson JL, Cogswell JP, et al. p53 regulates a G2 checkpoint through cyclin B 1 [J]. Proc Natl Acad Sci USA, 1999, 96,2147-2152.
    67.Chun ACS,Jin DY. Transcriptional regulation mitotic checkpoint gene MADI by p53[J]. J Biol Chem, 2003,278(39):37439-37450.
    68.Muller M, Wilder S, Bannasch D,et al. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs [J]. J Exp Med, 1998, 188: 2033-2045.
    69. Wu GS,Burns TF,McDonald ER, et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene[J]. Nat Genet, 1997,17:141-143.
    70.Attardi L, Reczek EE, Cosmas C, et al. PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family[J]. Genes Dev. 2000: 14: 704-718.
    71.Cregan SP,Arbour N,MacLaurin JG,et al. p53 activation domain 1 is esstial for PUMA upregulation and p53-mediated neuronal cell death. J Neurosci, 2004, 24 (44): 10003-10012.
    72.MacLachlan TK,E1-Deiry WS. Apoptotic threshold is lowered by p53 transactivation of caspase-6[J]. Proc Natl Acad Sci USA, 2002,99: 9492-9497.
    73.Sax JK,Fei P,Murphy ME,et al. BID regulation by p53 contributes to chemosensitivity[J]. Nat Cell Biol, 2002,4:842-849.
    74.Villunger A,Michalak EM,Coultas L,et al. p53- and drug-induced apoptotic responses mediated by BH3-0nly proteins puma and noxa[J]. Science, 2003, 302 (5647): 1036-1038.
    75.Matsuda K,Yoshida K,Taya Y, et al. p53AIPl regulates the mitochondrial apoptotic pathway[J]. Cancer Res, 2002,62:2883-2889.
    76.Ohtsuka T,Ryu H,Minamishima YA,et al.ASC is a Bax adaptor and regulates the p53-Bax mitochondrial apoptosis pathway[J]. Nat Cell Biol, 2004, 6(2):121-128.
    77.Bouvard V,Zaitchouk T,Vacher M,et al.Tissue and cell-specific expression of the p53-target genes: bax, fas,mdm2 and wafl/p21, before and following ionising irradiation in mice[J]. Oncogene, 2000,19(5):649-660.
    78.Robles AI,Bemmels NA,Foraker AB,et al. APAF-1 is a transcriptional target of p53 in DNA damage-induced apoptosis[J]. Cancer Res, 2001,61 (18):6660-6664.
    79.Trinei M,Giorgio M,Cicalese A,et al. A p53-p66Shc signalling pathway controls intracellular redox status,levels of oxidation-damaged DNA and oxidative stress induced apoptosis[J]. Oncogene, 2002,21:3872-3878.
    80.Migliaccio E,Giorgio M,Mele S,et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals[J]. Nature, 1999,402:309-313.
    81.Polyak K,Xia Y,Zweier JL,et al. A model for p53-induced apoptosis[J]. Nature (Lond.), 1997,389: 300-305.
    82.Kho PS,Wang Z,Zhuang L,et al. p53-regulated transcriptional program associated with genotoxic stress-induced apoptosis[J]. J Biol Chem, 2004, 279 (20): 21183-21192.
    83.Hoffman WH,Biade S,Zilfou JT,et al. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53[J]. J Biol Chem, 2002, 277(5): 3247-3257,
    84.Taha TA,Osta W,Kozhaya L,et al. Down-regulation of sphingosine kinase-1 by DNA damage: dependence on proteases and p53[J]. J Biol Chem, 2004, 279 (19): 20546-20554.
    85. Chipuk JE,Kuwana T,Bouchier-Hayes L,et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis [J]. Science. 2004,303(5660): 1010-1014
    86. Leu JI,Dumont P,Hafey M,et al. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcll complex[J]. Nat Cell Biol, 2004,6(5): 443-450.
    87. Bennett M,Macdonald K,Chan SW,et al. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis[J]. Science, 1998,282 (5387): 290-293.
    88. Ding HF,Lin YL,McGill G,et al. Essential role for caspase-8 in transcriptionindependent apoptosis triggered by p53 [J]. J BioI Chem, 2000, 275:8905-38911.
    89. Shiraishi K,Kato S,Han SY,et al. Isolation of temperature-sensitive p53 mutations from a comprehensive missense mutation library[J]. J Biol Chem, 2004, 279 (1): 384-355.
    90. Eastham JA,Grafton W,Martin CM,et al. Suppression of primary tumor growth and the progression to metastasis with p53 adenovirus in human prostate cancer[J]. J Urol, 2000,164:814-819.
    91.阎昭,李雯,牛瑞芳等.Ad-wtp53对p53状态不同结直肠癌细胞生长的影响[J].中国肿瘤生物治疗杂志,2003,10(1):42-47.
    92. Puter BM,Bramson JL,Addison CL,et al. Combination therapy with intefleuldn-2 and wtp53 expressed by adenoviral vector potentiates tumor regression in a murine model of breast cancer[J]. Hum Gene Ther, 1998,9:707-718.
    93.金焰,阎承慧,吴焱等.外源性野生型p53基因在两个肺腺癌细胞系中表达及对p16和p21基因的调控[J].中华医学遗传学杂志,2003,20(5):409-412.
    94. Katayose Y, Kim M,Rakkar AN,et al. Promoting apoptosis:a novel activity associated with the cyclin-dependent kinase inhibitor p27[J]. Cancer Res, 1997, 57: 5441-5445.
    95.白雪源,车凤翔,李劲松等.重组腺病毒介导的p16与p53联合转染对人肺癌细胞系H358生物学行为的影响[J].中华病理学杂志,2000,29(5):354-358.
    96.芮红兵,叶德富,卓光生等.野生型p16和p53抑癌基因共转染对K562细胞增殖的抑制作用[J].中国实验血液学杂志,2002,10(5):400-403.
    97.徐敏毅,林晨,梁萧等.Ad-p53与Ad-p16联合对人肺腺癌GLC-82细胞作用的研究[J].中国肿瘤生物治疗杂志,2000,7(2):86-89.
    98.柳光宇,邵志敏,沈镇宙.紫杉醇诱导乳腺癌细胞凋亡的分子生物学机制[J].中国癌症杂志,2000,10(1):93-96.
    99. Boise LH,Gonzalez-Carcia M,Postema K,et al. bcl-x,a bcl-2-related gene that function as a dominant regulator of apoptotic cell death[J]. Cell, 1993, 74 (4): 597-608.
    100. Blagosklonny MV, Schulte T, Nfuyen P, et al. Taxol-induced apoptosis and phosphorylation of bcl-2 protein involves c-Raf-1 and represents a novel c-Raf-1 signal transduction pathway[J]. Cancer Res, 1996,56 (8): 1851-1854.
    101. Srivastava RK, Srivastava AR, Korsmeyer SJ,et al. Involvement of microtubules in the regulation of bcl-2 phosphorylateion and apoptosis through cyclin AMP-dependent protein kinase[J]. Mol Cell Biol, 1998,18 (6):3509-3517.
    102. Sumantram VN,Ealovega MW, Nunez G, et al. Overexpression of bcl-xL sensitizes MCF-7 cells to chemotherapy-induced apoptosis[J]. Cancer Res, 1995, 55(12):2507-2510.
    103. Barboule N,Chadebech P, Baldin V, et al. Involvement of p21 in mitoticexit after paclitaxel treatment in MCF-7 breast adenocarcinoma cell line[J]. Oncogene, 1997,15(23):2867-2875.
    104. Krishna R,Mayer LD. Multidrug resistance(MDR) in cancer. Mechanisms, reveral using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs[J]. Eur J Pharm Sci, 2000,11 (4):265-283.
    105. Johnson RA,Ince TA,Scotto KW. Transcriptional repression by p53 through direct binding to a novel DNA element[J]. J Biol Chem, 2001,276 (29): 27716-27720.
    106. Cascallo M,Calbo J,Gelpi JL,et al. Modulation of drug cytotoxicity by reintroduction of wt p53 gene(AdCMV-p53) in human pancreatic cancer [J]. Cancer Gene Ther, 7:54-556.
    107. Kawakami Y. Adenovirus-mediated p16 gene transfer changes the sensitivity to taxanes and vinca alkaloids of human cancer cells[J]. Anticancer Res, 2001, 21: 2537-2545.
    108.汪毅,任国胜.乳腺癌裸鼠移植模型的制作概况[J].重庆医科大学学报,2003,28(3):398-401.
    109. Couillard S,Gutman M,Labrie F, et al. Effect of combined treatment with pure antiestrogen EM-800 and radio-therapy on the growth of human ZR-75-1 breast cancer xenografts in nude mice[J]. Cancer Res, 1999,59: 4857-4863.
    110. Clarke R. Human breast cancer cell line xenografts as models of breast cancer-The immunobiologies of recipient mice and the characteristics of several tumorigenic cell lines[J]. Breast Cancer Res Treat, 1996,39: 69-86.
    111.甄林林,武正炎,范萍等.人乳腺癌裸鼠移植模型的建立[J].南京医科大学学报,2001,21(6):509-510.
    112. Price JE,Polyzos A,Zhang RD,et al. Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice[J]. Cancer Res, 1990, 50:717-721.
    113. Schreiber M,Muller W, Singh G, et al. Comparison of the effectiveness of adenovirus vectors expressing cyclin kinase inhibitors p16,p18,p19,p21 and p27 in inducing cell cycle arrest,apoptosis and inhibition of tumorigenicity. Oncogene, 1999,18:1663-1676.
    114. Turturro F. Effects of adenovirus-mediated expression of p27Kip1, p21Wafl and p16INK4A in cell lines derived from t(2;5) anaplastic large cell lymphoma and Hodgkin's disease[J]. Leukemia Lymphoma,2002,43: 1323-1328.
    115. Simon M. Conditional expression of the tumor suppressor p16 in a heterotopic glioblastoma model results in loss of pRb expression[J]. J Neurooncol, 2002,60:1-12.
    116. Zhang WW, Fang X,Mazur W, et al. High efficiency gene transfer and highlevel expression of wild-type p53 in human lung cancer cells mediated by recombinant adenovirus[J]. Cancer Gene Ther, 1994,1 (1):5-13.
    117.朱朝辉,林晨,曾甫清等.腺病毒介导p16和p53基因联合转导抑制人膀胱癌EJ细胞的增殖活性[J].临床泌尿外科杂志,2003,18(5):291-293.
    118. Ghaneh P, Greenhalf W, Humphrey S,et al. Adenovirus-mediated transfer of p53 and p16(INK4a) results in pancreatic cancer regression in vitro and in vivo[J]. Gene Ther, 2001,8:199-208.
    119. Osaki S,Nakanishi Y, Takayama K,et al. Alternation of drug chemosensitivity caused by the adenovirus-mediated transfer of the wild-type p53 gene in human lung cancer cells[J]. Cancer Gene Ther, 2000,7(2): 300-307.
    120. Horio Y, Hasegawa Y, Sekido Y, et al. Synergistic effects of adenovirus expressing wild-type p53 on chemosenitivity of non-small cell lung cancer cells[J]. Cancer Gene Ther, 2000,7(4):537-544.
    121.徐敏毅,林晨,梁萧等.基因治疗与化疗联合应用对人肺腺癌GLC-82细胞作用的实验研究[J].中华医学杂志,2000,80(9):689-693.
    122. Kawabe S,Munshi A,Zumstein LA,et al. Adenovirus-mediated wild-type p53 gene expression radiosensitizes non-small cell lung cancer cells but not normal lung fibroblasts[J]. Int J Radiat Biol, 2001,77(2): 185-194.
    123. Kawabe S,Roth JA,Wilson DR,et al. Adenovirus-mediated p16INK4a gene expression radiosensitizes non-small cell lung cancer cell in a p53-dependent manner[J]. Oncogene, 2000,19(4):5359-5366.
    124.付艳军,刘世喜,鲜均明.外源性p16基因与放疗联合治疗喉鳞癌的实验研究[J].四川大学学报(医学版).2004,35(2):209-211.
    1 .Chief editor Wu Jie-ping, Qiu Fa-zu.Huang Jiasi surgery. Beijing :People's Medical Publishing House,Sixth Ed 1999:831.
    2.Silva JM,Dominguez G,Gonzalez R,et al. Presence of tumor DNA in plasma of breast cancer patientsxlinico-pathological correlation[J]. Cancer Res, . 1999, 59(9):3252-3256.
    3.Norberg T,Lennerstand J,Inganas M,et al. Comparison between p53 protein measurements using the lumi-metric immu-assay and immuhis- tochemistry with detection of p53 mutation using cDNA sequencing in human breast tumor[J]. Int J Cancer, 1998, 79(6):376-383.
    4.Dutrilaux B,Gerbault-Seureau M,Zafrani B,et al. Characterization of chromosomal anomalies in human breast cancer[J]. Cancer Genet Cytogenet, 1990, 49 (10): 1990-1993.
    5.Lindblom A,Skong L,Rotstein S,et al. Loss of heterozygosity in familial breast carcinomas[J]. Cancer Res, 1993, 53(18):4356-4359.
    6.Cher LC,Kurisu W,Ljung BM,et al. Heterogeneity for allelie loss in human breast cancer[J]. JNatl Cancer Inst, 1992, 84(7):506-509.
    7.Wang SM,Ying HH. Gene therapy of breast cancer:today and tomorrow[J]. Chin MedJ, 2006, 86(l):55-58.
    8.Kamb A,Gruis NA,Weaver-Feldhaus J,et al. A cell cycle regulator potent- ially involved in genesis of many tumor types[J], Science, 1994,264:436-440.
    9.Levine AJ,Momand J,Finlay CA,et al. The p53 tumor suspression gene[J]. Nature, 1991,351(6326):453-456.
    10.Buchman Vl,Chummakov PM,Ninkina NN,et al. A variation in the structure of the protin-coding of the human p53 gene[J]. Gene, 1998,70:245-248.
    11.Rush EB,Merlo A,Mao LI,et al. Analysis of MTS1/CDK4 in female breast carcinomas[J]. Cancer Lett,1995,89(20):223-226
    12.Ponter PP,Flatow U,King CR,et al. Evolutionary conservation in the untranslated regions of actin mRNA:DNA sequence of a human beta-acting cDNA[J]. Nucleic Acids Res,1984,l2:l687-l692.
    13.Ding JH,Yu B. C-erbB-2、 p53 and nm23 gene and prognosis of breast cancer [J]. MedRecapit, 2006, l2(11):671-673.
    
    14.Bishop JM. Molecular themes in oncigenesis[J]. Cell, 1991,64:235-248.
    15.Serrano M,Hannon GJ,Beach D. A new regulary motif in cell-cycle control causing specific inhibition of cyclin D/CDK4[J]. Nature, 1993, 366:704-707.
    16.Nobori T,Miuea R,Wu DJ,et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers[J]. Nature, 1994, 368:753-756.
    17.Herman JG,Abouezzi Z,Borgen PI,et al. Inactivation of the CDKN2/pl6/MTS1 gene is frequently associated with aberrant DNA methylation all common human cancers[J]. Cancer Res, 1995, 55(18):4525-4530.
    18.Cao X,Wei QJ,Jiang YZ. p16 gene variation and its methylation at 5' CpG island in breast cancer[J]. Tumor, 2005, 25(4):366-369.
    19.Xu L,Sgroi D,Sterner CJ,et al. Mutation analysis of CDKN2(MTSl/p16ink4 ) in human breast carcinomas [J]. Cancer Res, 1994, 54(20):5256-5264.
    20.Brenner AJ,Aldaz CM. Chomosome 9p allelic loss and p16/CDKN2 in breast cancer and evidence of p16 inactivation in immortal breast epithelial cells[J]. Cancer Res, 1995, 55(13):2892-2895.
    21.Wang BZ,Zhu XS. pl6 gene deletion and point mutation in highly purified fresh breast neoplasm[J]. Chin JSurg, 2000, 38(1):17-18.
    22.Berns EM,Klijin JG,Smid M,et al. Infrequent CDKN2(MTS1/p16) gene alterations in human primary breast cancer[J]. Br J Cancer, 1995, 72(4):964-967.
    23.Quesnel B,Fenaux P,Philippe N,et al. Analysis of p16 gene detection and point mutation in breast carcinomas [J]. Oncogene, 1995,10(2):351-355.
    24.Rusa M,Peters G The pl6INK4a/CDKN2A tumor suppressor and relatives[J]. Biochim Biophys Acta, 1998,1378(2):F115-117.
    25.Luo JZ,Huang FZ. Development of relationship between pl6 prorein and breast cancer[J].JYoujiang Med College Nat, 2003, 25(4):562-563.
    26.Vander Riet P,Nawroz H,Hruban R. Frequent loss of chromosome 9p21-22 early in head and neck cancer progression[J]. Cancer Res, 1994, 54:1156-1158.
    27.Wang QS,Du J,Liu YJ. p16 gene deletion and 5' CpG island methylation in endometrial carcinoma[J]. Tumor, 2002, 22(3):213-219.
    28.Klump B,Hsieh CJ,Nehls O,et al. Methylation status of pl4ARF and p16INK4a as detected in pancreatic secretions[J]. Br J Cancer, 2003, 88(2):213-219.
    29.Woodcock DM,Linsenmeyer ME,Doherty JP,et al. DNA methylation in the promoter region of the p16(CDKN2/MTS-l/INK4A) gene in human breast tumours[J]. Br J Cancer, 1999, 79(2):251-256.
    30.Gao XS,Wan WH,Zhao AL,et al. Expression of p16 protein in human breast cancer and its biological significance[J].Prac Oncol J, 2000, 15(2):93-94.
    
    31.Guo HB,Zhang P,Wang B,et al. Expression of p16 protein and C-erbB-2 in human breast cancer and their biological significance p16[J]. Chin Gereol J, 2005, 25(6):718-719.
    32.Gao HL,Sun Z,Ji WH,et al. Significance of detecting p16 protein expression in diagnosing of breast cancer[J]. J Dalian Med Univ, 2006, 28(2):101-103.
    33.Guo SC,Liao SL Ding HY,et al. Expression of pl6 protein in breast cancer and relation to prognosis[J]. Chin J Pathol, 1997, 26(3): 175-176.
    34.Deng M,Gu YP. Expression of cyclinD and p16 protein in breast carcinoma[J]. J Jiangsu Univ(Med Sci Edi), 2002, 12(3):242-245.
    35.Zheng JM,Fan Q,Zhan RZ,et al. Expression of pl6 gene and its encodingprotein in human breast carcinoma[J]. China Oncol, 2000, 10(1): 11-14.
    36.Zhang HY,He X,Song XH. The expression of p16 and p53 protein and their significance in breast carcinoma[J]. Chin Lab Diag, 2005, 9(2):203-205.
    37.Zhou LL,Zhao JL,Yang JQ. Clinical significance of cyclin D and p16 expression in human breast cancer tissues[J]. Chin J Cancer Prev Treat, 2006, 13(3): 199-202.
    38.Chen JW,Wang PR Expression of cyclin Dl,pl6 and p53 in breast carcinoma and their significance [J]. Modern Prac Med, 2003, 15(11):680-683.
    39.Linzer DIH, Levine AJ. Characterization of a 54k dalton celluar SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinnoma cells[J]. Cell, 1979, 17(l):43-52.
    40.Harris AL. Mutation p53 the commonest genetic abnormality in human cancer[J]. J Pathol, 1990, 162(l):5-6.
    
    41.Weninberg RA. Tumor suppressor genes[J]. Science,1991,254:1138-1145.
    42.Marx I. New tumor suppressor on may rival p53[J]. Science, 1994, 264 (5157):344-345.
    43.Geisler S,Borresen-Dale AL,Johnsen H,et al. Tp53 gene mutation predict the response to neoadjuvant treatment with 5-Fluorouracil and mitomycin in locally advanced breast cancer[J]. Clin Cancer Res, 2003, 9(15): 5582-5588.
    44.Gottlieb TM,Oren M. p53 in growth control and neoplasia[J]. Biochim Biophys Acta, 1996,1287:77-102.
    45.Hirao A,Kong YY.Matsuoka SH,et al. DNA damage induced activation of p53 by the checkpoint CDK2[J]. Science, 2000,287(5459): 1824-1827.
    46.Fontanini G,Boldrini L,Calcinal A,et al. Thrombospondins and messenger RNA expression in breast cancer:Relationship with p53 alterations,angiogenic growth factors,and vascular density[J]. Clin Cancer Res, 1999, 5(3):156-161.
    47.Sotiriou C,Powles TJ,Dowsett M,et al. Gene expression profiles derived from fine needle aspiration correlate with response to systemic chemo-ththerapy in breast cancer[J]. Breast Cancer Res, 2002,4(3):R3.
    48.Silva JM.Gonzalez R,Dominguez G,et al. Tp53 gene mutation in plasma DNA of cancer patients[J]. Gene Chromosome Cancer, 1999,24(2): 160-161.
    
    49.Goel MM,Goel R,Mehrotra A,et al. Immunohistochemical location and correlation of p53 and PCNA expression in breast carcinomas[J]. Indian J Exp biol, 2000, 38(3):225-229.
    50.Schmitt FC,Leal C,Lopes C. p53 protein expression and nuclear DNA content in breast intraductal proliferations [J]. J Pathol, 1995,176(3):233-241.
    51.Poelman SM,Heimann R,Flming GF,et al. Invariant p53 immuno-staining in primary and recurrent breast cancer[J]. Eur J Cancer, 2004,40(1):28-32.
    52.Li L,Zhu S,Fang GE,et al.Exprssion and correlation of COX-2 and p53 in human breast cancer. Chin Cancer Prev Treat, 2006,13(4):287-289.
    53.Allred DC,Clark GM,Elledge R,et al. Association of p53 protein expression with tumor cell proliferation rate and clinical outcome in node-negative breast cancer[J]. J Natl Cancer Inst, 1993, 85:200-206.
    54.Vant Veer LJ,Dai H,van de Vijver MJ,et al. Gene expression profiling predicts clinical outcome of breast cancer[J]. Nature, 2002,415(6871):530-535.
    55.Cao YL,Wu XB,Wang YL,et al. Expression of c-erbB-2,p53,PCNA and nm23 protein in breast cancer and their clinical significance[J]. China Tumor Clin Rest, 2005, 12(3):208-211.
    56.Yu ZY,Yu JM,Wu TH,et al. Flow cytometry-pathology combined study of breast cancer[J].Chin J Oncol, 2005, 27(7):420-422.
    57.Du CZ,Li HP,Ma GL,et al. Clinical biology value of p53 overexpression in Chinese breast cancer by Meta analysis[J]. China Oncol, 2005, 15(6):514-517.
    58.Linderholm B,Lindh B,Tavelm B,et al. p53 and vascular-endothelial-growth-factor (VEGF) expression predicts outcome in 833 patients with premary breast caecinoma[J]. Int J Cancer, 2000,89(1):51-62.
    59.Sun H,Zhang LH,Yan QN,et al. Research on expression of p53,nm23 and PCNA in stage I breast cancer and their pathology[J]. China Tumor Clin, 2002, 29(2):82-86.
    60.Reed W.Hannisdal E. The prognostic value of p53 and C-cerbB-2 immuno-staining is overrated for patients with lymph node negative breast carcinoma:a multivariate analysis of prognostic factor in 613 patients with a follow-up of 14-30years[J]. Cancer, 2000,88(4):804-813.
    1.Bishop JM. Cancer: the rise of the genetic paradigm[J]. Genes Dev,1995, 9: 1309-1315.
    
    2.Romano G, Pacilio C, Giordano A. Gene transfer technology intherapy: currentapplications and future goals[J]. Stem Cells, 1999,17: 191-202.
    
    3.Dyer MR, Herrling PL. Progress and potential for gene-based medicine[J]. Mol Ther, 2000, 1:213-224.
    4.Hilleman MR, Werner JH. Recovery of new agents from patients with acute respiratory illness[J]. Proc Soc Exp Biol Med, 1954, 85: 183-188.
    5.Shenk T. Adenoviridae: The Viruses and Their Replication[M]. In: Knipe DM, Fields BN ,Howley PM ,Eds. Fields virology. Lippincott-Raven, Philadelphia, Pa 1996, 3~(rd) ed.2111-2148.
    6.Hitt MM , Graham FL . Adenovirus vectors for human gene therapy[J]. Adv Virus Res, 2000,55: 479-505.
    7.Zakhartchouk A,Connors W,vanKessel A,et al. Bovine adenovirus type3 containing heterologous protein in the C-ter minus of minor capsid protein IX [J]. Virology, 2004,320:291-300.
    8.Anderson C W, Young ME , Flint SJ. Characterization of the adenovirus 2 virion protein, mu[J]. Virology, 1989,172:506-512.
    9.Matthews DA, Russell WC. Adenovirus protein-protein interactions: molecular parameters governing the binding of protein VI to hexon and the activation of the adenovirus 23K protease[J]. J Gen Virol, 1995,76:1959-1969.
    10.Weber J. Genetic analysis of adenovirus type 2. III. Temperature sensitivity of processing viral proteins[J]. J Virol, 1976,17:462-471.
    11.Webster A, Russell S, Talbot P,et al. Characterization of the adeno-virus proteinase: substrate specificity [J]. J Gen Virol, 1989,70: 3225-3234.
    12.Horwitz MS. Adenovirus[M]. In: Knipe DM, Fields BN, Howley PM,Eds. Fields virology. Lippincott-Raven, Philadelphia, Pa, 3rd ed. 1996,2149-2171.
    13.Wu QH,Tikoo SK.Altered tropism of recombinant bovine adenovirus type3 expressing chimeric fiber[J]. Virus Res, 2004,99:9-15
    14.Bergelson JM, Cunningham JA, Droguett G,et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5[J]. Science, 1997, 275: 1320-1323.
    15.Tomko RP, Xu R, Philipson L. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses[J]. Proc Natl Acad Sci USA, 1997,94: 3352-3356.
    16.Kirby I, Davison E, Beavil AJ,et al. Mutations in the DG loop of adenovirus type 5 fiber knob protein abolish high-affinity binding to its cellular receptor CAR[J]. J Virol, 1999,73:9508-9514.
    
    17.Santis G, Legrand V, Hong SS,et al. Molecular determinants of adeno-virus serotype 5 fibre binding to its cellular receptor CAR[J]. J Gen Virol, 1999,80: 1519-1527.
    18.Kirby I, Davison E, Beavil AJ,et al. Identification of contact residues and definition of the CAR-binding site of adenovirus type 5 fiber protein[J]. J Virol,2000,74: 2804-2813.
    19.Hong SS, Karayan L, Tournier J,et al. Adenovirus type 5 fiber knob binds to MHC class I al domain at the surface of human epithelial and B lymphoblastoid cells[J]. EMBO J,1997,16: 2294-2306.
    20.Arnberg N, Edlund K, Kidd AH,et al. Adenovirus type 37 uses sialic acid as a cellular receptor[J]. J Virol,2000,74: 42-48.
    
    21 .Stewart PL, Chiu CY, Huang S,et al. Cryo-EM visualization of an exposed RGD epitope on adenovirus that escapes antibody neutralization[J]. EMBO J, 1997,16: 1189-1198.
    22.Wickham TJ, Mathias P, Cheresh DA,et al. Integrins αv β3 and αv β5 promote adenovirus internalization but not virus attachment[J]. Cell, 1993,73: 309-319.
    23.Mathias P, Galleno M, Nemerow GR. Interactions of soluble recombinant integrin αv β5 with human adenoviruses[J]. J Virol, 1998,72: 8669-8675.
    24.Meredith JEJr, Winitz S, Lewis JM, et al. The regulation of growth and intracellular signaling by integrins[J]. Endocrinol Rev, 1996,17:207-220.
    25.Li E, Stupack D, Bokoch GM,et al. Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases[J]. J Virol, 1998,72: 8806-8812.
    26.Rauma T, Tuukkanen J, Bergelson JM,et al. rab5 GTPase regulates adenovirus endocytosis[J]. J Virol, 19997,3: 9664-9668.
    27.Greber UF, Webster P, Weber J,et al. The role of the adenovirus protease on virus entry into cells[J]. EMBO J, 1996,15: 1766-1777.
    28.Leopold PL, Kreitzer G, Miyazawa N,et al. Dynein- and microtubule-mediated translocation of adenovirus serotype 5 occurs after endosomal lysis[J]. Hum Gene Ther, 2000,11:151-165.
    29.Suomalainen M, Nakano MY, Keller S,et al. Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus[J]. J Cell Biol, 1999,144: 657-672.
    30.Angeletti PC ,Engler JA. Adenovirus preterminal protein binds to the CAD enzyme at active sites of viral DNA replication on the nuclear matrix[J]. J Virol, 1998,72: 2896-2904.
    31.Fredman JN, Engler JA. Adenovirus precursor to terminal protein interacts with the nuclear matrix in vivo and in vitro[J]. J Virol, 1993,67: 3384-3395.
    
    32.Hay JG, Shapiro N, Sauthoff H,et al. Targeting the replication of adenoviral gene therapy vectors to lung cancer cells: the importance of the adenoviral Elb-55kD gene[J].Hum Gene Ther,1999,10: 579-590.
    33.Deryckere F, Burgert HG. Tumor necrosis factor alpha induces the adenovirus early 3 promoter by activation of NF-kappaB[J]. J Biol Chemi, 1996, 271: 30249-30255.
    34.de Stanchina E, McCurrach ME, Zindy F,et al. E1A signaling to p53 involves the pl9 (ARF) tumor suppressor [J]. Genes Dev,1998,12: 2434 -2442.
    35.Honda R, Yasuda H. Association of p19 (ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53[J]. EMBO J, 1999,18: 22-27.
    36.Tao W, Levine AJ. p19 (ARF) stabilizes p53 by blocking nucleocytoplasmic shuttling of Mdm2[J]. Proc Natl Acad Sci USA, 1999,96: 6937-6941.
    37.Weber JD, Taylor LJ, Roussel MF,et al. Nucleolar Arf sequesters Mdm2 and activates p53[J]. Nat Cell Biol, 1999,1: 20-26.
    38.Han J,Sabbatini P,Perez D,et al.The E1B 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein[J]. Genes Dev, 1996,10:461-477.
    39.Grand RJ, Parkhill J, Szestak T,et al. Definition of a major p53 binding site on Ad2ElB58K protein and a possible nuclear localization signal on the Ad12ElB54K protein[J]. Oncogene,1999,18: 955-965.
    40.Bischoff JR, Kirn DH, Williams A,et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells[J]. Science, 1996,274,373-376.
    
    41.Ridgway PJ, Hall AR, Myers CJ,et al. p53/Elb58kDa complex regulates adenovirus replication[J]. Virology, 1997,237: 404-413.
    42.Horridge JJ, Leppard KN. RNA-binding activity of the E1B 55-kilodalton protein from human adenovirus type 5[J]. J Virol, 1998,72:9374-9379.
    43.Tollefson AE, Ryerse JS, Scaria A, et al. The E3-11.6-kDa adenovirus death protein (ADP) is required for efficient cell death: characterization of cells infected with adp mutants[J]. Virology, 1996,220: 152-162.
    44.Bennett EM, Bennink JR, Yewdell JW,et al. Cutting edge: adenovirus E19 has two mechanisms for affecting class I MHC expression[J]. J Immunology, 1999, 162: 5049-5052.
    45.Tatsis N,Ertl HCJ. Adenoviruses as vaccine vector[J]. Mol Ther, 2004, 10(4): 616-629.
    46.Weigel S, Dobbelstein M. The nuclear export signal within the E4orf6 protein of adenovirus type 5 supports virus replication and cytoplasmic accumulation of viral mRNA[J]. J Virol,2000,74: 764-772.
    47.Li X,Babiuk LA,Tikoo Sk. Analysis of porcine adenovirus type3[J]. Virus Res, 2004,104:181-190.
    48.Kaplan JM, Armentano D, Sparer TE,et al. Characterization of factors involved in modulating persistence of transgene expression from recombinant adenovirus in the mouse lung[J]. Hum Gene Ther,1997,8: 45-56.
    49.Mannervik M, Fan S, Strom AC,et al. Adenovirus E4 open reading frame 4-induced dephosphorylation inhibits E1 A activation of the E2 promoter and E2F-1-mediated transactivation independently of the retinoblastoma tumor suppressor protein[J]. Virology, 1999,256: 313-321.
    50.Boyer JL, Ketner G. Genetic analysis of a potential zinc-binding domain of the adenovirus E4 34k protein[J]. J Biol Chemi, 2000,275: 14969-14978.
    51 .Konig C, Roth J, Dobbelstein M. Adenovirus type 5 E4orf3 protein relieves p53 inhibition by ElB-55-kilodaltonprotein[J]. J Virol, 1999,73: 2253-2262.
    52.Sandy P, Gostissa M, Fogal V,et al. p53 is involved in the p120E4F-mediated growth arrest[J]. Oncogene, 2000, 19: 188-199.
    53.Hay RT, Freeman A, Leith I,et al. Molecular interactions during adenovirus DNA replication[M]. In: Doerfler W, Bohm P,eds. The Molecular Repertoire of Adenoviruses. Berlin:Springer, 1995. 31-48.
    54.Lutz P, Kedinger C. Properties of the adenovirus IVa2 gene product, an effector of late-phase-dependent activation of the major late promoter[J]. J Virol, 1996,70: 1396-1405.
    55.Lutz P, Rosa-Calatrava M, Kedinger C. The product of the adenovirus intermediate gene IX is a transcriptional activator[J]. J Virol, 1997,71: 5102-5109.
    
    56.Li X,Tikoo SK. Promoter activity of left inverted terminal repeat and downstream sequences of porcine adenovirus type3[J]. Virus Res, 2005,109:51-58.
    57.Hearing P, Samulski RJ, Wishart WL,et al. Identification of a repeated sequence element required for efficient encapsidation of the adenovirus type 5 chromosome[J]. J Virol, 1987,61: 2555-2558.
    58.Tollefson AE, Hermiston TW, Lichtenstein DL,et al. Forced degradation of Fas inhibits apoptosis in adenovirus-infected cells[J]. Nature, 1998,392: 726-730.
    59.Graham FL, Prevec L. Adenovirus-based expression vectors and recombinant vaccines[J]. Biotechnology, 1992,20: 363-390.
    60.Graham FL, Smiley J, Russell WC,et al. Characteristics of a human cell line transformed by DNA from human adenovirus type 5[J]. J Gen Virol, 1977,36: 59-72.
    61 .Fallaux FJ, Kranenburg O, Cramer SJ, et al. Characterization of 911, a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors[J]. Hum Gene Ther, 1996, 7: 215-222.
    62.Fallaux FJ, Bout A, van der Velde I,et al. New helper cells and matched early region 1 -deleted adenovirus vectors prevent generation of replication-competent adenoviruses[J]. Hum Gene Ther, 1998,9: 1909-1917.
    63.Bangari DS.Shukla S,Mittal SK. Comparative transduction efficiencies of human and monhuman adenovirus vector in human,murine,and porcine cell in culture[J]. Bioche Biophys Res Commun, 2005,327:960-966.
    64.Worgall S, Wolff G, Falck-Pedersen E,et al. Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration[J]. Hum Gene Ther, 1997, 8: 37-44.
    65.Michou AJ, Santoro L, Christ M,et al. Adenovirus-mediated gene transfer: influence of transgene, mouse strain and type of immune response on persistent transgene expression[J]. Gene Ther, 1997,4: 473-482.
    66.Yang Y, Su Q, Wilson J. Role of viral antigens in destructive cellular immune responses to adenovirus vector-transduced cells in mouse lungs[J]. J Virol, 1996,70: 7209-7212.
    67.Yang Y, Li Q, Ertl HCJ, et al. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses[J]. J Virol, 1995,69: 2004-2015.
    68.Amalfitano A. Production and characterization of improved adenovirus vectors with the El, E2b, and E3 genes deleted[J]. J Virol, 1998, 72: 926-933.
    69.Kochanek S. High-capacity adenoviral vectors for gene transfer and somatic gene therapy[J]. Hum. Gene Ther, 1999,10: 2451-2459.
    70.Russell WC. Update on adenovirus and its vectors[J]. J Gen Virol, 2000,81: 2573-2604.
    71.Steinwaerder DS, Carlson CA,et al. Generation of adenovirus vectors devoid of all viral genes by recombination between inverted repeats[J]. J Virol, 1999, 73: 9303-9313.
    72.Polo JM, Dubensky TW. Virus-based vectors for human vaccine application[J]. Drug Discov Today, 2002,7:719-727.
    73.Li X,Tikoo SK. Chaeacterization of cis-Acting packaging motifs of porcine adenovirus type3[J]. Virus res, 2004,104:207-214.
    74.Moraes MP,Mayr GA.Grubman MJ. pAd5-Blue:diret ligation system for engineering recombinant adenovirus constructs[J]. Biotechniques, 2001, 31: 1056-1064.
    75. Hama S,Heike Y,Narse I,et al. Adenovirus-mediated pl6 gene transfer prevents drug-induced cell death through Gl arrest in human glioma cells[J]. Int J Cancer, 1998,77:47-54.
    76.McGorory WJ,Bautista DS,Graham FL. A simple technique for the rescue of early regionl mutation into infection human adeno-virus type 5[J]. Virology , 1988, 163:614-617.
    1.Chiba I,Takahashi T,Nau MM,et al. Mutations in the p53 gene are frequent in primary,resected non-small cell lung cancer[J]. Oncogene, 1990,5:1603-1610.
    2.Kratzke K,Greatens TM,Rubins JB,et al. Rb and p16INK4a expression in resected non-small cell lung tumour[J]. Cancer Res, 1996,56:3415-3420.
    3.Ohashi M,Kanai F,Ueno H,et al. Adenovirus mediate p53 tumour suppressor gene therapy for human gastric cancer cell in vitro and in vivo[J].Gut,1999, 44 (3): 366-371.
    4.Merkle C.Fritsche M,Mundt M,et al. Transcriptional regulation and indution of apoptosis implication for the use of monomeric p53 variants in gene therapy[J]. Gene Thre, 1998,5:1631-1638.
    5.Craig C,Kim M,Ohri E,et al. Effects of adenovirus-mediated p16INK4A expression on cell cycle arrest are determined by endogenous p16 and Rb status in human cancer cells[J]. Oncogene, 1998,16:265-269.
    6.Roberts JR,Allison DC,Donehower RC,et al. Development of polypolidization in taxol-resistant human leukemia cell in vitro[J]. Cancer Res,1990,50(3): 710-716.
    
    7.Donaldson KL.Goolsby G,Kiener PA,et al. Activation of p34(cdc2) coincident with taxol-induced apoptosis[J]. Cell Growth, 1994,5(6):1041-1050.
    8.McCloskey DE,Kaufmann SH,Prestigiacomo LJ,et al. Palitaxel induces programmed cell death in MDA-MB-486 human breast cancer cells[J]. Clin Cancer Res, 1996,2(5):847-854.
    9.McNeish IA,Bell SJ,Lemoine NR. Gene therapy progress and prospects: cancer gene therapy using tumour suppressor genes[J]. Gene Thre, 2004, 11: 497-503.
    10.Xu Shu-yun, Bian Ru-lian, Chen Xiu. Pharmacology experiment methodology[M].Third Ed. Beijing:People's Medical Publishing House. 1997, p:1768-1769
    11.Blaese RM, Carter CS,Clerici M,et al. Treatment of severe comined immunodeficiency due to adenosine deaminase deficiency with autologous lymphocytes transduced with a human DAD gene[J]. Hum Gene Ther, 1990, 1:327-362.
    12.Blaese RM,Culver KW,Miller AD,et al. T lymphocyte-directed gene therapy for ADA-SCID:initial trial results after 4 years[J]. Science, 1995, 270:475-480.
    13.Kay MA,Manno CS,Ragni MV,et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector[J]. Nat Genet, 2000,24:257-261.
    14.Cavaz-Zana-Calvo M,Hacein-Bey S,de Saint Basile G,et al.Gene therapy of human severe combined immunodeficiency(SCID)-Xl disease[J]. Science, 2000, 288: 669-672.
    15.Khuri FR,Nemunaitis J,Ganly I,et al. A Control trial of intratumoral ONYX-015,a selectively replicating adenovirus,in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer[J]. Nat Med, 2000,6:879-885.
    16.Isner JM,Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization[J]. J Clin Invest,1999,103:1231 -1236.
    17.Gerdes B,Ramaswamy A,Ziegler A,et al.p16(INK4a)is a prognostic marker in resected ductal pancreatic cancer- an analysis of p16(INK4a),p53, MDM2,and Rb[J].Ann Surg, 2002,235:51-59.
    18.Bishop JM.Cancenthe rise of the genetic paradigm[J]. Genes Dve, 1995, 9: 1309-1315.
    19.Rosenwald A,Wright G,Chan WC,et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma[J]. N Engl J Med, 2002,346:1937-1947.
    20.Khan J,Wei JS,Ringer M,et al.Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks[J]. Nat Med, 2001, 7:673-679.
    
    21.Anderson WF. Gene therapy scores against cancer[J]. Nat Med, 2000,6:862-863.
    22.Vile RG,Russell SJ,Lemoine NR. Cancer gene therapy:hard lessons and new courses[J]. Gene Ther, 2000, 7:2-8.
    23.Zeng ZJ,Li ZB,Liu SQ,et al. Retrovirus-mediated tk gene therapy of implanted human breast cancer in nude mice under the regulation of Tet-On[J]. Cancer Gene Ther, 2006,13:290-297.
    24.Jordan M,Wurm F. Transfection of adherent and suspended cells by calcium phosphate[J]. Methods, 2004, 33(2):136-143.
    25.Dyer MR,Herrling PL. Progress and potential for gene-based medicine[J]. Mol Ther, 2000,1:213-224.
    26.Zhang W. Development and application of adenoviral vectors for gene therapy of cancer[J]. Cancer Gene Ther, 1999,6:113-138.
    27.Hitt MM.Graham FL. Adenovirus vectors for human gene therapy[J]. Adv Virus Res, 2000, 55:479-505.
    28.Wiewrodt R,Amin K,Kiefer M,et al.Adenovirus-mediated gene transfer of enhanced Herpes simplex virus thymidine kinase mutants improves prodrug-mediated tumor cell killing[J]. Cancer Gene Ther, 2003,10(5):353-364.
    29.Volper C,Kochanek S. Adenoviral vectors for gene transfer and therapy [J]. J Gene Med,2004,6:S164-S171.
    30.Anders M,Hansen R,Ding RX,et al. Disruption of 3D tissue integrity facilitates adenovirus infection by deregulating the coxsackievirus and adenovirus receptor [J]. PNAS, 2003,100(4):1943-1948.
    31 .Martin SJ,Green DR. Apoptosis as a goal of cancer therapy[J]. Curr Opin Oncl, 1994,6:616-619.
    32.Kerr JF,Wyllie AH,Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implication in tissue kinetics[J]. Br J Cancer, 1972,26:239-257.
    
    33.Scott WL,Athena WL. Apoptosis in cancer[J]. Carcinogenesis, 2000,21 (3): 485-495.
    34.Thompson CB. Apoptosis in the pathogenesis and treatment of disease[J]. Science, 1995,267:1456-1462.
    
    35.Nagdta S. Apoptosis by daeth factor[J]. Cell, 1997,88:355-365.
    36.Kerr JF,Winterford CM,Harmon BV. Apoptosis-its significance in cancer and cancer therapy[J]. Cancer, 1994,73:2013-2026.
    37.Leist M,Jaattela M. Four deaths and funeral from caspases to alternative mechanisms[J]. Nat Rev Moi Cell Biol, 2001,2(8):589-598.
    38.Van Cruchthen S,Van Den Broeck W. Morphological and biochemical aspects of apoptosis,oncosis and necrosis[J]. Anat Histol Embryol, 2002,31(4):214-223.
    39.Rocco JW,Sidransky D. p16(MTS-l/CDKN2/INK4a) in cancer progression [J]. Exp Cell Res, 2001,264:42-55.
    
    40.Sherr CJ. Cancer cell cycle[J]. Science, 1996,274:1672-1677.
    41.Carnero A,Hudson JD,Price CM,et al. p16(INK4a) and p19(ARF) act in overlapping pathways in cellular immortalization[J]. Nat Cell Biol, 2000, 2: 148-155.
    42.Kwonga FM,Johnny CT,Gopesh S,et al. Inactivation mechamisms and growth suppressive effects of p16INK4a in Asian esophageal squamous carcinoma cell lines[J]. Cancer Letters, 2004,208:207-213.
    43.Sherr CJ,McCormick F. The Rb and p53 pathways in cancer[J]. Cancer Cell, 2002,2:103-112.
    44.Invanchuk Sm,Mondal S.Dirks PB,et al. The INK4/ARF locus:role in cell cycle control and apoptosis and implications for glioma growth[J]. J Neurooncol, 2001,51:219-229.
    45.Sharpless NE,Castrillon DH,De Pinho RA,et al. Both products of the mouse INK4a/ARF locus suppress melanoma formation in vivo[J]. Oncogene, 2003, 22: 5055-5059.
    46.Merlar A,Herman J,Mao L,et al.5'CpG island methylation is associated with transcriptional silencing of the tumor suppressor p16/CDK2/MTSl in human cancers[J]. Nat Med, 1995,1:686-692.
    47.Jin X.Nguyen D,Zhang W,et al. Cellcycle arrest and inhibition of tumor cell proliferation by the p16 gene mediated by an adenovirus vector [J]. Cancer Res, 1995,55:3250-3252.
    48.Schrump D,Chen G,Consuli U,et al. Inhibition of esophageal cancer proliferation by adenovirally mediated delivery of p16[J]. Cancer Gene Ther, 6:357-364.
    49.Gotoh A,Kao C,Ko S,et al. Cytotoxic effects of recombinant adenovirus p53 and cell cycle regulator gene(p21 and p16) in human prostate cancer[J]. J Urol, 1997,158:636-641.
    50.Kobayashi S,Shirasawa H,Sashiyama H,et al. pl6~(INK4a) expression adenovirus vector to suppress pancreas cancer cell proliferation[J]. Clin Cancer Res, 1999,5:4182-4185.
    51.Fueyo J,Gomez-Manzano C,Yung W,et al. Adenovirus-mediated p16/CDK2 gene transfer induces growth arrest and modifies the transformed phenotype of glioma cells[J]. Oncogene, 1996,12:103-110.
    52.Modesitt SC.Ramirez P,Zu Z,et al. In vitro and in vivo adenovirus-mediated p53 and p16 tumor supprsssor therapy in ovarian cancer[J]. Clin Cancer Res, 2001,7:1765-1772.
    53.Lu Y,Zhang J,Beech DJ,et al. p16 downregulates VEGF and inhibits angiogenesis in breast cancer cells[J]. Cancer Ther, 2003,1:143-151.
    54.Duan JM,Chen Z,Liu PH,et al. Wild-type p16INK4a suppresses cell growth,telomerase activity and DNA repair in human breast cancer MCF-7 cells[J]. Int J oncol, 2004,24:1597-1605.
    55.Granger MP,Wright WE,Shay JW. Telomerase in cancer and aging[J]. Crit Res Oncol Hematol, 2002,41:29-40.
    56.Fuxe J,Akusjarvi G,Goike HM,et al. Adenovirus-mediated overexpression of p15(INK4B) inhibits human glioma cell growth,induces replicative senescence,and inhibits telomerase activity similarly to p16(INK4a) [J]. Cell Growth Differ, 2000,11:373-384.
    57.Campbell I,Magliocco A,Moyana T,et al. Adenovirus-mediated p16~(INK4) gene transfer significantly suppresses human breast cancer growth[J]. Cancer Gene Ther, 2000,7:1270-1278.
    58.Sandig V,Brand K,Herwig S,et al. Adenovirally transferred pl6INK4/CDKN2 and p53 genes cooperate to induce apoptotic tumor cell death[J]. Nat Med, 1997, 3: 313-319.
    59.Frizelle SP,Grim J,Zhou J,et al. Re-expression of pl6INK4a in mesothelioma cells results in cell cycle arrest,cell death,tumor suppres-sion and tumor regression[J]. Oncogene, 1998,16:3087-3095.
    60.Kim M,Katayose Y,Rojanala L,et al. induction of apoptosis in p16~(INK4A) mutant cell lines by adenovirus-mediated overexpression of p16~(1NK4A) protein[J]. Cell Death & Differ, 2000,7:706-711.
    
    61.Vosden KH. p53:death star[J]. Cell, 2000,103:691-694.
    62.Kimura T, Gotoh M, Nakamura Y,et al. hCDC4b, a regulator of cyelin E, as a direct transcriptionaltarget of p53[J]. Cancer Sci 2003, 94: 431-436.
    63.Gartel AL,Tyner AL. The Role of the Cyelin-dependent Kinase Inhibitor p21 in Apoptosis[J]. Mol Cancer Ther. 2002,1: 639-649
    64.Rocha S,Martin AM,Meek DW,et al. p53 represses cyclin Dl transcription through down regulation of Bcl-3 and inducing increased association of the p52 NF-kappaB subunit with histione deacetylase 1[J]. Mol Cell Biol, 2003,23(13):4713-4727.
    65.Chin PL, Momand J, Pfeifer GP. In vivo evidence for binding of p53 to consensus binding sites in the p21 and GADD45 genes in response to ionizing radiation[J]. Oncogene. 1997,15(l):87-99.
    66.Innocente SA, Abrahamson JL, Cogswell JP, et al. p53 regulates a G2 checkpoint through cyclin B 1 [J]. Proc Natl Acad Sci USA, 1999, 96:2147-2152.
    67.Chun ACSJin DY. Transcriptional regulation mitotic checkpoint gene MADI by p53[J]. J Biol Chem, 2003,278(39):37439-37450.
    68.Muller M, Wilder S, Bannasch D,et al. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs[J]. J Exp Med, 1998, 188: 2033-2045.
    69.Wu GS,Burns TF,McDonald ER, et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene[J]. Nat Genet, 1997,17:141-143.
    70.Attardi L, Reczek EE, Cosmas C, et al. PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family[J]. Genes Dev. 2000: 14:704-718.
    71.Cregan SP,Arbour N,MacLaurin JG,et al. p53 activation domain 1 is esstial for PUMA upregulation and p53-mediated neuronal cell death. J Neurosci, 2004, 24 (44): 10003-10012.
    72.MacLachlan TK,E1-Deiry WS. Apoptotic threshold is lowered by p53 transactivation of caspase-6[J]. Proc Natl Acad Sci USA, 2002,99: 9492-9497.
    
    73.Sax JK,Fei P,Murphy ME,et al. BID regulation by p53 contributes to chemosensitivity[J]. Nat Cell Biol, 2002,4:842-849.
    74.Villunger A,Michalak EM,Coultas L,et al. p53- and drug-induced apoptotic responses mediated by BH3-0nly proteins puma and noxa[J]. Science, 2003, 302 (5647): 1036-1038.
    75.Matsuda K,Yoshida K,Taya Y, et al. p53AIP1 regulates the mitochondrial apoptotic pathway[J]. Cancer Res, 2002,62:2883-2889.
    76.0htsuka T,Ryu H,Minamishima YA,et al.ASC is a Bax adaptor and regulates the p53-Bax mitochondrial apoptosis pathway[J]. Nat Cell Biol, 2004,6(2):121-128.
    77.Bouvard V,Zaitchouk T,Vacher M,et al.Tissue and cell-specific expression of the p53-target genes: bax, fas,mdm2 and wafl/p21, before and following ionising irradiation in mice[J]. Oncogene, 2000,19(5):649-660.
    78.Robles AI,Bemmels NA,Foraker AB,et al. APAF-1 is a transcriptional target of p53 in DNA damage-induced apoptosis[J]. Cancer Res, 2001,61(18): 6660-6664.
    79.Trinei M,Giorgio M,Cicalese A,et al. A p53-p66Shc signalling pathway controls intracellular redox status,levels of oxidation-damaged DNA and oxidative stress induced apoptosis[JJ. Oncogene, 2002,21:3-872-3878.
    80.Migliaccio E,Giorgio M,Mele S,et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals[J]. Nature, 1999,402: 309-313.
    81.Polyak K,Xia Y,Zweier JL,et al. A model for p53-induced apoptosis[J]. Nature(Lond.), 1997,389: 300-305.
    82.Kho PS,Wang Z,Zhuang L,et al. p53-regulated transcriptional program associated with genotoxic stress-induced apoptosis[J]. J Biol Chem, 2004, 279 (20): 21183-21192.
    83.Hoffman WH,Biade S,Zilfou JT,et al. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53[J]. J Biol Chem, 2002,277(5): 3247-3257.
    84.Taha TA,Osta W,Kozhaya L,et al. Down-regulation of sphingosine kinase-1 by DNA damage: dependence on proteases and p53[J]. J Biol Chem, 2004, 279(19):20546-20554.
    85.Chipuk JE,Kuwana T,Bouchier-Hayes L,et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis[J]. Science. 2004,303(5660):1010-1014
    86.Leu JI,Dumont P,Hafey M,et al. Mitochondrial p53 activates Bak and cause disruption of a Bak-Mcll complex[J]. Nat Cell Biol, 2004,6(5):443-450.
    87.Bennett M,Macdonald K,Chan SW,et al. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis[J]. Science, 1998,282(5387):290-293.
    88.Ding HF,Lin YL,McGill G,et al. Essential role for caspase-8 in transcription-independent apoptosis triggered by p53[J]. J Biol Chem, 2000, 275:8905-38911.
    89.Shiraishi K,Kato S,Han SY,et al. Isolation of temperature-sensitive p53 mutations from a comprehensive missense mutation library [J]. J Biol Chem, 2004, 279 (1):384-355.
    90.Eastham JA,Grafton W,Martin CM,et al. Suppression of primary tumor growth and the progression to metastasis with p53 adenovirus in human prostate cancer[J]. J Urol, 2000,164:814-819.
    91.Yan Z,Li W,Niu RF,et al. The effects of recombinant adenovirus-mediated wild type p53cDNA on human colorectal cancer cell lines with different p53 status[J]. Chin J Cancer Biother, 2003, 10(1):42-47.
    92.Puter BM,Bramson JL,Addison CL,et al. Combination therapy with interleukin-2 and wtp53 expressed by adeno viral vector potentiates tumor regression in a murine model of breast cancer[J]. Hum Gene Ther, 1998,9: 707-718.
    93.Jin Y,Yan CH,Wu Y,et al. Research on expression and control of p16 and p21 by wild-type p53 gene in two lung adenocarcinoma cell lines[J]. Chin J Med Genet, 2003, 20(5):409-412.
    94.Katayose Y,Kim M,Rakkar AN,et al. Promoting apoptosis:a novel activity associated with the cyclin-dependent kinase inhibitor p27[J]. Cancer Res, 1997,57:5441-5445.
    95.Bai XY,Che FX,Li JS,et al. Effects of adenovirus-mediated pl6 and p53 genes transfer on apoptosis and cell cycle of lung carcinoma cells[J]. Chin J Pathol, 2000, 29(5):354-358.
    96.Rui HB,Ye DF,Zhuo GS,ey al. Inhibition of K562 cell proliferation by wild type p16 and p53 genes cotransfection[J]. J Experi Hematol, 2002, 10(5):400-403.
    97.Xu MY,Lin C,Liang X,et al.The experimental studies of Ad-p53 and Ad-pl6 in combination on human lung adenocarcinoma cell line GLC-82[J]. Chin J Cancer Biother, 2000, 7(2):86-89.
    98.Liu GY,Shao ZM,Shen ZZ. Molecular biological mechanism of paclitaxel- induced apoptosis in breast cancer cells[J]. Chin Oncol, 2000, 10(l):93-96.
    99.Boise LH,Gonzalez-Carcia M,Postema K,et al. bcl-x,a bcl-2-related gene that function as a dominant regulator of apoptotic cell death[J]. Cell, 1993, 74 (4):597-608.
    
    100.Blagosklonny MV,Schulte T,Nfuyen P,et al. Taxol-induced apoptosis and phosphorylation of bcl-2 protein involves c-Raf-1 and represents a novel c-Raf-1 signal transduction pathway [J]. Cancer Res, 1996,56(8): 1851-1854.
    101.Srivastava RK, Srivastava AR,Korsmeyer SJ,et al. involvement of microtubules in the regulation of bcl-2 phosphorylateion and apoptosis through cyclin AMP-dependent protein kinase[J]. Mol Cell Biol, 1998,18(6):3509-3517. 102.Sumantram VN,Ealovega MW,Nunez G,et al. Overexpression of bcl-xL sensitizes MCF-7 cells to chemotherapy-induced apoptosis[J]. Cancer Res, 1995, 55(12):2507-2510.
    103.Barboule N,Chadebech P,Baldin V,et al. Involvement of p21 in mitoticexit after paclitaxel treatment in MCF-7 breast adenocarcinoma cell line[J]. Oncogene, 1997,15(23):2867-2875.
    104.Krishna R,Mayer LD. Multidrug resistance(MDR) in cancer. Mechanisms, reveral using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs[J], Eur J Pharm Sci, 2000,11(4):265-283.
    105.Johnson RA,Ince TA,Scotto KW. Transcriptional repression by p53 throughdirect binding to a novel DNA element[J]. J Biol Chem, 2001,276 (29):27716-27720.
    106.Cascallo M,Calbo J,Gelpi JL,et al. Modulation of drug cytotoxicity by reintroduction of wt p53 gene(AdCMV-p53) in human pancreatic cancer [J]. Cancer Gene Ther, 7:54-556.
    107.Kawakami Y. Adenovirus-mediated p16 gene transfer changes the sensitivity to taxanes and vinca alkaloids of human cancer cells[J]. Anticancer Res, 2001,21:2537-2545.
    108. Wang Y,Ren GS. Overview the establishment of breast cancer xenograft model in athymic mice[J]. J Chongqing Med Univ, 2003, 28(3):398-401.
    109.Couillard S,Gutman M,Labrie F,et al. Effect of combined treatment with pure antiestrogen EM-800 and radio-therapy on the growth of human ZR-75-1 breast cancer xenografts in nude mice[J]. Cancer Res, 1999,59: 4857-4863.
    110.Clarke R. Human breast cancer cell line xenografts as models of breast cancer-The immunobiologies of recipient mice and the characteristics of several tumorigenic cell lines[J]. Breast Cancer Res Treat, 1996,39:69-86.
    111.Zhen LL,Wu ZY.Fan P,et al. Establishment of human breast carcinoma model in nude mice[J]. Acta Univ Med Nanjing, 2001,21(6):509-510.
    
    112.Price JE.Polyzos A,Zhang RD,et al. Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice[J]. Cancer Res, 1990, 50:717-721.
    113.Schreiber M,Muller W,Singh G,et al. Comparison of the effectiveness of adenovirus vectors expressing cyclin kinase inhibitors pl6,pl8, pl9,p21 and p27 in inducing cell cycle arrest,apoptosis and inhibition of tumorigenicity. Oncogene, 1999,18:1663-1676.
    114.Turturro F. Effects of adenovirus-mediated expression of p27Kip1, p21 Waf1 and p16INK4A in cell lines derived from t(2;5) anaplastic large cell lymphoma and Hodgkin's disease[J]. Leukemia Lymphoma,2002,43:1323-1328.
    115.Simon M. Conditional expression of the tumor suppressor p16 in a heterotopic glioblastoma model results in loss of pRb expression[J]. J Neurooncol, 2002,60:1-12.
    116.Zhang WW,Fang X,Mazur W,et al. High efficiency gene transfer and high-level expression of wild-type p53 in human lung cancer cells mediated by recombinant adenovirus[J]. Cancer Gene Ther, 1994,1(1):5-13.
    117.Zhu ZH,Lin C,Zeng FQ,et al. Adenovirous-mediated transfer of p53 and pl6 results in human bladder cancer cell EJ regression in vitro and in vivo[J]. J Clin Urol, 2003, 18(5):291-293.
    118.Ghaneh P,Greenhalf W,Humphrey S,et al. Adenovirus-mediated transfer of p53 and p16(INK4a) results in pancreatic cancer regression in vitro and in vivo[J]. Gene Ther, 2001,8:199-208.
    
    119.Osaki S,Nakanishi Y,Takayama K,et al. Alternation of drug chemosensitivity caused by the adenovirus-mediated transfer of the wild-type p53 gene in human lung cancer cells[J]. Cancer Gene Ther, 2000,7(2):300-307.
    120.Horio Y,Hasegawa Y,Sekido Y,et al. Synergistic effects of adenovirus expressing wild-type p53 on chemosenitivity of non-small cell lung cancer cells[J]. Cancer Gene Ther, 2000,7(4):537-544.
    121.Xu MY,Lin C,Liang X,et al. Experiment study on combination of Ad-p53 with CDDP or As_2O_3[J]. Chin Med J, 2000, 80(9):689-693.
    122.Kawabe S,Munshi A,Zumstein LA,et al. Adenovirus-mediated wild-type p53 gene expression radiosensitizes non-small cell lung cancer cells but not normal lung fibroblasts[J]. Int J Radiat Biol, 2001,77(2): 185-194.
    123.Kawabe S.Roth JA,Wilson DR,et al. Adenovirus-mediated p16INK4a gene expression radiosensitizes non-small cell lung cancer cell in a p53-dependent manner[J]. Oncogene, 2000,19(4):5359-5366.
    124.Fu YJ,Liu SX,Xian JM. Combination of adenovirous p16(INK4a) gene therapy and ionizing radiation for laryngeal squamous cell carcinoma. [J]. J Sichuan Univ(Med Sci Edi). 2004,35(2):209-211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700