二次预应力组合梁受力性能与设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在传统预应力混凝土桥梁设计和施工过程中,提高梁的预应力度和减小梁的徐变上拱是一对不可调和的矛盾;高速铁路对桥梁结构安全性、线路平顺性提出了更高的要求,使得这一对矛盾在高速铁路桥梁中更加突出,如何控制预应力混凝土桥梁徐变上拱成为高速铁路桥梁的关键技术问题。本文提出把具有良好控制结构徐变上拱变形能力的二次预应力组合梁应用到高速铁路桥梁中,以结构设计为切入点,以更经济合理的方案解决高速铁路桥梁的关键技术问题,具有重要的学术意义和工程价值。
     在总结铁路预应力混凝土桥梁徐变上拱控制方法和二次预应力组合梁技术发展的基础上,本文对高速铁路二次预应力组合梁受力性能和设计方法进行了深入研究,主要开展了如下研究工作:
     (1)把二次预应力组合梁应用到高速铁路桥梁中,对相同条件下(结构尺寸、预应力筋配置、非预应力筋配置、施工方法、各类荷载值均相同)常规预应力混凝土梁和二次预应力组合梁进行了对比分析,主要分析两种结构的受力性能、变形性能和技术经济性,论证了二次预应力组合梁应用到高速铁路桥梁中的可行性和技术经济优势;
     (2)以跨径32m的有碴轨道简支箱梁为例,按相同条件制作常规预应力混凝土梁和二次预应力组合梁1︰3大比例试验模型梁,进行了两根模型梁从施工到静载破坏各阶段受力性能、变形性能的对比试验研究,主要研究了施工阶段正截面应力与上拱变形、裂缝的开展与分布规律、极限承载力、荷载—挠度曲线、荷载—应变曲线、水平结合面混凝土应变等;
     (3)进行了为期26个月的常规预应力混凝土梁和二次预应力组合梁1︰3大比例模型梁的徐变效应对比试验,采用四次幂函数曲线按拟合的方法,并考虑先浇梁长度指标β的影响,推导了更具有普遍意义的二次预应力组合梁徐变上拱变形的计算公式;
     (4)模拟高速铁路二次预应力组合梁水平结合面的受力状态,考虑结合面抗剪钢筋配筋率、两期混凝土龄期差、结合面应力差三个因素,采用正交方法制作推出试件,进行了45个推出试件结合面静载抗剪性能试验和7个推出试件结合面疲劳抗剪性能试验,研究分析了结合面静载抗剪性能和疲劳抗剪性能,提出了结合面抗剪强度的计算方法;
     (5)研究分析二次预应力组合梁的结构特点,提出了二次预应力混凝土的两种新概念,第一种概念是:二次施加预应力的目的是把梁跨中段底部混凝土变为抗拉强度高的弹性材料,第二种概念是:二次施加预应力的目的是提高高强度钢筋和混凝土共同工作的效率;
     (6)提出了二次预应力组合梁先浇梁三个设计参数的概念,即先浇梁高度指标α、先浇梁长度指标β和先浇梁一期预应力筋指标γ;提出了一套二次预应力组合梁实用设计方法及相应的计算公式,主要包括:消压弯矩、开裂弯矩的计算;截面尺寸的估算;一期预应力筋面积、二期预应力筋面积的估算;先浇梁强度和稳定性验算;正截面强度、斜截面抗弯强度、斜截面抗剪强度、水平结合面静载与疲劳抗剪强度的计算;预应力损失的计算;正截面抗裂性的验算;先浇梁锚固区抗弯强度和抗裂性的验算;徐变上拱的计算;截面开裂后挠度的计算等。
To improve the prestress degree and to reduce the creep camber of bridgesimultaneously poses an irreconcilable contradiction in the design and construction ofconventional prestressed concrete bridge. This issue becomes more serious inhigh-speed railway bridges, as these bridges have more strict requirement in structuresafety and track regularity, resulting in a critical technical problem to control thecreep camber in the high-speed railway prestressed concrete bridges. In thisdissertation, the twice prestressed composite beam is proposed to be applied to thehigh-speed railway bridges, in which the creep-induced deformation can be wellcontrolled. The irreconcilable contradiction can be solved on the basis of structuraldesign, which is of significant academic value and potential application inengineering practice.
     Based on comprehensive literature review of the controlling methods for creepcamber in prestressed concrete railway bridges and technical development of twiceprestressed composite beams, the mechanical performance and design method of thetwice prestressed composite beams on high-speed railway were studied in thedissertation, and the main accomplishments are as follows:
     1) For the application of the high-speed railway bridges, theoretical analysis wasperformed to compare the twice prestressed composite beam with the conventionalprestressed concrete beam under the same conditions, including the structuraldimension, the configuration of prestressed steel bars, the passive reinforcement ratio,the construction method, and the load conditions, etc. The analysis was mainlyfocused on the stress and deformation performance in these two types of beams, andthe technological economy as well. The results revealed the feasibility andeconomical advantages when applying the twice prestressed composite beam to thehigh-speed railway bridge.
     2) Taking a32-m simply supported box girder ballastless track bridge as anexample, two large-scale model beams in the scale of1:3were constructed forexperiment under the same conditions. One beam was the conventional prestressedconcrete beam, and the other was the twice prestressed composite beam. The twobeams were loaded to compare their mechanical and deformation performance fromits construction stage to its damage stage, including the development and distribution of cracks, the normal stress and the camber of the beams in the construction stage, theultimate bearing capacity, the load-deflection curves, the load-strain curves and thestrain at horizontal interface in the composite beam.
     3) Two1:3large scale model beams, namely, the prestressed concrete modelbeam and twice prestressed composite model beam, were loaded with static loads for26months to investigate the creep effect, adopting the curve fitting method with fourtimes power function, a formula with more universal meaning to calculate the creepcamber in the twice prestressed composite beam were deduced, considering theinfluence of precast beam length index β.
     4) To investigate the mechanical behavior at the interface of the twiceprestressed composite beam,52push-out specimens were constructed adoptingorthogonal method.45specimens were for static load test and the remaining7forfatigue load. The construction of the52specimens considered the factors relating tointerface characteristics, including the shear reinforcement ratio, concrete agedifference and stress difference. The method of calculating interface shear strengthwas presented according to push-out test results.
     5) Based on analysis of structure characteristics of the twice prestressedcomposite beams, two new conceptions with respect to the twice prestressed concretewere put forward. The first conception states that the purpose of the twice prestressedconcrete is to transform the concrete at the bottom of middle span region into theelastic material with high tensile strength. The second conception proposes that thepurpose of twice prestressed concrete is to improve the co-work efficiency of highstrength steel and high strength concrete.
     6) The concept of three design parameters for the precast beam in the twiceprestressed composite beam was presented, namely, the precast beam height index α,the precast beam length index β, and the first term prestress steel index of theprecast beam γ. A serial design method and corresponding calculation formulae ofthe twice prestressed composite beam were proposed, covering: decompressionmoment and cracking bending moment, estimation of cross section dimensions, areaof the first and the second term prestress steel, strength and stability of the precastbeam, bending strength in normal cross-section or inclined-section and shear bearingcapacity in inclined-section, static and fatigue shear strength at horizontal interface ofthe twice prestressed composite beam, prestress loss, crack resistance performance innormal section, bending strength and crack resistance performance at anchorageregion in the first term prestress steel, creep camber, and post-crack deflection, etc.
引文
[1]李义兵.铁路客运专线桥梁设计研究.铁道标准设计,2006,(6):22-24
    [2]罗林.高速铁路轨道必须具有高平顺性.中国铁路,2000,(9):8-11
    [3]吴成三.高速铁路急待解决的两个技术问题.铁道工程学报,1997,(2):97-100
    [4]铁道科学研究院高速铁路技术研究总体组.高速铁路技术.北京:中国铁道出版社,2005,33-80
    [5]吴成三.高速铁路上的桥梁.铁道工程学报,1998,(12):29-34
    [6]中华人民共和国行业标准.新建时速300~350公里客运专线铁路设计暂行规定(上、下).北京:中国铁道出版社,2007
    [7]中华人民共和国行业标准.(TB10002.1-2005)铁路桥涵设计基本规范.北京:中国铁道出版社,2005
    [8]曾敬东,李贞新,李小珍.我国高速铁路桥梁的结构型式及特点.四川建筑,2005,25(4):58-60
    [9]王兴铎,张煅,韩启孟.高速铁路构筑物设计参数选择的分析.铁道标准设计,2003,(7):1-4
    [10]彭月燊.高速铁路桥梁设计特点.桥梁建设,1999,(3):25-29
    [11]邓运清,盛黎明.秦沈客运专线后张法预应力混凝土简支箱梁设计.铁道标准设计,2000,20(1):3-6
    [12]辛学忠.秦沈客运专线桥梁结构技术分析.铁道建筑,2001,(8):9-11
    [13]盛黎明,陈良江.秦沈客运专线常用跨度简支梁设计与施工.铁道标准设计,2001,21(9):4-7
    [14]刘春彦,雷慧锋,陈良江.秦沈客运专线桥梁技术特点及高速条件下桥梁建设展望.铁道标准设计,2001,21(9):1-4
    [15]王喜军,申全增.秦沈客运专线桥梁新结构综述.铁道标准设计,2002,(1):1-8
    [16]白小崑.京沪高速铁路中小跨度桥梁结构选型初探.铁道标准设计,2002,(6):35-39
    [17]陈良江.京沪高速铁路常用跨度桥梁的技术特征及选型探讨.铁道标准设计,2003,(10):15-18
    [18]刘家锋,刘春彦.秦沈客运专线桥梁综述及高速铁路桥梁建设的思考.铁道标准设计,2004,(7):134-138
    [19]邓运清.高速铁路简支箱梁设计研究.铁道标准设计,2004,(7):125-129
    [20]邓运清.客运专线简支箱梁综述.铁道工程学报,2005,(2):65-71
    [21]王召祜.客运专线桥梁设计研究.铁道标准设计,2005,(4):26-31
    [22]王召祜.京沪高速铁路桥梁设计.铁道科学与工程学报,2005,2(10):13-16
    [23]文望青.客运专线桥梁设计的思考.铁道标准设计,2005,(11):19-21
    [24]李义兵.铁路客运专线桥梁上部结构设计研究.铁道标准设计,2005,(11):22-25
    [25]吕志涛.高速铁路桥梁建设中的结构问题.建筑科学与工程学报,2006,23(3):1-6
    [26]徐美庚,王风葛.高速铁路预应力混凝土简支桥梁徐变上拱控制初探.中国铁路,1999,(11):19-22
    [27]张运涛,孟少平,潘钻锋.高强混凝土徐变力学实验研究.实验力学,2009,24(6):592-597
    [28]罗许国,钟新谷,戴公连.高性能混凝土梁长期变形性能试验研究.铁道科学与工程学报,2005,2(4):45-49
    [29]秦鸿根,潘钢华,孙伟.掺粉煤灰的桥用混凝土变形性能研究.东南大学学报,2002,32(5):779-782
    [30]邹建喜,李显金,迟培云.粉煤灰混凝土的变形性能研究.混凝土,2003,(6):38-40
    [31] Li J Y, Yao Y. A study on creep and drying shrinkage of high performanceconcrete. Cement and Concrete Research,2001,31:1203-1206
    [32] Lane S N, Podolny W J. The federal outlook for high strength concrete bridges.Journal of PCI,1993,38(3):20-33
    [33] Roller J J, Martin B T. Performance of prestressed high strenth concrete bridgegirders. Journal of PCI,1993,38(3):34-45
    [34]周建民.预应力混凝土梁上拱度的预测及控制.上海铁道大学学报,1997,18(4):32-36
    [35]刘建瑞,陈良江.无碴轨道预应力混凝土梁设计研究.铁道标准设计,2001,21(9):10-12
    [36]王巍,薛伟辰.高速客运专线轨道梁徐变变形研究进展.铁道科学与工程学报,2005,2(4):39-43
    [37] Burns N H. Development of continuity between precast prestressed concretebeams. Journal of PCI,1966,11(3):23-37
    [38] Shaikh A F, Branson D E. Non-tensioned Steel in Prestressed Concrete Beams.Journal of PCI,1970,15(1):14-36
    [39] Burns N H. Canadian Bridge Uses Prestressed Concrete Reinforcing Elements.In: bridge Report. New York: Prestressed Concrete Institute,1968
    [40] Gerwick B C. Construction of Prestressed Concrete Structure. JohnWhiey&Sons, New York,1993,110-115
    [41] Ernst R,陈昌言.阿尔姆桥——第一次在桥梁工程中应用预压应力钢棒.国外桥梁,1983,30(1):1-8
    [42]田岛武,近藤顺,横田勉.バイプレストレシソダ方式PC桁の实用化试验と设计.桥梁と基础,1984,18(2):16-21
    [43]邵旭东,刘海波,李立峰.二次预应力技术应用于桥梁结构的探索研究.公路,2003,(3):89-92
    [44]邵旭东,李立峰,张伟.二次预应力组合结构试验研究.中国公路学报,2006,19(1):75-79
    [45]邵旭东,邓军,李立峰,等.二次预应力超薄梁徐变效应试验研究.公路交通科技,2005,22(4):53-56
    [46]邵旭东,张伟,彭聪,等.二次预应力梁的徐变和承载力试验研究.土木工程学报,2006,39(8):81-86
    [47] Deng Jun, Shao Xudong, Li Lifeng, et al. Experimental research on the creepbehavior of twice prestressed concrete beam. Structural EngineeringInternational,2006,16(1):53-58
    [48]邵旭东,彭聪,李立峰.二次预应力连续梁的施工过程分析.中南公路工程,2006,31(2):73-76
    [49]李显潮.二次预应力组合结构连续梁承载力试验研究:[湖南大学硕士学位论文].长沙:湖南大学,2007,23-65
    [50]彭聪.二次预应力连续梁及其试验研究:[湖南大学硕士学位论文].长沙:湖南大学,2006,15-56
    [51]周亚栋,邵旭东,刘海波.预应力混凝土低高度梁桥结构形式比较研究.湖南大学学报(自然科学版),2010,37(8):6-11
    [52]周亚栋,邵旭东,聂美春,等.2次预应力简支组合梁受力性能与技术经济分析.土木建筑与环境工程,2009,31(6):7-14
    [53]夏建中.客运专线铁路预应力混凝土简支箱梁通用参考图简介.铁道标准设计,2006,(11):90-93
    [54]中华人民共和国行业标准.(TB1002.3-2005)铁路桥涵钢筋混凝土和预应力混凝土结构设计规范.北京:中国铁道出版社,2005
    [55]叠合梁专题研究组(周旺华,贺采旭执笔).预应力混凝土迭合梁受力性能的研究.建筑结构,1982,(4):29-36
    [56]秦文钺,郭平.钢筋混凝土的剪力传递强度计算方法.重庆建筑工程学院学报,1986,(1):18-27
    [57]文永奎,陈政清.考虑预应力损失的混凝土梁徐变计算方法.中国铁道科学,2005,26(3):36-41
    [58]薛伟辰,王巍,任廷柱.准高速客运专线轨道梁施工阶段的徐变性能.西南交通大学学报,2005,40(6):138-143
    [59]薛伟辰,王巍.轨道交通预应力混凝土梁施工阶段徐变性能试验研究.铁道学报,2008,30(1):53-59
    [60]薛伟辰,王巍.城市轻轨预应力混凝土轨道梁徐变性能试验研究.铁道学报,2006,28(6):94-98
    [61]薛伟辰,胡于明,王巍.预应力混凝土梁徐变性能试验.中国公路学报,2008,21(4):61-66
    [62]薛伟辰,王巍,任廷柱.准高速客运专线轨道梁的徐变性能.西南交通大学学报,2008,43(4):434-440
    [63]高速铁路无碴轨道预应力混凝土箱型简支梁徐变上拱的限值与控制.北京:铁道部科学研究院,1998
    [64]万国强,邵旭东.二次张拉预应力锚具.中国.Y,ZL2004200352303.2005-02-09
    [65] Comite Euro-International du Beton. Bulletin D’information No.213/214CEB-FIP Model Code1990(Concrete Structures). Lausanne,1993
    [66]陈洪,周亚栋,王博.一种双套筒预应力钢筋套管连接器及其套管连接施工方法.中国.C, ZL200810031097.7.2009-10-28
    [67]陈洪,周亚栋,王博.一种双套筒预应力钢筋套管连接器.中国.Y,ZL200820052903.4.2009-01-28
    [68]陈洪,周亚栋,王博.一种双层套筒钢筋连接器及其施工方法.中国.C,ZL200810031096.2.2010-03-03
    [69]陈洪,周亚栋,王博.一种双层套筒钢筋连接器,中国.Y,ZL200820052902.X.2009-01-28
    [70]刘作霖,徐兴至.预应力T形刚构桥.北京:人民交通出版社,1982,149-150
    [71] Bazant Z P, Wittmann F H. Creep and shrinkage in concrete structures.Chichester: John Wiley&Sons,1982,12-36
    [72]项海帆.高等桥梁结构理论.北京:人民交通出版社,2001,102-104
    [73] Dischinger F. Untersuchungen über die Knichsicherheit die elastischeverformung und das kriechen des betons bei bogenbrüchen. Der Baulngenleur,1937,18(33/34):487-520,1937(35/36):539-552,1397(39/40):595-621
    [74] Hansen T C, Mattock A H. Influence of size and shape of member on theshrinkage and creep of concrete. ACI Journal,1966,63:267-290
    [75] Trost H. Auswirkungen des superpositionsprinzips auf kriech-und RelaxationsProblem bei Beton und Stahlbeton. Beton und Stahlbetonbau,1967,62(10):230-238,62(11):261-269
    [76] Zerna W, Trost H. Rheologische Berchreibung des Werkstoffes Beton. Betonund Stahlbeton,1967,62:165-170
    [77] Bazant Z P. Prediction of Concrete Creep Effects Using Age-adjusted EffectiveModulus Method. ACI Journal,1972,69(4):212-217
    [78] Bazant Z P, Najjar L J. Comparison of Approximate Linear Methods forConcrete Creep. Journal of Structural Divison, ASCE,1973,99(9):1851-1874
    [79] Bazant Z P, Wu S T. Creep and shrinkage law for concrete at variable humidity.Journal of Engineering Mechanics,1974,100(3):1183-1209
    [80] Bazant Z P, Osman E. On the choice of creep function for standard recommend-ations on practical analysis of structures. Cement and Concrete Research,1975,5(2):129-138
    [81] Bazant Z P. Nonlinear creep of concrete-adaption and flow. Journal ofEngineering Mechanics,1979,105(3):429-446
    [82] Bazant Z P, Panula L. Creep and shrinkage characterization for analyzingprestressed concrete structures. PCI Journal,1980,25(3):86-121
    [83] Bazant Z P, Chern J C. Bayesian statistical prediction of concrete creep andshrinkage. ACI Journal,1984,81(6):318-330
    [84] Bazant Z P, Chern J C. Concrete creep at variable humidity: constitutive lawand mechanism. Materials and Structures,1985,18:1-20
    [85] Bazant Z P, Prasannan S. Solidification theory for concrete creep-I: Formulation.Journal of Engineering Mechanics,1989,115(8):1691-1703
    [86] Bazant Z P, Prasannan S. Solidification theory for concrete creep-II:Verification and Application. Journal of Engineering Mechanics,1989,115(8):1704-1725
    [87] Bazant Z P, Kim J K. Improved prediction model for time dependent deforma-tions of concrete Part2: Basic Creep. Materials and Structures,1991,24:409-420
    [88] Bazant Z P, Kim J K. Improved prediction model for time dependent deforma-tions of concrete Part3: Creep at drying. Materials and Structures,1992,25:21-28
    [89] Bazant Z P, Xi Y. Stochastic drying and creep effects in concrete structures.Structural Engineering, ASCE,1993,119(1):301–322
    [90] Bazant Z P, Xi Y. Drying creep of concrete: constitutive model and newexperiments separating its mechanisms. Materials and Structures,1994,27:3-14
    [91] Bazant Z P, Xi Y. Continuous retardation spectrum for solidification theory ofconcrete creep. ASCE Journal of Engineering Mechanics,1995,121(2):281-288
    [92] Bazant Z P, Murphy W P. Creep and shrinkage prediction model for analysis anddesign of concrete structures-model B3. Materials and Structures,1995,28(180):357-365
    [93] Bazant Z P. Baweja S. Justification and refinements of model B3for concretecreep and shrinkage1. statistics and sensitivity. Materials and Structures,1995,28(181):415-430
    [94] Bazant Z P. Baweja S. Justification and refinements of model B3for concretecreep and shrinkage2. updating and theoretical basis. Materials and Structures,1995,28(182):488-495
    [95] Granger L P, Ba ant Z P. Effect of composition on basic creep of concrete andcement paste. ASCE Journal of Engineering Mechanics,1995,121(11):1261-1270
    [96] Bazant Z P, Baweja S. Short form of creep and shrinkage prediction model B3for structures of medium sensitivity. Materials and Structures,1996,29:587-593
    [97] Baweja S, Dvorak G J, Ba ant Z P. Triaxial composite model for basic creep ofconcrete. ASCE Journal of Engingeering Mechanics,1998,124(9):959-966
    [98] Bazant Z P. Prediction of concrete creep and shrinkage: past, present and future.Nuclear Engineering and Design,2001,203(1):27-38
    [99]周履,陈永春.收缩徐变.北京:中国铁道出版社,1994,72-83
    [100]中华人民共和国行业标准.(JTG D62-2004)公路钢筋混凝土及预应力混凝土桥涵设计规范.北京:人民交通出版社,2004
    [101]中华人民共和国行业标准.(JTJ023-85)公路钢筋混凝土及预应力混凝土桥涵设计规范.北京:人民交通出版社,1985
    [102]宁平华,鲍卫刚.公路桥涵设计规范徐变系数的解析.公路,1990,(3):6-8,37
    [103]李国平,张哲元.钢-混凝土组合桥梁混凝土徐变收缩分析.结构工程师,1999,14(1):12-17
    [104] Whitney C S. Plain and Reinforced Concrete Arches. ACI Journal Proceedings,1932,23(7):470-519
    [105] England G L, Illson J M. Methods of Computing Stress in Concrete from aHistory of Measured Strain. Civil Engineering and Public Works ReviewLondon,1965,60:513-517,692-694,846-847
    [106]寿楠椿,竹学叶,万科峰.混凝土结构徐变分析理论.工程力学增刊.第三届全国结构工程学术会议论文集(上),1994,70-74
    [107]寿楠椿,竹学叶.混凝土结构徐变有限元分析.中国土木工程学会计算机应用分会第六届年会土木工程计算机应用文集,1995,106-111
    [108]金成棣.混凝土徐变对超静定结构变形及内力的影响.土木工程学报,1981,14(3):19-31
    [109]金成棣.预应力混凝土斜拉桥由徐变引起内力重分布的分析.华东公路,1980,(3):30-40
    [110]陈永春,马国强.考虑混凝土收缩徐变和钢筋松驰相互影响的预应力损失计算.建筑结构学报,1981,2(6):31-46
    [111]徐金声,陈永春,高红旗.混合配筋预应力梁的截面长期应力分析.建筑结构学报,1985,6(5):16-28
    [112]陈永春,徐金声,高红旗.预应力构件钢筋松驰和混凝土收缩徐变应力损失的计算.建筑科学,1987,(3):3-13
    [113]陈永春.混凝土徐变问题的中值系数法.建筑科学,1991,(2):3-8
    [114]范立础,郑步全.考虑滞后弹性由混凝土徐变引起的连续梁次内力计算方法.同济大学学报,1985,13(3):29-41
    [115]范立础.桥梁结构徐变次内力分析.同济大学学报(自然科学版),1991,19(1):23-32
    [116]周乐农.混凝土结构的粘弹性分析.长沙铁道学院学报,1991,9(3):132-139
    [117]孙宝俊.混凝土徐变理论的有效模量法.土木工程学报,1993,26(3):66-68
    [118]王勋文,潘家英.按龄期调整有效模量法中老化系数χ的取值问题.中国铁道科学,1996,17(3):12-22
    [119] Zienkiewicz C, Waston M. Some creep effects in stress analysis with particularreference to concrete at pressure vessels. Nuclear Engineering and Design,1966,(4):38-47
    [120] Taylor R L, Pister K S, Goudreau G L. Thermomechanical analysis of viscoelas-tic solids. Methods in International Journal for Numerical Engineering,1970,(2):45-60
    [121]高政国,黄达海,赵国藩.混凝土结构徐变应力分析的全量方法.土木工程学报,2001,34(4):10-14
    [122]胡狄,陈政清.预应力混凝土桥梁徐变分析的全量形式自动递进法.工程力学,2004,21(5):41-45
    [123]胡狄,余志武.静定预应力混凝土桥梁变形全量形式矩阵分析.铁道科学与工程学报,2009,6(5):1-4
    [124] Jian-Jun Yang, Xu-Dong Shao, Ya-Dong Zhou. Creep effect of twice-prestressed concrete beam. The4th International Symposium on LifetimeEngineering of Civil Infrastructure, Changsha,2009,832-836
    [125] Xudong Shao, Jianjun Yang, Hua Zhao, et al. Experimental Research on andApplication of Twice-prestressed concrete beam. Advances in StructuralEngineering.2010,13(2):321-330.
    [126]周旺华.现代混凝土叠合结构.北京:中国建筑工业出版社,1998,64-75
    [127]赵顺波,张新中.混凝土叠合结构设计原理与应用.北京:中国水利水电出版社,2001,112-128
    [128] Hanson N W. Precast-prestressed Concrete Bridge (2): Horizontal ShearConnection. PCA Research and Development Laboratories,1960,2(2):38-58
    [129] Douglas Mechenry. Development of Continuity in Precast PrestressedConstruction. Sixth Congress of International Association for Bridge andStructural Engineering,1961
    [130] Saemann J C, Washa G W. Horizontal Shear Connection between PrescastBeams and Cast-in-place Slabs. ACI Journal,1964,61(11):1383-1409
    [131] Grossfield B, Birnstiel C. Tests of T beams with precast webs cast-in-placeflangs. ACI Journal,1962,59(2):843-851
    [132] Tepfers R. Neue Verfahren für die Ausführung ron Wohnbauten aus Beton.Beton und Stahlbetonbau,1979,5
    [133] Hofbeck J A, Ibrahim I O, Mattock A H. Shear Tranfer in Reinforced Concrete.ACI Journal,1969,66(2):119-128
    [134] Mattock A H, Hawkins N M. Research on Shear Tranfer in Reinforced Concrete.PCI Journal,1972,17(2):55-75
    [135] Mattock A H. Cyclic Shear Tranfer and Type of Interface. Journal of theStructural Division, ASCE,1981,107(10):1945-1964
    [136] ACI-ASCE Committee333. Tentative Recommendatins for the Design ofComposite Beams and Girder for Buildings. ACI Journal,1960,57(6):609-628
    [137]叠合结构专题组.钢筋混凝土及预应力混凝土叠合结构设计方法的研究综合报告.武汉工业大学,1985
    [138]谢汉,汪声瑞.二次受力钢筋混凝土叠合梁叠合面抗剪强度试验研究.武汉工业大学学报,1988,(4):477-486
    [139]裘进荪,罗家永.钢筋混凝土叠合梁抗剪非线性分析.浙江大学学报,1987,21(4):12-25
    [140]裘进荪,蒋志勇.均布荷载下钢筋混凝土叠合梁抗剪强度分析.浙江大学学报,1989,23(5):665-674
    [141]中华人民共和国行业标准.(GBJ10-89)混凝土结构设计规范.北京:中国建筑工业出版社,1989
    [142]中华人民共和国行业标准.(GB50010-2002)混凝土结构设计规范.北京:中国建筑工业出版社,2002
    [143]邓志恒,王晓,范业庶.二次受力叠合梁斜截面抗剪模型.工业建筑,2002,32(5):35-37
    [144]常鹏,姚谦峰.钢筋混凝土叠合梁斜截面承载力数值模拟与影响因素分析.中国安全科学学报,2005,15(12):16-20
    [145]洪炳钦,杨俊杰,杨遒,等.叠合梁斜截面抗剪性能的试验研究.浙江工业大学学报,2007,35(4):464-468
    [146]刘文春,高荣誉,赵梅.叠合梁斜截面抗剪性能的数值研究与分析.安徽建筑工业学院学报(自然科学版),2009,17(3):6-10
    [147]赵梅,高荣誉,刘文春.预应力叠合梁斜截面抗剪性能有限元分析.安徽建筑工业学院学报(自然科学版),2011,19(2):15-19
    [148]马远荣,胡钧策.活性粉末混凝土预应力叠合梁抗剪强度.公路交通科技,2007,24(12):85-88
    [149]周旺华,谢汉.二次受力钢筋混凝土简支迭合梁斜截面抗剪强度.工业建筑,1989,19(7):24-27
    [150]周旺华,谢汉.二次受力钢筋混凝土连续迭合梁斜截面抗剪强度.四川建筑科学研究,1989(1):34-39
    [151]敖进滔,谢慧才,熊光晶,等.影响新老混凝土粘结界面强度的主要因素.第六届全国结构工程学术会议论文集(第二卷),工程力学(增刊),1997,328-333
    [152]秦文钺,郭平.弯矩对剪力传递强度的影响.重庆建筑工程学院学报,1985,7(3):27-37
    [153]殷芝霖.钢筋混凝土和预应力混凝土组合梁迭合面的抗剪强度.工业建筑,1984,14(5):1-11
    [154] Badoux J C, Hulshbos C L. Horizontal Shear Connection in Composite ConcreteBeams under Repeated Loads. ACI Journal,1967,64(12):811-819
    [155]林少明,贺采旭.低周反复荷载下钢筋混凝土连续迭合梁的抗剪性能.武汉水利电力学院学报,1987,(2):73-83
    [156] Viest I M. Investigation of stud shear connector for composite concrete andsteel T-beams. Journal of ACI,1956,27(8):875-891
    [157] Viest I M. Review of research on composite steel-concrete beams. Journal ofStructural Division ASCE,1960,86(7):1-21
    [158] Slutter R G, Driscoll G C. Flexural strength of steel-concrete composite beams.Proceedings of ASCE, Journal of the Structural Division,1965,91(4):71-99
    [159] Chapman J C. Balakrishman S. Experiments on composite beams. TheStructural Engineer,1964,42(11):369-383
    [160]聂美春.无碴轨道二次预应力梁组合结构的应用研究:[湖南大学硕士学位论文].长沙:湖南大学,2009,39-65
    [161]熊丹安.预应力混凝土叠合梁的抗剪性能研究.预应力混凝土现况与发展——中国土木工程学会混凝土及预应力混凝土学会后张预应力混凝土结构委员会第一届第三次学术交流会论文集,1992,183-192
    [162]周亚栋,邵旭东.一种新型预应力混凝土叠合梁设计与应力分析.工业建筑,2010,40(8):64-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700