T型沸石膜的制备及渗透蒸发应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机物分离在石油化工、精细化工、医药工程等众多领域中是必不可缺的过程。传统分离工艺往往能耗高、效率低。渗透蒸发膜分离作为一种高效、节能、环保的技术被认为是将来替代传统分离工艺的潜在技术。工业应用中许多有机物精制过程发生在酸性条件下,如医药化工中乙醇、丙醇精制过程,酯类产晶的制备等。高度亲水性的NaA沸石膜是用于有机溶剂脱水过程理想的沸石膜,目前已实现工业化,然而其耐酸性极差。T型沸石膜是一种耐酸的亲水性沸石膜,将其用于有机溶剂脱水过程、尤其是酸性环境中有机物分离过程,表现出良好的渗透蒸发性能。因此T型沸石膜具有广阔的应用前景。然而,研究发现成熟的制备路线仍是目前T型沸石膜研究过程中亟待解决的问题。
     晶种法是指在载体表面预先引入一层晶种,再晶化成膜。优质的晶种层是晶种法制备高质量沸石膜的关键,因此涂晶技术也成了目前研究热点之一。微波合成法是近些年发展起来的一种新的沸石膜制备路线,能有效缩短合成时间,制备的膜薄而致密,从而有效提高分离性能。
     基于上述研究思路,本论文首先合成出不同尺寸的T型分子筛,用于修饰载体和作为晶种诱导成膜;然后详细研究了凝胶体系中传统水热合成、清液体系中微波合成等,以探索出成熟的T型沸石膜合成路线;还考察了在廉价大孔载体上采用有效涂晶方法制备出优质的晶种层和高性能的T型沸石膜。合成的T型沸石膜采用XRD、SEM等手段表征。主要研究成果如下:
     (1)采用无模板剂配方25Si02:A1203:6.5Na20:225K20:350H20,制备出5-6μm的T型分子筛:在含模板剂配方18.2Si02:A1203:4.2Na20:1.5K20:0.82TMAOH:212.7H20下考察了合成条件对分子筛形貌的影响,制备出不同尺寸的T型分子筛。
     (2)在凝胶体系中采用传统水热合成法制备T型沸石膜,考察了合成条件对膜的影响。在n(Na20+K20)/n(Si02)=0.35、n(H20)/n(Si02)=30、373K和30h条件下合成的T型沸石膜在348K下分离90wt.%乙醇/水,通量为1.67kg-m-2·h-1,分离系数是1115。
     (3)采用两步变温热浸渍法在廉价大孔载体管上引入高质量的晶种层。合成的T型沸石膜在348K下分离90wt.%乙醇/水,通量高达2.12kg·m-2·h-1,分离系数大于1000,且该法具有一定重复性。对合成的膜的渗透蒸发性能进行了详细研究。
     (4)采用微波合成法制备T型沸石膜。在423K下微波加热4h制备的T型沸石膜:348K下分离90wt.%乙醇/水,通量为1.36kg·m-2·h-,分离系数大于1000。
Dehydration of organics for highly purified organic products is essential in the fine chemicals, petrochemical and pharmaceutical chemicals. The conventional separation process is energy intensive and low efficiency. Pervaporation is considered as the potential technology to replace conventional separation process, because of it's high separation efficiency, low energy consumption, and low pollution. Dehydration of a large varieties of organic liquids in the actual industrial applications is under acidic conditions, such as purification of ethanol and isopropanol used as solvents in pharmaceutical chemicals and dehydration of ester products. Zeolite NaA membranes have become ideal materials on dehydration of organic by pervaporation due to its high hydrophilicity. However, zeolite NaA membranes can not be applied for dehydration of organic liquids containing an acid because of their instability in acidic media. Zeolite T membrane is acid-resistant while remaining hydrophilic, which has excellent pervaporation performance for dehydration of organic liquids. Zeolite T membrane has the potential for dehydration of organic by pervaporation in the presence of organic acid, such as esterification hybrid process and alcohol dehydration in fermentation engineering. Therefore, zeolite T membrane has a very broad application prospect. However, it's found that mature preparation routes are still the urgent problems in study of zeolite T membrane.
     Secondary growth method is composed of deposition of zeolite seed crystals to form a seed layer and then crystallization of the seeded support to form a polycrystalline zeolite layer. The high quality of seed layer is the key to prepare high quality zeolite membranes by secondary growth method. So, seeding technology has become one of the hot spots. Microwave hydrothermal method is becoming the popular method for preparation of zeolite membranes in the recent years. It can shorten the synthetic time effectively, and the membrane prepared by microwave heating is thin and compact, and permeation performance has been improved.
     Based on the above research ideas, this paper firstly explored different sizes of zeolite T were synthesized to modify the support surface and be used as seeds. Then, zeolite T membranes were prepared by conventional hydrothermal method in gel solutions and microwave hydrothermal method in clear solutions respectively, to explore the mature preparation routes. Also, an effective seeding method was designed on the inexpensive macroporous support. The as-synthesized zeolite T membranes were characterized by X-ray diffraction(XRD) and scanning electron microscope(SEM). The main research results are briefly introduced as follows:
     (1) Zeolite T with4~6μm was synthesized by the formulation25SiO2:l Al2O3:6.5Na2O:2.25K2O:350H2O. Different sizes of zeolite T were synthesized by changing synthesis conditions with the formulation18.2SiO2:1Al2O3:4.2Na2O:1.5K2O:0.82TMAOH:212.7H2O.
     (2) Zeolite T membrane was synthesized by conventional heating in gel solutions. The influence of synthesis conditions were investigated. When zeolite T membrane was synthesized under conditions that include n(Na2O+K2O)/n(SiO2)=0.35, n(H2O)/n(SiO2)=30,373K and30h, the performance of as-synthesized membranes for90wt.%ethanol/water mixture was high with the flux up to1.67kg·m-2·h-1and the separation factor of1115.
     (3) The high quality of seed layer was obtained by two-stage varying-temperature hot dip-coating seeding method on the inexpensive macroporous support. The as-synthesized membranes have high performance with the water flux up to2.12kg·m-2·h-1and the separation factor was more than1000. The two-stage varying-temperature hot dip-coating seeding method has good reproducibility. The pervaporation performance of as-synthesized membrane was studied in detail.
     (4) Zeolite T membrane was synthesized by microwave heating in clear solutions. The influence of synthesis conditions were investigated. The as-synthesized membranes have high performance with the water flux up to1.36kg·m-2·h-1and the separation factor was more than1000at348K.
引文
[1]LIPNIZKI F, FIELD RW, TEN PK. Pervaporation-based hybrid process:a review of process design. J Membr Sci.1999; 153:138-210.
    [2]X. FENG, R. Y. M. HUANG. Liquid separation by membrane pervaporation; a review, Ind. Eng. Chem. Res.36 (1997) 1048, and referencestherein.
    [3]冯书博.膜分离技术的发展及在工业中应用[J].广西轻工业,2008(6):30-31.
    [4]张雄福,殷德宏,王金渠,等.用喷涂晶种法合成ZSM-5沸石膜及其影响因素考察[J].催化学报,2000,21(5):451-455.
    [5]黄仲涛,钟邦克,曾昭槐,等.无机膜技术及其应用[M].北京:中国石化出版社,1999.
    [6]HSIEH H P. Inorganic Membranes. AIChE Symp. Ser. New York.1988.84 (261):1.
    [7]徐南平,邢卫红,赵宜江.无机膜技术及应用[M].北京:化学工业出版社,2003.
    [8]BURGGRAAF A J, COT L. Fundamentals of Inorganic Membrane Science and Technology. Netherland:Elsevier Science B.V.; 1996.
    [9]邓娟利,胡小玲,管萍,等.分离用无机膜的制备方法及研究展望[J].材料导报,2005,19(10):40-43.
    [10]BHAVE R R. Inorganic Membrane:Synthesis, Characteristics and Application. New York:Van Nostrand Reinhold,1991:155-157.
    [11]赵基钢,刘纪昌,孙辉,等.无机膜的制备及应用[J].化工科技,2005,13(5):68-72.
    [12]POUET M F, GRASMICK A. Electrocogulation and flotation:applications in crossflow microfiltration [J]. Filtr. Sep.,1994,31:269-272.
    [13]赵宜江,邢卫红.陶瓷微滤膜澄清中药提取液的研究[J].水处理技术,1999,25(4):199-203.
    [14]黄肖容,隋贤栋.梯度氧化铝膜对生活污水的净化处理[J].膜科学与技术,2001,21(1):52-55.
    [15]DAVISME, LOBO R F. Zeolite and Molecular Sieve Synthesis [J]. Chem. Mater.,1992, 4 (4):756-768.
    [16]BEIN T. Synthesis and Applications of Molecular Sieve Layers and Membranes [J]. Chemistry of Materials,1996,8(8):1636-1653.
    [17]BU X, FENG P, STUCKY G D. Large-Cage Zeolite Structures with Multidimensional 12-Ring Channels [J]. Science,1997,278(5346):2080-2085.
    [18]PERSSON A E, SCHOEMAN B J, STERTE J, et al. The synthesis of discrete colloidal particles of TPA-silicalite-1 [J]. Zeolites,14(7):557-567.
    [19]TOSHEVA L, VALTCHEV V P. Nanozeolites:Synthesis, Crystallization Mechanism, and Applications [J]. Chemistry of Materials,2005,17 (10):2494-2513.
    [20]WRIGHT C T, PAUL D R. Gas sorption and transport in UV-irradiated polyarylate opolymers based on tetramethyl bisphenol-A and dihydroxybenzophenone [J]. Journal of Membrane Science,1997,124(2):161-174.
    [21]WERNICK D L, OSTERHUBER E J. Permeation through a single crystal of Zeolite NaX [J]. Journal of Membrane Science,1985,22(1):137-146.
    [22]DUVAL J M, FOLKERS B, MULDER M H V, et al. Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents [J]. Journal of Membrane Science,1993,80(1):189-198.
    [23]TANTEKIN-ERSOLMAZ S B, ATALAY-ORAL C, TATLIER M, et al. Effect of zeolite particle size on the performance of polymer-zeolite mixed matrix membranes [J]. Journal of Membrane Science,2000,175(2):285-288.
    [24]XU X, YANG W, LIU J, et al. Synthesis of a high-permeance NaA zeolite membranes by microwave heating [J]. Adv. Mater.,2000,12(3):195-198.
    [25]XU X, YANG W, LIU J, et al. Synthesis of NaA zeolite membrnaes from clear solution [J]. Micropor. Mesopor. Mater.,2001,43(3):299-311.
    [26]TISCARENO-LECHUGA F, TELLEZ C, MENENDEZ M, et al. A novel device for preparing zeolite-A membranes under a centrifugal force filed [J]. J. Membr. Sci.,2003, 212(1-2):135-146.
    [27]HUANG A, LIN Y, YANG W. Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding [J]. J. Membr. Sci.,2004,245(1-2): 41-51.
    [28]YIN X, ZHU G, YANG W. Stainless-steel-net-supported zeolite NaA membrane with high permeance and high permselectivity for oxygen over nitrogen [J]. Adv. Mater.,2005, 17(16):2006-2010.
    [29]LI Y, LIU J, YANG W. Formation mechanism of microwave synthesized zeolite membranes [J]. J. Membr. Sci.,2006,281(1-2):646-657.
    [30]SATO K, NAKANE T. A high reproducible fabrication method for industrial production of high flux NaA zeolite membrane [J]. J. Membr. Sci.,2007,301(1-2):151-161.
    [31]HUANG A, YANG W. Hydrothermal synthesis of uniform and dense NaA zeolite membrane in the electric field [J]. Micropor. Mespor. Mater.,2007,102(1-3):58-69.
    [32]NOACK M, KOLSCH P, DITTMAR A, et al. Proof of the ISS-concept for LTA and FAU membranes and their characterization by extended gas separation studies [J]. Micropor. Mesopor. Mater.,2007,102(1-3):1-20.
    [33]KUZNIATSOVA T A, MOTTERN M L, CHIU W V, et al. Synthesis of thin, oriented zeolite A membranes on a Macroporous support [J]. Adv. Funct. Mater.,2008,18(6):952-958.
    [34]NISHIYAMA N, UEYAMA K, MATSUKATA M, et al. A defect free mordenite membranes synthesized by vapor phase transport method [J]. J. Chem. Soc. Chem. Commun., 1995(19):1967-1968.
    [35]PIEARA E, SALMON M A, CORONAS, et al. Synthesis, characterization and separation properties of a composite mordenite/ZSM-5/chabazite hydrophilic membrane [J]. J. Membr. Sci.,1998,149(1):99-114.
    [36]TAVOLAR A, JULBE A, GUIZARD C, et al. Synthesis and characterization of a mordenite membrane on an α-Al2O3 tubular support [J]. J. Mater. Chem.,2000,10:1131-1137.
    [37]LI S, TUAN V A, FALCONER J L, et al. Effect of zeolite membrane structure on the separation of 1,3-propanediol from glycerol by pervaporation [J]. Chem. Mater., 2001,13(5):1865-1873.
    [38]HOLMES S, MARKET C, PLAISTED R J, et al. A novel method for the growth of silicalite membranes on stainless steel support [J]. Chem. Mater.,1999,11(11):3329-3332.
    [39]XOMERITAKIS G, NAIR S, TSAPATSIS M. Transport properties of a alumina-supported MFI membranes made by secondary (seeded) growth [J]. Micropor. Mesopor. Mater., 2000,38(1):61-73.
    [40]LIN X, KITA H, OKAMOTO K. A novel method for the synthesis of high performance silicalite membranes [J]. Chem. Commun.,2000,1889-1890.
    [41]ALGIERI C, GOLEMME G, KALLUS S, et al. Preparation of thin supported MFI membranes by in situ nucleation and secondary growth [J]. Micropor. Mesopor. Mater. 2001,47(2-3):127-134.
    [42]HEDLUND J, STERTE J, ANTIIONIS M, et al. High-flux MFI membranes [J]. Micopor. Mesopor. Mater.,2002,52(3):179-189.
    [43]YUAN W, LIN Y S, YANG W. Molecular sieving MFI-type zeolite membranes for pervaporation separation of xylene isomers [J]. J. Am. Chem. Soc.,2004,126(15): 4776-4777.
    [44]HASEGAWA H, IKEDA T, NAGASE T, et al. Preparation and characterization of silicalite-1 membranes prepared by secondary growth of seeds wi th different crystal sizes [J]. J. Membr. Sci.,2006,280(1-2):397-405.
    [45]GAO H, ZHU G, LI H, et al. Hierarchical growth of large-scale ordered zeolite silicalite-1 membranes with high permeability and selectivity for recycling CO2 [J]. Angew. Chem.,2006,118 (42):7211-7214.
    [46]KITA H, HORITA K F T, ASAMURA H, et al. Preparation of faujasite membranes and their permeation properties [J]. Sep. Purif. Technol.,2001,25(1-3):261-268.
    [47]LJ S, TUAN V A, FALCONER J L, et al. Separation of 1,3-propanediol from aqueous solution using pervaporation through an X-type zeolite membrane [J].Ind. Eng. Chem.Res.,2001,40(8):1952-1959.
    [48]LI S, TUAN V A, FALCONER J L, et al. X-type zeolite membranes:preparation, characterization and pervaperation performance [J]. Micropor. Mesopor. Mater., 2002,53(1-3):59-70.
    [49]COUTINHO D, BALKUS K J. Preparation and characterization of zeolite X membranes via pulsed-laser deposition [J]. Micropor. Mesopor. Mater.,2002,52(2):79-91.
    [50]HASEGAWA Y, WATANABLE K, KUSAKABLE K, et al. The separation of CO2 using Y-type zeolite membranes ion-exchanged with alkali metal cations [J]. Sep. Purif. Technol., 2001(22-23):319-325.
    [51]JEONG B H, SOTOWA K I, KUSAKABLE K, et al. Catalytic dehydrogenation of cyclohexane in a FAU-type membrane reactor [J]. J. Membr. Sci.,2003,224(1-2):1151-158.
    [52]NISHIYAMA N, UEYAMA K, MATSUKATA M, et al. Synthesis of FER membrane on an alumina support and its separation properties [J]. Stud. Surf. Sci. Catal.,1997,105: 2195-2202.
    [53]MATSUFUJI T, NISHIYAMA N, UEYAMA K, et al. Crystallization of ferrierite (FER) on a porous alumina supported by a vapor-phase transport method [J]. Micropor. Mesopor. Mater.,1999,12(4-6):293-303.
    [54]SEIJGER G B F, PALMARO S G, KRISHNA K, et al. In suit preparation of ferrierite coatings on structured metal supports [J]. Micropor. Mesopor. Mater.,2002,56(1): 33-45.
    [55]YANG W, ZHANG B, LIU X. Synthesis and characterization of SAPO-5 membranes on porous α-Al2O3 substrate[J]. Micropor. Mesopor. Mater.,2009,117(1-2):391-394.
    [56]LI S, ALVARADO G, NOBEL R D. Effects of impurities on CO2/CH4, separation though SAPO-34 membranes [J]. J. Membr. Sci.,2005,251:59-66.
    [57]HONG M, FALCONER J L, NOBEL R D. Modifacation of zeolite membranes for H2 separation by catalytic cracking of methyldiethoxysilane [J]. Ind. Eng. Chem. Res.,2005, 44(11):4035-4041.
    [58]LI S, MARTINEK J G, FALCONER J L, et al. High-pressure CO2/CH4, separation using SAPO-34 membranes [J]. Ind. Eng. Chem. Res.,2005,44(9):3220-3228.
    [59]LI S, FALCONER J L, NOBLE R D. Improved SAPO-34 membranes for CO2/CH4, separations [J]. Adv. Mater.,2006,18(19):2601-2603.
    [60]HONG M, LI S, FALCONER J L, et al. Hydrogen purification using a SAPO-34 membrane [J]. J. Membr. Sci.,2008,307(2):277-283.
    [61]HONG M, LI S, FUNKE H F, et al. Ion-exchanged SAPO-34 membranes for light gas separations [J]. Micropor. Mesopor. Mater.,2007,106(1-3):140-146.
    [62]YU M, LI S, FALCONER J L, et al. Reversible H2 storage using a SAPO-34 zeolite layer [J]. Micropor. Mesopor. Mater.,2008,110(2-3):579-582.
    [63]LI S, FALCONER J L,NOBEL R D.SAPO-34 membranes for Co2/CH4 separations:efFect of Si/Al ratio[J]. Micropor. Mesopor. Mater.,2008, 110(2-3):310-317.
    [64]CARREON M A,LI S,FALCONER J L,et al.SAPO-34 seeds and membranes prepared using multiple strucyure directing agents [J]. Adv. Mater.,2008,20(4):729-732.
    [65]CARREON M A,LI S,FALCONER J L, et al.Alumina-supported SAPO-34 membranes for CO2/CH4 separation [J]. J. Am. Chem. Soc.,2008,130(16):5421-5413.
    [66]YAO J, ZENG C, ZHANG L, et al. Vapor phase transport synthesis of SAPO-34 films on cordierite honeycombs [J]. Mater. Chem. Phys.,2008,112(2):637-640.
    [67]BERNAL M P, XOMERITAKIS G, TSAPATSIS M. Tubular MFI zeolite membranes made by secondary (seeded)growth[J]. Catalysis Today,2001,67(1-3):101-107.
    [68]LAI R,GAVALAS G R.Surface Seeding in ZSM-5 Membrane Preparation[J]. Industrial & Engineering Chemistry Research,1998,37(11):4275-4283.
    [69]HUANG A, LIN Y S, YANG W. Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding[J]. Journal of Membrane Science, 2004,245(1-2):41-51.
    [70]CHEN H, LI Y, YANG W. Preparation of silicalite-l membrane by solution-filling method and its alcohol extraction properties[J]. Journal of Membrane Sciencc, 2007,296(1-2):122-130.
    [71]张雄福,王金渠,殷德宏,等.用喷涂晶种法合成ZSM-5沸石膜及其影响因素考察[J].催化学报,2000,21(5):451-454.
    [72]杨国辉,张雄福,刘海鸥,等.一种简单组装纳米沸石粒子层的方法及其二次法成膜研究[J].高等学校化学学报,2006,27(9):1593-1598.
    [73]BERENGUER-MURCIA A, MORALLON E, CAZORLA-AMOROS D, et al. Preparation of thin silicalite-1 layers on carbon materials by electrochemical methods [J]. Microporous and Mesoporous Materials,2003,66(2-3):331-340.
    [74]徐晓春,杨维慎,刘杰,等.微波场中NaA型分子筛膜的快速合成[.J].科学通报,2000,45(8):835-838.
    [75]ZHOU H,LI Y,YANG W.Microwave-assisted hydrotermal synthesis of a&d-oriented zeolite T membranes and their pervaporation properties[J].Separation and Puri-fication Technology,2009,65:164-172.
    [76]LI Y,YANG W.Micorwave synthesis of zeolite membranes:A review [J].J. Membr. Sci.,2008,316(1-2):3-17.
    [77]LI Q,CREASER D, STERTE J. The nucleation period for TPA-silicalite-1 crystallization determined by a two-stage varying-temperature synthesis [J]. Sep.Purif. Technol.,1999,31 (1-2):141-150.
    [78]LI Y, ZHANG X, WANG J. Preparation for ZSM-5 membranes by a two-stage varying-temperature synthesis[J].Sep.Purif.Tcchnol.,2001,25 (1-3):459-466.
    [79]李永生,王金渠,施剑林等.变温晶化合成高渗透率ZSM-5沸石膜[J].高等学校化学学报,2002,23(10):1857-1859.
    [80]WU J C S, GERDES T E, PSZCZOLKOWSKI J L, et al. Dehydrogenation of ethylbenzene to styrene using ceramic memrbanes as reactor [J]. Sep. Sci. Technol.,1990,25 (13-15):1489-1510.
    [81]程万里,单寅生,朱中南.钯膜反应器中乙苯脱氢反应研究,Ⅰ实验研究[J].石油学报(石油加工),1997,13(1):7-12.
    [82]程万里,单寅生,朱中南.钯膜反应器中乙苯脱氢反应研究,Ⅱ氢气在钯膜中渗透规律的研究[J].石油学报(石油加工),1997,13(2):105-110.
    [83]WAGNER L W, MATHESON N H, HEISEY R F, et al. Use of a silicone tubing sensor to control methanol concentration during fed batch fermentation of pichia pastoris [J]. Biotechnol. Tech.,1997,11(11):791-795.
    [84]SZABO N F, DU H, AKBAR S A, et al. Microporous zeolite modified yttria stabilized zirconia (YSZ) sensors for nitric oxide (NO) determination in harsh environments [J]. Sensor. Actuat. B,2002,82(2-3):142-149.
    [85]MOOS R, MULLER R, PLOG C, et al. Selective ammonia exhaust gas sensor for automotive applications [J]. Sensor. Actuat. B,2002,83(1-3):181-189.
    [86]JUNG K T, CHU Y, HAAM S, et al. Synthesis of mesoporous silica fiber using spinning method [J]. J. Non-Crystalline Solds,2002,298(2-3):193-201.
    [87]WANG Z, WANG H, MITRA A, et al. Pure-Silica zeolite low-k dielectric thin films [J]. Adv. Mater.,2001,13 (10):746-749.
    [88]P. A. KOBER. J. Am. Chem. Soc..39. p.944 (1917).
    [89]E. G.HESSILER, et al.. Science,124. p.77(1956).
    [90]WEE S-L, TYE C-T, BHATIA S. Membrane separation process--Pervaporation through zeolite membrane [J]. Separation and Purification Technology,2008,63(3):500-516.
    [91]NOMURA M, YAMAGUCHI T, NAKAO S I. Ethanol/water transport through silicalite membranes [J]. Journal of Membrane Science,1998,144(1-2):161-171.
    [92]KAPTEIJN F, BAKKER W J W, ZHENG G, et al. Permeation and separation of light hydrocarbons through a silicalite-1 membrane:Application of the generalized Maxwell-Stefan equations [J]. The Chemical Engineering Journal and the Biochemical Engineering Journal,1995,57(2):145-153.
    [93]NISHIYAMA N, UEYAMA K, MATSUKATA M. Gas permeation through zeolite-alumina composite membranes [J]. AIChE Journal,1997,43(S11):2724-2730.
    [94]NOMURA M, YAMAGUCHI T, NAKAO S I. Transport phenomena through intercrystalline and intracrystalline pathways of silicalite zeolite membranes [J]. Journal of Membrane Science,2001,187(1-2):203-212.
    [95]SHAH D, KISSICK K, GHORPADE A, et al. Pervaporation of alcohol-water and dimethyl formamide-water mixtures using hydrophilic zeolite NaA membranes:mechanisms and experimental results [J]. Journal of Membrane Science,2000,179(1-2):185-205.
    [96]SOMMER S, MELIN T. Influence of operation parameters on the separation of mixtures by pervaporation and vapor permeation with inorganic membranes. Part 1:Dehydration of solvents [J]. Chemical Engineering Science,2005,60(16):4509-4523.
    [97]CICHOCKI A, KOSCIELNIAK P. Experiental designs applied to hydrothermal synthesis of zeolite ERI+OFF(T) in the Na20-K20-A1203-Si02-H20 system:Part 2. Regular study[J]. Microporous Mesoporous Mater,2000,41:241-245.
    [98]WANG, X. Q., XU, R. R. Chem. J. Chin. Univ.1984,5,759 (Chinese)(王杏乔,徐如人,高等学校化学学报,1984,5,759.)
    [99]HOWDELL M G. Synthsis of offretite:Part 1. Using various Organic compounds as templates [J]. Zeolites,1987,7:255-259.
    [100]CAVALCANTE JR C L, EIC M, OCCELLI M L, et al. Diffusion of n-paraffins in offretite-eronite type zeolites[J]. Zeolites,1995,15:293-307.
    [101]ANDERSON M W, OCCELLI M L, KLINOWSKI J. Carbon-13 and proton magicangle-spinning NMR studies of the conversion of methanol over offretite/erionite intergrowths[J]. J Phys Chem,1992,96:388-392.
    [102]吕新春,赵荣,孙尧俊,等.一种新型共生沸石(T-L)的合成与表征[J].化学学报,2005,63(11):961-963.
    [103]刘逸珉,刘君生.合成毛沸石的研究[J].石油炼制,1981(11):14-17.
    [104]CHEN N Y, SCHLENKER J L, GARDWOOD W E, et al. TMA-offretite:Relationship between structural and catalytic proppreties[J]. Journal of Catalysis,1984,86:24-31.
    [105]OCCELLI M K,INNES R A, POLLACK S S, et al. Quaternary ammonium cation effects on crytallization of offretite-erionite type zeolites:Part 1. Synthesis and catalytic properties[J]. Zeolite,1987,7:265-271.
    [106]CICHOCKI A, KOSCIELNIAK P. Experiental designs applied to hydrothermal synthesis of zeolite ERI+OFF(T) in the Na20-K20-A1203-Si02-1120 system:Part 2. Regular study [J]. Microporous Mesoporous Mater,1999,29:369-382.
    [107]CUT Y, KITA H,OKAMOTO K I. Zeolite Tmembrane: preparation, characterization, pervaporation of water/organic liquid mixtures and acid stability [J]. J. Membr. Sci. 2004,236:17-27
    [108]KITA H, OKAMOTO K I, YAMAMURA T, et al. Fuel Chem. Division Preprints,2003,35:438
    [109]周荣飞,陈祥树,徐南平等.清液体系中高性能T型沸石分子筛膜的合成[J].硅酸盐学报,2007,9:1270-1272.
    [110]TANAKA K, YOSHIKAWA R, OKAMOTO K I, et al. Application of zeolite membranes to esterification reactions [J]. Catal. Today.,2001,67:121-125.
    [111]TANAKA K, YOSHIKAWA R, OKAMOTO K I, et al. Application of zeolite T membrane to vapor-permeation-aided esterification of lactic acid with ethanol [J]. Chem. Eng. Sci.,2002,57:1577-1584.
    [112]CUI Y, KITA H, OKAMOTO K I. Preparation and gas separation properties of zeolite T membrane [J]. Chem. Commun.,2003,2154-2155.
    [113]CUI Y, KITA H, OKAMOTO K I. Preparation and gas separation performance of zeolite T membrane [J]. J. Mater. Chem.,2004 (14):924-932.
    [114]MIRFENDERESKI S M, MAZAHERI T, MOHAMMADI T, et al. CO2 and CH4 permeation through T-type zeolite membranes:Effect of synthesis parameters and feed pressure [J]. Sep. Purif. Technol.,2008,61:317-323.
    [115]MIRFENDERESKI S M, SADRZADEH M, MOHAMMADI T. Effect of synthesis parameters on single gas permeation through T-type zeolite membranes [J]. Int. J. Greenhouse Gas Control,2008(2):531-538.
    [116]MIRFENDERESKI S M, MOHAMMADI T. Investigation of hydrothermal synthesis parameters on characteristics of T type zeolite crystal structure [J]. Powder Technology,2011(206):345-352.
    [117]WANG XING-QIAO(王杏乔),XU RU-REN(徐如人)[J]. Gaodeng Xuexiao Huaxue Xuebao (Chem. J. Chin. Univer.),1984,5:759-764
    [118]VEDAS,NISHI MURAM, KOIZUMI. Synthesis of offretite-erionite type zeolite from solution phase [J]. Stud Surf Sci Catal,1985,24:105-109.
    [119]周荣飞,林晓,徐南平.合成条件对T型分子筛晶化的影响[J].石油学报(石油加工),2005,(21)6
    [120]XIONGFU ZHANG, HAIOU LIU, KING LUN YEUNG. Influence of seed size on the formation and microstructure of zeolite silicalite-1 membranes by seeded growth [J]. Materials Chemistry and Physics,2006,96:42-50
    [121]MASAKAZUKONDOA, HIDETOSHIKITA. Permeation mechanism through zeolite NaA and T-type membranes for practical dehydration of organic solvents[J]. Journal of Membrane Science,2010,361:223-231
    [122]MIAOYU, RICHARDD. NOBLE, ANDJOHNL. FALCONER. Zeolite Membranes:Microstructure Characterization and Permeation Mechanisms [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2011,44:1196-1206
    [123]TAKAKIS., KITA H., OKAMOTO K.I.. Symp. Ser. Soc. Chem. Eng. [C], Jpn.,66 (1998)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700