断裂问题中的哈密顿体系方法及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,多功能材料和智能材料越来越受到关注。电磁材料就是其中一种。利用这些材料的性质,许多智能结构及产品被用于工程结构中。基于该类材料特殊的力电磁能量转换特性,许多仪器和设备被设计,并在实际工程中得到广泛应用,如石油,化工,航空航天,军事,制造业,以及核工业等。这些仪器和设备在实际运行中,往往会受到力、电、磁、热耦合荷载作用。此外,由于受制造和运行环境的影响,会导致裂纹的出现,如疲劳裂纹等。裂纹往往会造成结构直接破坏和失效,因此,对其研究是完全必要的。特别是对精密仪器设备中的功能材料(如电磁材料等)和结构的断裂行为研究尤为重要。
     研究和揭示材料和结构的断裂机理有利于提高设计和制造水平,由此可以有效的减少事故发生,并尽可能地延长设备的使用寿命。然而,研究该类问题需要系统的考察力电磁热相互作用效应和工况环境。虽然目前有很多相关的理论和方法,但仍需完善和改进,特别是对相关电磁材料的断裂行为研究方法等。从现有的方法看,其中大部分皆基于拉格朗日体系下的一类变量的控制方程。由此将面对高阶微分方程的求解和数值处理方法,这就给问题求解带来了相当的困难。可喜的是钟万勰院士首次将哈密顿体系引入到弹性力学和应用力学中,开创了一种全新的理念和方法,并建立了基于哈密顿体系的研究问题平台。在钟院士的带领下,他的科研团队对许多领域和研究方向系统和深入的展开探讨,并取得丰硕的研究成果。这些研究成果也为本论文的研究提供基础和依据。
     本博士论文以带有边缘裂纹的弹性材料、压电材料和电磁弹性材料为研究对象,对裂纹尖端的奇异性和强度因子进行系统分析。并利用辛本征解展开方法和辛共轭正交关系,得到对偶变量和强度因子的解析表达式。该方法能克服传统半逆法的弱点,给出一种直接方法和系统方法。取得的研究结果为人们研究断裂问题提供了全新的认识。具体研究成果如下:
     1.平面和空间弹性体的应力强度因子研究
     在哈密顿体系下,位移和广义应力互为对偶变量。通过研究以混合变量描述的对偶正则方程,得到含断裂问题的辛本征解。在辛空间中构造出完备的辛本征解空间。哈密顿体系下的辛本征解可以分为两类:零本征值本征解和非零本征值本征解。零本征值本征解即是该问题对应的圣维南问题的解,代表了该问题对应的等效边界条件意义下的解。非零本征值本征解则包括圣维南原理所覆盖的解,即体现边缘效应和局部效应的解。研究工作以平面问题作为突破口,进而在空间问题展开。由于辛本征解之间存在辛共轭正交关系,问题的解可由辛本征解得展开得到,从而获得问题解得解析表达式。应力强度因子和T应力可由特殊的辛本征解和其系数直接表示。进一步利用边界条件和辛共轭正交关系,可确定所有展开级数的系数。这样Ⅰ型,Ⅱ型和Ⅲ型应力强度因子(KⅠ, KⅡ, KⅢ)同时被直接得到。此直接方法突显出更加方便和有效。利用边界积分等手段,将圆形外边界拓宽到非规则边界的裂纹问题,直接得到的半解析结果和数值结果。研究工作为进一步讨论动力问题提供了依据和基础。这些研究成果已经发表在Engineering Fracture Mechanics (2009,76(12):1866-1882), International Journal of Mechanical Sciences (2010,52(7):892-903)和Journal of Sound and Vibration (2011,330:1005-1017)。
     2.含边缘裂纹压电材料的力/电强度因子和奇异性分析
     将哈密顿体系求解方法应用于含边缘裂纹压电材料奇异性分析中。以—空间坐标模拟时间,采用弹性势能(应变能)和压电能表示拉格朗日函数和变分原理,得到广义位移(位移和电势)和广义应力(应力和电位移)的对偶关系。利用哈密顿原理构造出以广义位移和广义应力混合变量描述的对偶正则方程。利用哈密顿体系很好的性质和现代数学工具对含边缘裂纹压电材料问题展开研究和讨论。分析电可渗透和电不可渗透裂纹在尖端处的奇异性,并得到应力强度因子和电位移强度因子以及影响因素。结果表明,对于电可渗透裂纹,电场强度因子始终为零,即电场在裂纹尖端不存在奇异性;应变强度因子与材料常数无关,只与外边界荷载工况有关;应力强度因子和电位移强度因子可以用材料常数与广义位移强度因子的线性组合表示。相关成果已经发表在International Journal of Solids and Structures (2009,46(20):3577-3586)。
     3.含边缘裂纹电磁弹性材料的耦合强度因子研究
     构造含边缘裂纹电磁弹性材料问题的哈密顿体系结构,研究Ⅲ型裂纹问题的断裂行为。该类问题可归结为反平面问题。在哈密顿体系下,轴向位移与剪应力、电势与电位移、磁势与磁感应强度分别互为对偶变量。以这些变量和对偶变量组成的混合变量描述的基本问题对研究混合边界条件问题非常直接和特别有效。在得到辛本征解空间以后,将应力强度因子,电位移强度因子和磁感应强度因子等问题归结为线性代数方程组求解的问题。在此基础上,对电磁可渗透和电磁不可渗透裂纹问题分别进行分析和研究。得到电磁弹性材料反平面断裂问题的解析解和一些规律。研究结果表明,广义位移强度因子与材料常数无关,只与本征值为二分之一的本征解系数有关;广义应力变量在裂纹尖端处表现出传统-0.5阶次的奇异性,并且它们对应的强度因子可直接表示为材料常数和广义位移强度因子的函数;在电磁可渗透的裂纹问题中电场强度和磁场强度不出现奇异性,即对应的强度因子为零。研究成果已经发表在Engineering Fracture Mechanics (2010, 77(16):3157-3173)和Computers & Structures (2011,89:631-645)。
     4.稳态和瞬态热弹性问题中的热应力强度因子
     提出热传导方程和热弹性方程在空间坐标下可分离变量的哈密顿形式。研究工作分为两部分:首先在哈密顿体系下建立与热传导方程等价的正则方程,并求解温度场。温度场可由一系列辛本征解组合所表示,其中包括稳态和瞬态温度函数。然后利用所得的温度场构造热弹性问题的非齐次哈密顿对偶方程以及相应的初边条件。在此过程中,将时间变量只作为一个“空间坐标”,而将一空间坐标模拟为“时间坐标”。这样,提出
     个全新地考虑问题思路。在这种观念下对问题求解,得到对应的辛本征解,即齐次正则方程的通解和非齐次方程特解。通过对解析解和数值结果的分析,得出结论:热应力问题的裂纹尖端奇异指数为-0.5;应力强度因子直接由第一阶非零本征解和温度函数表示和确定;最大热应力发生在裂纹尖端区域,并且成指数向外衰减。研究结果发现:在一定的温度环境下,热应力强度因子随裂纹长度增大而变小的现象。也就是裂纹会出现止裂的结果。这种现象对于工程设计和工程设备寿命评估是非常重要。根据这些研究工作,已经连续两篇文章发表在Journal of Thermal Stresses (2010,33(3):262-278; 2010,33(3):279-301)。
With the development of science and technology, multifunctional materials and smart materials drew more and more attention of the designers. The magneto-electro-elastic material is one of these popular materials. Based on the properties of these materials, many intelligent structures and products are applied in the engineering structure. With the aid of magneto-electro-mechanical energy conversion, many instruments and facilities are designed and extensively used in petroleum industry, chemical Industry, aerospace industry, military affairs, manufacturing and nuclear industry. When subjected to coupled mechanical, magnetic, electric and thermal loads in service, these instruments and facilities are fail prematurely due to some defects arising during their manufacturing processes, i.e. fatigue crack. Therefore, it is of great importance to study the fracture behaviors of there composites and understand the cracking mechanism.
     Studying and understanding the cracking mechanism of these materials and structures is useful to optimize the structural design and manufacturing standards. Moreover, it is pertinent to minimize the catastrophic failures for enhanced performance in fracture and wear resistance. However, the nature of the problem requires a systematic examination of the interplays among the electro-magneto-mechanical-thermal effects and working condition. Although some theoretical and experimental studies have been performed, many related challenges have not been fully resolved and need to be refine and improved, particularly in the fracture behaviors of the magneto-electro-elastic materials. In view of these literatures, it can be seen that all of the methods used the governing equation derived previously in Lagrangian sense involving only one kind of variables in terms of the energy. Since highter-order differential equations are not conducive to numerical solution methods, such elimination will cause problems in numerical analysis. Fortunately, Academician Zhong Wanxie developed an analytical symplectic approach for some basic problems in elasticity and in applied mechanics. It is a new concept and method which provids a research platform based on Hamiltonian system. Under the leadership of Academician Zhong, his associates have extendeded the method to many areas and directions. Some research results have been published and provide a basic technique for the dissertation.
     In this dissertation, we study the singularities and intensity factors systematically for the edge-crack elastic, piezoelectric and magneto-electro-elastic materials. With the aid of symplectic expansion and symplectic adjoint orthogonality among the eigenfunctions, the analytic expressions for both of the intensity factors and dual variables are obtained. It overcomes the the defects of classical semi-inverse methods, and it is rational and systematic with a clearly defined, step-by-step derivation procedure. The present work provides a better understanding for fracture problem. The conclusions are listed below:
     1. Analytic stress intensity factors for two-and three-dimensional problems
     A Hamiltonian system is introduced by the energy method. The displacements and stresses are proved to be conjugating (dual) to each other. The eigensolutions for fracture problems are solved from the Hamilton equations based on the mixed variables. These eigensolutions are symplectic spanning over the solution space to cover all possible boundary conditions. In the symplectic space, the solution consists of two parts:zero eigenvalue solutions and non-zero eigenvalue solution. All the Saint Venant solutions have been identified as the zero-eigenvalue solutions and the Saint Venant solutions represent the average physical. The non-zero-eigenvalue solutions corresponding to effects which are coverd by the Saint-Venant principle, i.e. the local boundary layer effects. The plane problems are regarded as a breakthrough, the symplectic method is extended to the space problems. Based on symplectic adjoint orthogonality among the eigensolutions, the analytical solutions are obtained and can be expanded in terms of the symplectic eigensolutions. The stress intensity factors and T-stresses are identified to be the coefficients of certain eigenfunctions. The coefficients of the series are determined from the boundary conditions and the relationship of symplectic adjoint orthogonality. Thus, ModeⅠ,Ⅱ,Ⅲstress intensity factors are obtained simultaneously. It is a direct and effective method. In addition, a boundary integral technology is developed for the non-circular domains, semi-analytical or numerical results can be obtained. Moreover, the present work provides a way to solve the dynamic problems. These work has been published in the Engineering Fracture Mechanics (2009, 76(12):1866-1882), International Journal of Mechanical Sciences (2010,52(7):892-903) and Journal of Sound and Vibration (2011,330:1005-1017).
     2. Stress/electric intensity factors and singularities analysis for the edge-crack piezoelectric materials
     The Hamiltonian formalism is used to analyze singularities for the edge-crack piezoelectric materials. A space coordinate is defined as the longitudinal direction via an appropriate variable transformation to simulate the "time coordinate". With the aid of variational principle and the Lagrangian function which consists of elastic potential energy and piezoelectric energy, we generalized displacements (longitudinal direction displacement and electrical potential function) and stresses (shear stresses and electric displacements) as primary unknowns will result in a complete set of eigensolutions ensuring convergence and will give the generalized stresses directly as dual variables. Based on the properties of Hamilton system and modern mathematical tools, analysis of the edge-crack piezoelectric materials is preformed. The singularities and intensity factors for a permeable or impermeable crack in piezoelectric material are obtained. Furthermore, the influence factors are discussed. The results show that the electric field intensity factors for the electrically permeable crack is always of the zero value, or the electric field has no singularity at the crack tip. The strain intensity factors become independent of the material constants, it depends on the edge loading conditions only. The stress and the electric displacement intensity factors can be represented by a combination of material constants and the generalized displacement intensity factors. This work is published in International Journal of Solids and Structures (2009,46(20): 3577-3586).
     3. The study of coupling intensity factors for the edge-crack in magneto-electro-elastic media
     A Hamilton system is established for the edge-crack in magneto-electro-elastic media for studying the fracture behaviors. It can be reduced to the anti-plane problem. In symplectic space, it can be proved that the displacements and stresses, electric potentials and electric displacements, magnetic potentails and magnetic induction functions are conjugating (dual) variables respectively. It is convenient to solve the mixed boundary conditions with the aid of the mixed variables which consist of the original variables and dual variables. Using the exited eigensolutions, the solutions of stress, electric displacement and magnetic induction intensity factors are reduced to the solutions of a set of linear algebraic equations. Both of the permeable and impermeable electromagnetic boundary conditions at the crack surfaces are adopted and discussed. Some resultes and a closed form solution for-the anti-plane fracture problem of magneto-electro-elastic materials are obtained. The results show that the intensity factors can be obtained by the terms associated with the eigenvalue solutions having the coefficients of 1/2;The generalized stress variables at the crack tip show the traditional square root singularities and can be represented by a combination of material constants and the generalized displacement intensity factors; the field variables, which can permeate the crack surfaces, produce no singularities or their corresponding intensity factors always equal to zero. These work has been published in the Engineering Fracture Mechanics (77(16),2010, 3157-3173) and Computers & Structures (2011,89:631-645).
     4. Analytic stress intensity factors for the steady and transient thermoelasticity
     The equations of thermal thermal conduction and thermoelasticity are first rewritten in Hamiltonian form where the variables are separable in spatial coordinates. Our study will be considered in two parts:At first, a generalized Hamilton system will be introduced to the heat conduction problem and the temperature function will be represented by a symplectic series analytically. Using the existed solution, the temperature function for both of the steady and transient thermal conducitons will be obtained. Then, a set of inhomogeneous Hamiltion equations and corresponding boundary conditions are obtained by the temperature function which obtained from the first part. For the symplectic approach, the radial coordinate is defined as the longitudinal direction via an appropriate variable transformation to simulate the "time coordinate", so that it raises a new way to solve the problems. With the assumption, the eigensolutions are solved which inclued the general solution and particular solution of the inhomogeneous Hamiltion equations. The following conclusions can be drawn from the analysis of the problem:The singular order at the crack-tip is -0.5; the value of stress intensity factor can be represented by the combination of the first coefficient of the non-zero eigensolutions and the series of temperature functions; the distribution of radial stresses shows that the high stresses are always occurred nearby the center of the crack and have exponentially decaying distributions. It should be pointed out that the value of thermal stress intensity factor decreases as the length of crack increases. It is an important feature for engineering design and evaluations of fatigue life. Based on these results, two papers have been published in the Journal of Thermal Stresses (2010,33(3):262-278; 2010,33(3): 279-301).
引文
[1]DUGA J J. The Economic effects of fracture in the United States [microform] [M]. Washington, D. C.::U. S. Dept. of Commerce, National Bureau of Standards:For sale by the Supt. of Docs., U. S. G. P.0,1983.
    [2]ZHONG W X. Duality System in Applied Mechanics and Optimal Control [M]. Boston:Kluwer Academic Publishers,2004.
    [3]IRWIN G R. Fracture Dynamics; proceedings of the Proceedings of the ASM Symposium on Fracturing of Metals, Cleveland, America,1948 [C]. ASM Publisher.
    [4]GRIFFITH A A. The Phenomena of Rupture and Flow in Solids [J]. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character,1921,221(582-593):163-198.
    [5]GRIFFITH A A. Theory of Rupture; proceedings of the Proceedings of the First International Congress for Applied Mechanics, Delft, Holland,1924 [C].
    [6]OROWAN E. Fracture and strength of solids; proceedings of the Report of Progress in Physics,1949 [C].
    [7]IRWIN G R. Analysis of stresses and strains near the end of a crack transversing a plate [J]. Journal of Applied Mechanics,1957,24:361-364.
    [8]KARGARNOVIN M H, SHAHANI A R, FARIBORZ S J. Analysis of an isotropic finite wedge under antiplane deformation [J]. International Journal of Solids and Structures,1997,34(1): 113-128.
    [9]SHAHANI A R. Mode III stress intensity factors for edge-cracked circular shafts, bonded wedges, bonded half planes and DCB's [J]. International Journal of Solids and Structures, 2003,40(24):6567-6576.
    [10]SHAHANI A R. Some problems in the antiplane shear deformation of bi-material wedges [J]. International Journal of Solids and Structures,2005,42(11-12):3093-3113.
    [11]SHAHANI A R. On the antiplane shear deformation of finite wedges [J]. Applied Mathematical Modelling,2007,31(2):141-151.
    [12]SUAT KADIOGLU F. Edge cracks in a transversely isotropic hollow cylinder [J]. Engineering Fracture Mechanics,2005,72(14):2159-2173.
    [13]NODA N A, XU C H. Controlling parameter of the stress intensity factors for a planar interfacial crack in three-dimensional bimaterials [J]. International Journal of Solids and Structures,2008,45(3-4):1017-1031.
    [14]ROOKE D P, TWEED J. The stress intensity factors of a radial crack in a point loaded disc [J]. International Journal of Engineering Science,1973,11(2):285-290.
    [15]TWEED J, DAS S C, ROOKE D P. The stress intensity factors of a radial crack in a finite elastic disc [J]. International Journal of Engineering Science,1972,10(3):323-335.
    [16]TWEED J, ROOKE D P. The stress intensity factor of an edge crack in a finite elastic disc [J]. International Journal of Engineering Science,1973,11(1):65-73.
    [17]GREGORY R D. A circular disc containing a radial edge crack opened by a constant internal pressure [J]. Mathematical Proceedings of the Cambridge Philosophical Society,1977, 81(03):497-521.
    [18]XU Y L, DELALE F. Stress intensity factors for an internal or edge crack in a circular elastic disk subjected to concentrated or distributed loads [J]. Engineering Fracture Mechanics,1992,42(5):757-787.
    [19]WU X R, CARLSSON A J. Weight Functions and Stress Intensity Factor Solutions [M]. Oxford: Pergamon Press,1991.
    [20]GREGORY R D. The edge-cracked circular disc under symmetric pin-loading [J]. Mathematical Proceedings of the Cambridge Philosophical Society,1979,85(03):523-538.
    [21]SCHNEIDER G A, DANZER R. Calculation of the stress intensity factor of an edge crack in a finite elastic disc using the weight function method [J]. Engineering Fracture Mechanics,1989,34(3):547-552.
    [22]WU X R. The arbitrarily loaded single-edge cracked circular disc; accurate weight function solutions [J]. International Journal of Fracture,1991,49(4):239-256.
    [23]LI J, WANG X, TAN C L. Weight functions for the determination of stress intensity factor and T-stress for edge-cracked plates with built-in ends [J]. Int J Pres Ves Pip,2004, 81(3):285-296.
    [24]FREESE C E, BARATTA F I. Single edge-crack stress intensity factor solutions [J]. Engineering Fracture Mechanics,2006,73(5):616-625.
    [25]DE MORAIS A B. Calculation of stress intensity factors by the force method [J]. Engineering Fracture Mechanics,2007,74(5):739-750.
    [26]CHANG J, XU J Q. The singular stress field and stress intensity factors of a crack terminating at abimaterial interface [J]. International Journal of Mechanical Sciences, 2007,49(7):888-897.
    [27]TSANG D K L, OYADIJI S 0, LEUNG A Y T. Two-dimensional fractal-like finite element method for thermoelastic crack analysis [J]. International Journal of Solids and Structures, 2007,44(24):7862-7876.
    [28]LEUNG A Y T, SU R K L. Mode I crack problems by fractal two level finite element methods [J]. Engineering Fracture Mechanics,1994,48(6):847-856.
    [29]LEUNG A Y T, SU R K L. Mixed-mode two-dimensional crack problem by fractal two level finite element method [J]. Engineering Fracture Mechanics,1995,51(6):889-895.
    [30]LEUNG A Y T, SU R K L. Body-force linear elastic stress intensity factor calculation using fractal two level finite element method [J]. Engineering Fracture Mechanics,1995, 51(6):879-888.
    [31]LEUNG A Y T, SU R K L. Two-Level Finite Element Study of Axisymmetric Cracks [J]. International Journal of Fracture,1998,89(2):193-203.
    [32]CHANG J H, WU D J. Stress intensity factor computation along a non-planar curved crack in three dimensions [J]. International Journal of Solids and Structures,2007,44(2): 371-386.
    [33]MAVROTHANASIS F I, PAVLOU D G. Mode-I stress intensity factor derivation by a suitable Green's function [J]. Engineering Analysis with Boundary Elements,2007,31(2):184-190.
    [34]SONG C, VRCELJ Z. Evaluation of dynamic stress intensity factors and T-stress using the scaled boundary finite-element method [J]. Engineering Fracture Mechanics,2008, 75(8):1960-1980.
    [35]ORTIZ J E, MANTIC V, PARIS F. A domain-independent integral for computation of stress intensity factors along three-dimensional crack fronts and edges by BEM [J]. International Journal of Solids and Structures,2006,43(18-19):5593-5612.
    [36]CHEN C S, CHEN C H, PAN E. Three-dimensional stress intensity factors of a central square crack in a transversely isotropic cuboid with arbitrary material orientations [J]. Engineering Analysis with Boundary Elements,2009,33(2):128-136.
    [37]WANG Y H, THAM L G, LEE P K K, et al. A boundary collocation method for cracked plates [J]. Computers & Structures,2003,81(28-29):2621-2630.
    [38]FETT T. Stress intensity factors and T-stress for single and double-edge-cracked circular disks under mixed boundary conditions [J]. Engineering Fracture Mechanics,2002, 69(1):69-83.
    [39]FETT. Stress intensity factors for edge-cracked plates under arbitrary loading [J]. Fatigue Fract Eng M,1999,22(4):301-305.
    [40]FETT T, BAHR H A. Mode I stress intensity factors and weight functions for short plates under different boundary conditions [J]. Engineering Fracture Mechanics,1999,62(6): 593-606.
    [41]GROSS B, SARWLEY J E, BROWN W F. Stress-Intensity Factors for a Single-Edge-Notch Tension Specimen by Boundary Collocation of a Stress Function [J]. NASA Tech Note D-2395, 1964:
    [42]VIGDERGAUZ S. An effective method for computing the elastic field in a finite cracked disk [J]. Engineering Fracture Mechanics,1996,53(4):545-556.
    [43]PARTON V Z. Fracture mechanics of piezoelectric materials [J]. Acta Astronautica,1976, 3(9-10):671-683.
    [44]DEEG W F J. The analysis of dislocation, crack, and inclusion problems in piezoelectric solids [D]; Stanford University, CA,1980.
    [45]PAK Y E. Crack Extension Force in a Piezoelectric Material [J]. Journal of Applied Mechanics,1990,57(3):647-653.
    [46]PAK Y E. Linear electro-elastic fracture mechanics of piezoelectric materials [J]. International Journal of Fracture,1992,54(1):79-100.
    [47]PAK Y E, GOLOUBEVA E. Electroelastic properties of cracked piezoelectric materials under longitudinal shear [J]. Mechanics of Materials,1996,24(4):287-303.
    [48]ISHIHARA M, NODA N. A piezoelectric-elastic body with inhomogeneities and a crack under plane electrical and anti-plane mechanical loads [J]. Archive of Applied Mechanics,2001, 71 (9):577-588.
    [49]WANG X, PAN E, FENG W J. Anti-plane Green's functions and cracks for piezoelectric material with couple stress and electric field gradient effects [J]. European Journal of Mechanics a-Solids,2008,27(3):478-486.
    [50]WANG Y J, GAO C F. The mode III cracks originating from the edge of a circular hole in a piezoelectric solid [J]. International Journal of Solids and Structures,2008, 45(16):4590-4599.
    [51]LESLIE B S, YAEL M, LUCY S. The M-integral for calculating intensity factors of an impermeable crack in a piezoelectric material [J]. Engineering Fracture Mechanics,2008, 75(5):901-925.
    [52]MCMEEKING R M. Electrostrictive stresses near crack-like flaws [J]. Zeitschrift fur Angewandte Mathematik und Physik (ZAMP),1989,40(5):615-627.
    [53]DUNN M L. The effects of crack face boundary conditions on the fracture mechanics of piezoelectric solids [J]. Engineering Fracture Mechanics,1994,48(1):25-39.
    [54]SOSA H, KHUTORYANSKY N. New developments concerning piezoelectric materials with defects [J]. International Journal of Solids and Structures,1996,33(23):3399-3414.
    [55]ZHANG T Y, TONG P. Fracture mechanics for a mode III crack in a piezoelectric material [J]. International Journal of Solids and Structures,1996,33(3):343-359.
    [56]CHEN B J, LIEW K M, MAO Z M. Green's functions for anti-plane problems in piezoelectric media with a finite crack [J]. International Journal of Solids and Structures,2004, 41(18-19):5285-5300.
    [57]WANG B L, MAI Y W. On the electrical boundary conditions on the crack surfaces in piezoelectric ceramics [J]. International Journal of Engineering Science,2003,41(6): 633-652.
    [58]YANG F Q, KAO I. Crack problem in piezoelectric materials:general anti-plane mechanical loading [J]. Mechanics of Materials,1999,31(6):395-406.
    [59]ZHANG T Y, GAO C F. Fracture behaviors of piezoelectric materials [J]. Theoretical and Applied Fracture Mechanics,2004,41(1-3):339-379.
    [60]CHAO L P, HUANG J H. On a piezoelectric material containing a permeable elliptical crack [J]. International Journal of Solids and Structures,2000,37(37):5161-5176.
    [61]ZHOU Z G, WANG B. Non-local theory solution for an anti-plane shear permeable crack in functionally graded piezoelectric materials [J]. Applied Composite Materials,2006, 13(6):345-367.
    [62]ZHOU Z G, WANG B, DU S Y. Investigation of antiplane shear behavior of two collinear permeable cracks in a piezoelectric material by using the nonlocal theory [J]. Journal of Applied Mechanics-Transactions of the Asme,2002,69(3):388-390.
    [63]ZHOU Z G, WU L Z. Non-local theory solution for the anti-plane shear of two collinear permeable cracks in functionally graded piezoelectric materials [J]. International Journal of Engineering Science,2006,44(18-19):1366-1379.
    [64]GRUEBNER 0, KAMLAH M, MUNZ D. Finite element analysis of cracks in piezoelectric materials taking into account the permittivity of the crack medium [J]. Engineering Fracture Mechanics,2003,70(11):1399-1413.
    [65]CHEN B J, LIEW K M, XIAO Z M. A dislocation interacts with a finite crack in piezoelectric media [J]. International Journal of Engineering Science,2005,43(15-16):1206-1222.
    [66]GAO C F, KESSLER H, BALKE H. Crack problems in magnetoelectroelastic solids. Part I: exact solution of a crack [J]. International Journal of Engineering Science,2003,41 (9): 969-981.
    [67]GAO C F, KESSLER H, BALKE H. Crack problems in magnetoelectroelastic solids. Part II: general solution of collinear cracks [J]. International Journal of Engineering Science, 2003,41(9):983-994.
    [68]GAO C F, TONG P, ZHANG T Y. Interfacial crack problems in magneto-electroelastic solids [J]. International Journal of Engineering Science,2003,41(18):2105-2121.
    [69]GAO C F, TONG P, ZHANG T Y. Fracture mechanics for a mode III crack in a magnetoelectroelastic solid [J]. International Journal of Solids and Structures,2004, 41(24-25):6613-6629.
    [70]WANG B L, MAI Y W. Crack tip field in piezoelectric/piezomagnetic media [J]. European Journal of Mechanics a-Solids,2003,22(4):591-602.
    [71]WANG B L, MAI Y W. Fracture of piezoelectromagnetic materials [J]. Mechanics Research Communications,2004,31(1):65-73.
    [72]WANG B L, MAI Y W. Self-consistent analysis of coupled magnetoelectroelastic fracture-theoretical investigation and finite element verification [J]. Computer Methods in Applied Mechanics and Engineering,2007,196(13-16):2044-2054.
    [73]WANG B L, MAI Y W. Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials [J]. International Journal of Solids and Structures,2007,44(2):387-398.
    [74]TIAN W Y, RAJAPAKSE R. Field intensity factors of a penny-shaped crack in a magnetoelectroelastic layer [J]. Journal of Alloys and Compounds,2005:161-171.
    [75]TIAN W, RAJAPAKSE R. Fracture analysis of magnetoelectroelastic solids by using path independent integrals [J]. International Journal of Fracture,2005,131(4):311-335.
    [76]ZHOU Z G, WANG B, SUN Y G. Two collinear interface cracks in magneto-electro-elastic composites [J]. International Journal of Engineering Science,2004,42(11-12): 1155-1167.
    [77]ZHOU Z G, WANG B. Two parallel symmetry permeable cracks in functionally graded piezoelectric/piezomagnetic materials under anti-plane shear loading [J]. International Journal of Solids and Structures,2004,41(16-17):4407-4422.
    [78]ZHOU Z G, ZHANG P W, WU L Z. The closed form solution of a Mode-I crack in the piezoelectric/piezomagnetic materials [J]. International Journal of Solids and Structures,2007,44(2):419-435.
    [79]ZHAO M H, FAN C Y, YANG F, et al. Analysis method of planar cracks of arbitrary shape in the isotropic plane of a three-dimensional transversely isotropic magnetoelectroelastic medium [J]. International Journal of Solids and Structures,2007, 44(13):4505-4523.
    [80]ZHAO M H, WANG H, YANG F, et al. A magnetoelectroelastic medium with an elliptical cavity under combined mechanical-electric-magnetic loading [J]. Theoretical and Applied Fracture Mechanics,2006,45(3):227-237.
    [81]LIU J X, LIU X L, ZHAO Y B. Green's functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack [J]. International Journal of Engineering Science,2001,39(12):1405-1418.
    [82]ZHONG X C, LI X F. Fracture analysis of a magnetoelectroelastic solid with a penny-shaped crack by considering the effects of the opening crack interior [J]. International Journal of Engineering Science,2008,46(4):374-390.
    [83]HU K Q, LI G Q. Constant moving crack in a magnetoelectroelastic material under anti-plane shear loading [J]. International Journal of Solids and Structures,2005, 42(9-10):2823-2835.
    [84]HU K Q, LI G Q. Electro-magneto-elastic analysis of a piezoelectromagnetic strip with a finite crack under longitudinal shear [J]. Mechanics of Materials,2005,37(9): 925-934.
    [85]HU K Q, LI G Q, ZHONG Z. Fracture of a rectangular piezoelectromagnetic body [J]. Mechanics Research Communications,2006,33(4):482-492.
    [86]FAIDY C. Status of French Fatigue Analysis Procedure [J]. ASME Conference Proceedings, 2008,2008(48241):181-189.
    [87]ITOU S. Thermal stress intensity factors of an infinite orthotropic layer with a crack [J]. International Journal of Fracture,2000,103(3):279-291.
    [88]NEMAT-ALLA M, NODA N. Edge crack problem in a semi-infinite FGM plate with a bi-directional coefficient of thermal expansion under two-dimensional thermal loading [J]. Acta Mechanica,2000,144(3):211-229.
    [89]CHEN J, SOH A K, LIU J, et al. Thermal fracture analysis of a functionally graded orthotropic strip with a crack [J]. International Journal of Mechanics and Materials in Design,2004,1(2):131-141.
    [90]UEDA S. Thermal singular stresses of glassfiber reinforced plastics with surface cracks at cryogenic temperatures [J]. International Journal of Fracture,2001,110(4):305-323.
    [91]QING H, YANG W, LU J, et al. Thermal-stress analysis for a strip of finite width containing a stack of edge cracks [J]. J Eng Math,2008,61(2):161-169.
    [92]HOSSEINI-TEHRANI P, ESLAMI M R, AZARI S. Analysis of Thermoelastic Crack Problems Using Green-Lindsay Theory [J]. Journal of Thermal Stresses,2006,29(4):317-330.
    [93]HOSSEINI-TEHRANI P, HOSSEINI-GODARZI A R, TAVANGAR M. Boundary element analysis of stress intensity factor KI in some two-dimensional dynamic thermoelastic problems [J]. Engineering Analysis with Boundary Elements,2005,29(3):232-240.
    [94]MUKHOPADHYAY N K, MAITI S K, KAKODKAR A. Effect of modelling of traction and thermal singularities on accuracy of SIFS computation through modified crack closure integral in BEM [J]. Engineering Fracture Mechanics,1999,64(2):141-159.
    [95]PRASAD N N V, ALIABADI M H, ROOKE D P. Effect of thermal singularities on stress intensity factors:edge crack in rectangular and circular plate [J]. Theoretical and Applied Fracture Mechanics,1996,24(3):203-215.
    [96]YOSIBASH Z. Thermal generalized stress intensity factors in 2-D domains [J]. Computer Methods in Applied Mechanics and Engineering,1998,157(3-4):365-385.
    [97]JIN Z H, NODA N. Transient thermal stress intensity factors for a crack in a semi-infinite plate of a functionally gradient material [J]. International Journal of Solids and Structures,1994,31(2):203-218.
    [98]NODA N, JIN Z H. Thermal stress intensity factors for a crack in a strip of a functionally gradient material [J]. International Journal of Solids and Structures,1993,30(8): 1039-1056.
    [99]LIU L, KARDOMATEAS G A. Thermal stress intensity factors for a crack in an anisotropic half plane [J]. International Journal of Solids and Structures,2005,42(18-19): 5208-5223.
    [100]LIU L, KARDOMATEAS G A. A dislocation approach for the thermal stress intensity factors of a crack in an infinite anisotropic medium under uniform heat flow [J]. Composites Part A:Applied Science and Manufacturing,2006,37(7):989-996.
    [101]CHEN D H, NONOMURA K, USHIJIMA K. Stress Intensity Factor at the Edge Point of a Bonded Strip under Thermal Loading [J]. JSME International Journal Series A Solid Mechanics and Material Engineering,2001,44(4):550-555.
    [102]MESHII T, SHIBATA K, WATANABE K. Simplified method to evaluate upper limit stress intensity factor range of an inner-surface circumferential crack under steady state thermal striping [J]. Nuclear Engineering and Design,2006,236(10):1081-1085.
    [103]CHEN J. Determination of thermal stress intensity factors for an interface crack in a graded orthotropic coating-substrate structure [J]. International Journal of Fracture, 2005,133(4):303-328.
    [104]ZHANG P Z, BURGER C P. Transient thermal stress-intensity factors for short edge cracks with equal depth of crack tips [J]. Engineering Fracture Mechanics,1986,24(4):589-599.
    [105]KOKINI K, LONG M. Transient thermal fracture of cracked plates [J]. Exp Mech,1988, 28(4):373-381.
    [106]KATZ P, VOLOSHIN A S. Measurement of the stress intensity factors for transient thermal loading by caustics [J]. Journal of Thermal Stresses,1989,12(2):99-106.
    [107]WANG W C, CHEN T L, HWANG C H. Transient thermal stress intensity factors of edge-cracked semi-infinite plates [J]. Nuclear Engineering and Design,1993,143(2-3): 217-228.
    [108]WANG W C. A digital imaging algorithm for extracting stress intensity factor from the photoelastic fringe pattern [J]. Engineering Fracture Mechanics,1990,36(5):683-696.
    [109]NIED H F. Thermal Shock Fracture in an Edge-Cracked Plate [J]. Journal of Thermal Stresses,1983,6(2):217-229.
    [110]NIED H F, ERDOGAN F. Transient Thermal Stress Problem for a Circumferentially Cracked Hollow Cylinder [J]. Journal of Thermal Stresses,1983,6(1):1-14.
    [111]NODA N, SUMI N. Stress intensity factor for transient thermal stress of a thin plate with a Griffith crack [J]. Journal of Thermal Stresses,1985,8(2):173-182.
    [112]NODA N, MATSUNAGA Y, NYUKO H. Stress intensity factor for transient thermal stresses in an infinite elastic solid containing an annular crack [J]. Journal of Thermal Stresses, 1986,9(2):119-131.
    [113]NODA N, MATSUNAGA Y, NYUKO H. Stress intensity factor for transient thermal stresses in an infinite elastic solid containing an annular crack [J]. Archive of Applied Mechanics, 1988,58(1):1-8.
    [114]NODA N, ASHIDA F. Stress intensity factor for transient thermal stresses in a transversely isotropic infinite body with an external circular crack [J]. Acta Mechanica, 1987,66(1):217-231.
    [115]TAMATE 0, KONDO T, SEKINE H. Thermal-stress intensity factors for an insulated crack in a semi-infinite medium with a thin conductive stiffener [J]. Nuclear Engineering and Design,1987,101(2):93-105.
    [116]MUKHOPADHYAY N K, MAITI S K, KAKODKAR A. Modified crack closure integral based computation of stress intensity factors for 2-D thermoelastic problems through boundary element method [J]. Nuclear Engineering and Design,1999,187(3):277-290.
    [117]MESHII T, WATANABE K. Maximum stress intensity factor for a circumferential crack in a finite-length thin-walled cylinder under transient radial temperature distribution [J]. Engineering Fracture Mechanics,1999,63(1):23-38.
    [118]KIM Y W, KIM J I, CHANG M H. An explicit integral expression for the stress intensity factor of a semi-elliptic surface crack subjected to thermal transient loading [J]. Int J Pres Ves Pip,1999,76(9):631-639.
    [119]SHAHANI A R, NABAVI S M. Closed form stress intensity factors for a semi-elliptical crack in a thick-walled cylinder under thermal stress [J]. Int J Fatigue,2006,28(8): 926-933.
    [120]SHAHANI A R, NABAVI S M. Transient thermal stress intensity factors for an internal longitudinal semi-elliptical crack in a thick-walled cylinder [J]. Engineering Fracture Mechanics,2007,74(16):2585-2602.
    [121]OOTAO Y, TANIGAWA Y. Transient thermal stresses of angle-ply laminated cylindrical panel due to nonuniform heat supply in the circumferential direction [J]. Composite Structures,2002,55(1):95-103.
    [122]OOTAO Y, TANIGAWA Y. Three-dimensional solution for transient thermal stresses of functionally graded rectangular plate due to nonuniform heat supply [J]. International Journal of Mechanical Sciences,2005,47(11):1769-1788.
    [123]OOTAO Y, TANIGAWA Y. Three-dimensional solution for transient thermal stresses of an orthotropic functionally graded rectangular plate [J]. Composite Structures,2007,80(1): 10-20.
    [124]SHAHANI A R, NABAVI S M. Analytical solution of the quasi-static thermoelasticity problem in a pressurized thick-walled cylinder subjected to transient thermal loading [J]. Applied Mathematical Modelling,2007,31(9):1807-1818.
    [125]VEL S S, BATRA R C. Three-dimensional analysis of transient thermal stresses in functionally graded plates [J]. International Journal of Solids and Structures,2003, 40(25):7181-7196.
    [126]钟万勰,钟翔翔.计算结构力学、最优控制及偏微分方程半解析法[J].计算结构力学及其应用,1990,7(1):1-15.
    [127]YAO W A, ZHONG W X, LIM C W. Symplectic Elasticity [M]. Singapore:World Scientific Pubinshing Co. Pte. Ltd.,2009.
    [128]XU X S, ZHONG W X, ZHANG H W. The Saint-Venant problem and principle in elasticity [J]. International Journal of Solids and Structures,1997,34(22):2815-2827.
    [129]ZHONG W X, XU X S, ZHANG H W. Hamiltonian system and the Saint Venant problem in elasticity [J]. Applied Mathematics and Mechanics,1996,17(9):827-836.
    [130]徐新生,贾宏志,孙发明.横观各向同性弹性柱体中辛本征解方法[J].大连理工大学学报,2005,45(4):617-624.
    [131]徐新生,张洪武,齐朝晖,et al关于弹性回转体问题的直接方法[J].大连理工大学学报,1997,37(5):26-29.
    [132]LIM C W, L C F, XIANG Y, et al. On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates [J]. International Journal of Engineering Science,2009,47(1):131-140.
    [133]YAO W A, SU B, ZHONG W X. Hamiltonian system for orthotropic plate bending based on analogy theory [J]. Science in China Series E:Technological Sciences,2001,44(3):258-264.
    [134]马国军,徐新生,郭杏林.旋转运动中弹性梁耦合振动的辛方法[J].计算力学学报,2004,21(6):671-677.
    [135]徐新生,郭杏林,马国军,et al旋转系统中弹性结构振动问题的哈密顿体系方法[J].振动工程学报,2003,16(1):40-44.
    [136]钟万勰,徐新生,张洪武.弹性曲梁问题的直接法[J].工程力学,1996,13(4):1-8.
    [137]HU C, FANG X Q, LONG G, et al. Hamiltonian systems of propagation of elastic waves and localized vibrations in the strip plate [J]. International Journal of Solids and Structures,2006,43(21):6568-6573.
    [138]LEUNG A Y T, MAO S G. A symplectic Galerkin method for non-linear vibration of beams and plates [J]. Journal of Sound and Vibration,1995,183(3):475-491.
    [139]LIM C W, CUI S, YAO W A. On new symplectic elasticity approach for exact bending solutions of rectangular thin plates with two opposite sides simply supported [J]. International Journal of Solids and Structures,2007,44(16):5396-5411.
    [140]LIU Y, LI R. Accurate bending analysis of rectangular plates with two adjacent edges free and the others clamped or simply supported based on new symplectic approach [J]. Applied Mathematical Modelling,2010,34(4):856-865.
    [141]MA C M. Sympletic eigen-solution for clamped Mindlin plate bending problem [J]. Journal of Shanghai University (English Edition),2008,12(5):377-382.
    [142]SUN H C, YAO W A. Virtual boundary element-linear complementary equations for solving the elastic obstacle problems of thin plate [J]. Finite Elements in Analysis and Design, 1997,27(2):153-161.
    [143]YAO W, YANG H. Hamiltonian system based Saint Venant solutions for multi-layered composite plane anisotropic plates [J]. International Journal of Solids and Structures, 2001,38(32-33):5807-5817.
    [144]YAO W A, SUI Y F. Symplectic solution system for reissner plate bending [J]. Applied Mathematics and Mechanics,2004,25(2):178-185.
    [145]ZHONG Y, LI R. Exact bending analysis of fully clamped rectangular thin plates subjected to arbitrary loads by new symplectic approach [J]. Mechanics Research Communications,2009,36(6):707-714.
    [146]ZHONG Y, LI R, LIU Y, et al. On new symplectic approach for exact bending solutions of moderately thick rectangular plates with two opposite edges simply supported [J]. International Journal of Solids and Structures,2009,46(11-12):2506-2513.
    [147]ZOU G. An exact symplectic geometry solution for the static and dynamic analysis of Reissner plates [J]. Computer Methods in Applied Mechanics and Engineering,1998, 156(1-4):171-178.
    [148]ZOU G, TANG L. A semi-analytical solution for thermal stress analysis of laminated composite plates in the Hamiltonian system [J]. Computers & Structures,1995,55(1): 113-118.
    [149]ZOU G, TANG L. A semi-analytical solution for laminated composite plates in Hamiltonian system [J]. Computer Methods in Applied Mechanics and Engineering,1995,128(3-4): 395-404.
    [150]鲍四元,邓子辰.环扇形板弯曲问题中环向模拟为时间的辛体系[J].西北工业大学学报,2004,22(6):734-738.
    [151]徐新生,邱文彪,付月,et al辛方法在弹性圆板屈曲问题中的应用[J].应用力学学报,2009,26(3):530-534+628-629.
    [152]徐新生,邱文彪,周震寰,et al哈密顿体系下的弹性圆板热屈曲问题[J].大连理工大学学报,2008,48(1):1-5.
    [153]姚伟岸,隋永枫Reissner板弯曲的辛求解体系[J].应用数学和力学,2004,25(2):159-165.
    [154]姚伟岸,孙贞.环扇形薄板弯曲问题的环向辛对偶求解方法[J].力学学报,2008,40(4):557-563.
    [155]钟万勰,姚伟岸,郑长良Reissner板弯曲与平面偶应力模拟[J].大连理工大学学报,2002,42(5):519-521.
    [156]XU X, MA J, LIM C W, et al. Dynamic local and global buckling of cylindrical shells under axial impact [J]. Eng Struct,2009,31(5):1132-1140.
    [157]XU X, MA Y, LIM C W, et al. Dynamic buckling of cylindrical shells subject to an axial impact in a symplectic system [J]. International Journal of Solids and Structures,2006, 43(13):3905-3919.
    [158]XU X S, CHU H J, LIM C W. Hamiltonian system for dynamic buckling of transversely isotropic cylindrical shells subjected to an axial impact [J]. International Journal of Structural Stability and Dynamics 2008,8(3):487-504.
    [159]徐新生,段政,马源,et al辛方法和弹性圆柱壳在内外压和轴向冲击下的动态屈曲[J].爆炸与冲击,2007,27(6):509-514.
    [160]XU X, ZHANG W, LI X, et al. An application of the symplectic system in two-dimensional viscoelasticity [J]. International Journal of Engineering Science,2006,44(13-14):897-914.
    [161]徐新生,张维祥,李雪.粘弹性厚壁筒问题的辛本征解方法[J].计算力学学报,2007,24(2):153-158.
    [162]张维祥,徐新生.二维热粘弹性问题中的辛方法(英文)[J].中国科学技术大学学报,2008,38(2):200-206.
    [163]GU Q, XU X S, LEUNG ANDREW Y. Application of Hamiltonian system for two-dimensional transversely isotropic piezoelectric media [J]. Journal of Zhejiang University-Science A,2005,6(9):915-921.
    [164]LEUNG A Y T, XU X S, GU Q, et al. The boundary layer phenomena in two-dimensional transversely isotropic piezoelectric media by exact symplectic expansion [J]. International Journal for Numerical Methods in Engineering,2007,69(11):2381-2408.
    [165]LEUNG A Y T, ZHENG J J, LIM C W, et al. A new symplectic approach for piezoelectric cantilever composite plates [J]. Computers & Structures,2008,86(19-20):1865-1874.
    [166]WANG J S, QIN Q H. Symplectic model for piezoelectric wedges and its application in analysis of electroelastic singularities [J]. Philosophical Magazine,2007,87(2):225-251.
    [167]XU X S, GU Q, LEUNG ANDREW Y, et al. A symplectic eigensolution method in transversely isotropic piezoelectric cylindrical media [J]. Journal of Zhejiang University-Science A,2005,6(9):922-927.
    [168]XU X S, LEUNG A Y T, GU Q, et al.3D symplectic expansion for piezoelectric media [J]. International Journal for Numerical Methods in Engineering,2008,74(12):1848-1871.
    [169]YAO W A, WANG H. Virtual boundary element integral method for 2-D piezoelectric media [J]. Finite Elements in Analysis and Design,2005,41(9-10):875-891.
    [170]ZHAO L, CHEN W Q. Symplectic analysis of plane problems of functionally graded piezoelectric materials [J]. Mechanics of Materials,2009,41(12):1330-1339.
    [171]代海涛,程伟,李明志.哈密顿体系下功能梯度压电板/管静动力三维解[J].北京航空航天大学学报,2008,34(1):104-107.
    [172]刘艳红,张惠明,卿光辉.基于Hamilton理论的压电材料智能叠层板的固有频率分析[J].船舶力学,2009,13(5):788-794.
    [173]DAI H T, CHENG W, LI M Z. Static/dynamic Analysis of Functionally Graded and Layered Magneto-electro-elastic Plate/pipe under Hamiltonian System [J]. Chinese Journal of Aeronautics,2008,21(1):35-42.
    [174]LI X C, YAO W A. Virtual boundary element-integral collocation method for the plane magnetoelectroelastic solids [J]. Engineering Analysis with Boundary Elements,2006, 30(8):709-717.
    [175]YAO W A, LI X C. Symplectic duality system on plane magnetoelectroelastic solids [J]. Applied Mathematics and Mechanics,2006,27(2):195-205.
    [176]ZHAO L, CHEN W Q. Plane analysis for functionally graded magneto-electro-elastic materials via the symplectic framework [J]. Composite Structures,2010,92(7): 1753-1761.
    [177]李晓川,姚伟岸.电磁弹性固体三维问题的虚边界元-等额配点法[J].固体力学学报,2007,28(4):380-384.
    [178]姚伟岸.电磁弹性固体三维问题的广义变分原理[J].计算力学学报,2003,20(4):487-489.
    [179]姚伟岸.电磁弹性固体反平面问题辛求解体系及圣维南原理[J].大连理工大学学报,2004,44(5):630-633.
    [180]ZHONG W X. Plane elasticity in sectorial domain and the Hamiltonian system [J]. Applied Mathematics and Mechanics,1994,15(12):1113-1123.
    [181]徐新生,郑新广,张洪武,et al哈密顿体系与弹性楔体问题[J].应用力学学报,1999,16(2):143-147+164.
    [182]YAO W A, XU C. A Restudy of the Paradox on an Elastic Wedge Based on the Hamiltonian System [J]. Journal of Applied Mechanics,2001,68(4):678-681.
    [183]YAO W A, ZHANG B R. Paradox solution on elastic wedge dissimilar materials [J]. Applied Mathematics and Mechanics,2003,24(8):961-969.
    [184]姚伟岸.极坐标哈密顿体系约当型与弹性楔的佯谬解[J].力学学报,2001,33(1):79-86.
    [185]姚伟岸,张兵茹.圆柱型正交各向异性弹性楔的佯谬解[J].固体力学学报,2004,25(2):155-158.
    [186]ZHANG H W, ZHONG W X. Hamiltonian principle based stress singularity analysis near crack corners of multi-material junctions [J]. International Journal of Solids and Structures,2003,40(2):493-510.
    [187]张洪武,徐新生,李云鹏,et al多种材料楔形结合点的奇性分析[J].大连理工大学学报,1996,36(4):23-27.
    [188]张洪武,钟万勰,李云鹏.基于哈密顿原理的两种材料界面裂纹奇性研究[J].固体力学学报,1996,1(1):19-30.
    [189]钟万勰,张洪武.平面断裂解析元的列式[J].机械强度,1995,17(3):105+1-6.
    [190]王承强,姚伟岸.哈密顿体系在断裂力学Dugdale模型中的应用[J].应用力学学报,2003,20(3):151-154+168.
    [191]江铁强,何雪法.哈密顿体系在Ⅲ型裂纹端部场求解中的应用[J].机械强度,2004,26(S1):213-215.
    [192]LEUNG A Y T. Perturbed general eigensolutions [J]. Communications in Applied Numerical Methods,1990,6(5):401-409.
    [193]WANG T C. Analysis of strip electric saturation model of crack problem in piezoelectric materials [J]. International Journal of Solids and Structures,2000,37(42):6031-6049.
    [194]CHEN B J, LIEW K M, XIAO Z M. Green's functions for anti-plane problems in piezoelectric media with a finite crack [J]. International Journal of Solids and Structures,2004, 41(18-19):5285-5300.
    [195]LIU W J, CHUE C H. Electroelastic analysis of a piezoelectric finite wedge with mixed type boundary conditions under a pair of concentrated shear forces and free charges [J]. Theoretical and applied fracture mechanics,2007,48:203-224.
    [196]付宇明,白象忠,许志强.电磁热效应裂纹止裂中绕流屏蔽效应的数值模拟[J].工程力学,2002,(03):143-147+121.
    [197]申光宪,王凤琴,肖宏.金属板裂纹尖端电磁热场边界元解析[J].机械强度,2001,(02):219-221+231.
    [198]MA C C, HOUR B L. Analysis of dissimilar anisotropic wedges subjected to antiplane shear deformation [J]. International Journal of Solids and Structures,1989,25(11): 1295-1309.
    [199]XU X L, RAJAPAKSE R K N D. On singularities in composite piezoelectric wedges and junctions [J]. International Journal of Solids and Structures,2000,37(23):3253-3275.
    [200]CHEN C D, CHUE C H. Singular electro-mechanical fields near the apex of a piezoelectric bonded wedge under antiplane shear [J]. International Journal of Solids and Structures, 2003,40(23):6513-6526.
    [201]ZHONG X C, LI X F. Magnetoelectroelastic analysis for an opening crack in a piezoelectromagnetic solid [J]. European Journal of Mechanics a-Solids,2007,26(3): 405-417.
    [202]CHUE C H, LIU T J C. Magneto-electro-elastic antiplane analysis of a bimaterial BaTi03-CoFe204 composite wedge with an interface crack [J]. Theoretical and Applied Fracture Mechanics,2005,44(3):275-296.
    [203]LIU T J C, CHUE C H. On the singularities in a bimaterial magneto-electro-elastic composite wedge under antiplane deformation [J]. Composite Structures,2006,72(2): 254-265.
    [204]LEUNG A Y T, XU X S, ZHOU Z H, et al. Analytic stress intensity factors for finite elastic disk using symplectic expansion [J]. Engineering Fracture Mechanics,2009, 76(12):1866-1882.
    [205]ZHU B J, QIN T Y. Hypersingular integral equation method for a three-dimensional crack in anisotropic electro-magneto-elastic bimaterials [J]. Theoretical and Applied Fracture Mechanics,2007,47(3):219-232.
    [206]BIOT M A. Variational Principles in Heat Transfer [M]. London:Oxford University Press, 1970.
    [207]SINGH S, JAIN P K, RIZWAN U. Analytical solution to transient heat conduction in polar coordinates with multiple layers in radial direction [J]. Int J Therm Sci,2008,47(3): 261-273.
    [208]中国航空研究院.应力强度因子手册[M].北京:科学出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700